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Abstract

The performances of deep neural networks (DNN’s)
crucially rely on the quality of labeling. In some sit-
uations, labels are easily corrupted, and therefore
become noisy labels. Thus, designing algorithms
that deal with noisy labels is of great importance
for learning robust DNNs. However, it is difficult
to distinguish between noisy labels and clean la-
bels, which becomes the bottleneck of many meth-
ods. To address the problem, this paper proposes
a novel method named Label Distribution based
Confidence Estimation (LDCE). LDCE estimates
the confidence of the observed labels based on la-
bel distribution. Then, the boundary between clean
labels and noisy labels becomes clear according to
confidence scores. To verify the effectiveness of
the method, LDCE is combined with the existing
learning algorithm to train robust DNNs. Exper-
iments on both synthetic and real-world datasets
substantiate the superiority of the proposed algo-
rithm against state-of-the-art methods.

1 Introduction

Deep neural networks (DNNs) are the preferred choices for
many classification tasks. A large number of labeled train-
ing instances are essential to training DNNs with high perfor-
mance. It is convenient to obtain enough instances as well as
labels with the assistance of the Internet and crawler [Divvala
et al., 2014], but noisy labels are inevitable. Training DNNs
with noisy labels is challenging since the networks can easily
overfit to the corrupted labels [Nettleton et al., 2010].

Many prior works avoid overfitting to the corrupted data by
correcting the noisy labels [Yi and Wu, 2019; Hendrycks et
al., 2018]. Note that the corrupted dataset inherently contains
a large number of samples with clean labels. It is inevitable
to make wrong corrections to clean labels due to the uncer-
tainty of the boundary between clean labels and noisy labels.
Such wrong operations will result in the decline of the per-
formance. Moreover, current methods are weak at handling
various noise patterns. When the noise pattern is changed,
some methods will make unstable corrections. As shown in
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(a) Asymmetric noise (b) Symmetric noise
Figure 1: Performance comparison for model learned with cross en-
tropy loss on samples with clean labels (i.e., filter out wrong-labeled
samples) and model learned with forward correction loss on samples
containing noisy labels under different noise patterns on CIFAR10.

Fig. 1, we make a comparison between the model trained with
forward correction loss [Patrini et al., 20171, a classical label
correction method, on samples containing noisy labels and
the model trained with cross entropy loss on filtered samples
with clean labels. Forward correction loss has good perfor-
mances in asymmetric noise pattern but performs poorly un-
der symmetric noise cases. In contrast, the model learned
with only clean labels have stable performances on both noise
patterns. It shows that the samples with clean labels are more
important than the correcting operations under specific noise
patterns. However, the uncertainty of labels makes it difficult
to identify the samples with clean labels.

To reduce the uncertainty of labels, a metric named label
confidence is proposed in this paper for measuring the relia-
bility of each label, in which clean labels get high confidence
scores while noisy labels achieve low confidence scores. Note
that Label Distribution (LD) naturally provides such a met-
ric [Geng, 2016]. As shown in Fig. 2, LD assigns the de-
scription degree d¥, to all classes in a distribution format,
ie, dy € [0,1] and 30 d = 1. The description degree
represents the degree to which y describes @, which is nat-
urally suitable to measure the label confidence. Moreover,
compared with directly estimating the confidence score from
the feature space, e.g., CleanNet [Lee ef al., 2018], the de-
scription degree is more reliable because the degree value is
restricted by other classes in the distribution format. Moti-
vated by this, this paper proposes a novel algorithm named
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Figure 2: An example of Label Distribution.

Label Dsitribution based Confidence Estimation (LDCE) to
estimate label confidence by generating label distribution.

Note that using some trusted samples is an effective ap-
proach to improving robustness in noisy label problems, and
such small set can be fetched easily in many real-world ap-
plications [Hendrycks et al., 2018]. LDCE estimates the la-
bel confidence via a small number of trusted samples, i.e.,
samples with clean labels. In this case, the training data
is divided into two sets, i.e., a set with a few trusted sam-
ples and the other set with a large number of untrusted sam-
ples. Guided by the trusted samples, LDCE generates LD for
each untrusted sample by measuring the similarity in feature
space, i.e., the embedding space obtained from a feature en-
coder. Then, the confidence score of the observed label can
be obtained from LD. After obtaining the label confidence,
the samples with high confidence scores can be selected from
the untrusted set, which is termed as purified data in this pa-
per. Experiments show that the purified data mainly consists
of the samples with clean labels.

Since the purified data is selected from the untrusted set,
the risk of wrong operations to clean labels is mitigated. In
this case, we combine the purified data with the existing cor-
rection method to train robust DNNs. The empirical results
substantiate that the proposed method achieves favorable per-
formances in both synthetic noise cases and real-world noise
cases.

The contributions of this paper are as follows:

* A reliable metric label confidence is designed for mea-
suring the reliability of labels based on label distribu-
tion.

* A practical algorithm for estimating the label confidence
is proposed. Experimental results verify the efficiency of
the estimation algorithm.

* A novel learning method using label confidence is de-
signed for training robust DNNs. Experiments on three
datasets show the superiority of the proposed method
against state-of-the-art methods.

2 Related Work

Due to the presence of noisy labels, most of the learning
algorithms based on the supervised learning framework can
not accurately capture the mappings between instances and
ground-truth labels. To deal with this problem, existing meth-
ods focus on mitigating the adverse effect of noisy labels.
One intuitive and easy approach is to remove the samples
which are considered as wrong-labeled. For instance, [Han

et al., 2018; Chen er al., 2019] attempt to filter out the un-
reliable samples during the training phase via a co-teaching
framework. However, such methods do not explicitly deal
with noisy labels. When the noise is severe, the performances
of these methods are usually vulnerable.

An alternative approach is to correct noisy labels. [Tanaka
et al., 2018; Chen et al., 2019] propose to replace the cor-
rupted label with a more robust soft label which is in a dis-
tribution format. By converting a categorical label into a la-
bel distribution, the noisy label can be probabilistically cor-
rected. Aside from correcting the labels directly, a loss cor-
rection strategy is proposed to revise the effects of noisy la-
bels with the correction loss function [Patrini er al., 2017].
However, wrong corrections to the clean labels will introduce
extra noisy information during the learning process.

Other than the works mentioned above, some works notice
the value of clean labels and turn to focus on strengthening
the importance of the samples with clean labels. In [Guo et
al., 2018], CurriculumNet designs a learning schedule which
starts from learning ‘easy’ subset to gradually adding ‘com-
plex’ subset. In [Ren ef al., 2018; Shu et al., 2019], sample
reweighting strategy is used to improve the attention of clean
labels. Our method belongs to this categroy. However, dif-
ferent from previous methods, we focus on combining the
reweighting idea with correction methods.

3 The Proposed Methods
3.1 Notations Definition

First of all, some notations used in this paper are clarified as
follows. The :-th instance is denoted by x;. The ground-
truth label of the i-th instance is denoted by y; € {0,1}° and
1%y, = 1, where cis the number of possible label values and
1 is a vector of all-ones. As the training set is corrupted, the
observed label of the i-th instance is denoted by y; € {0,1}¢
and 1Tg; = 1.

In a c-class classification problem, D,, = {(z;,9;)|1 <
i < N} is a corrupted dataset, where the observed label g; is
considered as unreliable. Moreover, a trusted dataset is pre-
pared as D; = {(x;,y:)|1 < i < t}, wheret/(t+ N) <« 1
is defined as the trusted fraction. To generate the label con-
fidence, we introduce label distribution d;. The description
degree of class j to instance x; is denoted as d? € [0, 1], and

Z;Zl d{ = 1. The label confidence of the ¢-th sample is

defined as c;.

3.2 Confidence Estimation

As refered above, the bottleneck of current methods is the
uncertainty on the untrusted set. Measuring the reliability of
each label is a practical approach to reduce the uncertainty.
Guided by this motivation, this paper designs a metric named
label confidence based on label distribution [Geng, 2016] and
proposes a practical method LDCE for estimating this metric.

Label Distribution Generation

LD offers a numerical metric description degree for each
class in label space. As shown in Fig. 2, a high degree usually
denotes more reliable labeling. Thus, the description degree
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on the observed label is naturally suitable to be the label con-
fidence metric.

Note that samples sharing the similar features tend to have
the same label, similarity in feature space has been success-
fully applied in recovering LD [Xu er al., 2018]. In this pa-
per, the feature similarity is calculated with a small batch of
trusted samples. Then, LD is generated according to the sim-
ilarity scores.

In detail, it is the first step to sample a support set and two
query sets from the training data. Sampling subsets to con-
struct meta-task is commonly used in few-shot learning algo-
rithms [Wang and Yao, 2019], which is helpful to learn from
limited data. Then, the membership degree [Xu et al., 2018]
to class j for instance «x; is calculated by

1S5

m? |5|Z% (1)

where S; denotes the samples of class j in the support set,
and s;; denotes the similarity score between instances x; and
x;. Finally, the membership degrees to different classes are
normalized into a label distribution d; = [d}, d?, ..., d¢] via
a softmax layer

&= exp(mg)
b o exp(mf)

After obtaining the label distribution, the label confidence c;
is updated iteratively according to

@)

cl(-tﬂ) = acgt) +(1- oz)diT?;/i7 3)

where « is the step size.

Framework of Estimation Model

In order to get accurate label confidence from the corrupted
data, it is important to train a reliable feature encoder for
similarity calculation. This paper designs a unified learning
framework to estimate the label confidence as well as learn a
reliable feature encoder. As shown in Fig. 3, the framework
is composed of a feature encoder fg, a metric module g, and
a fully connected (FC) layer fg.

The estimation model is learned with a multi-task strategy
[Ruder, 2017], which consists of a metric learning task and
a classification task. The output of the feature encoder is de-
noted as z; = fg(a;), which refers to the feature embedding
of instance x;. Then, the similarity score between two in-
stances is measured as s;; = ||z; — z;]|.

After obtaining the label confidence according to Eq.1-2,
the loss function of the metric learning task is calculated by
the cross entropy loss on the trusted query set according to

Eq. 4.
szm:_izzyflogd (4’)
i=1 j=1
where m denotes the number of the query data sampled from
the trusted set.
For the classification task, the linear layer fy is used to
predict the label of instance x;, and the predicted result is
denoted as p(y;|z;) = fe(z;). For data sampled from the
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Figure 3: A conceptual illustration of the estimation model.

trusted set, the loss is calculated directly with the cross en-
tropy loss according to Eq. 5.
n+mi c

P > ylloglp(yllxi), ()

=1 j=1

»Ct:

where n and m; denotes the number of support data and
query data sampled from the trusted set. For data sampled
from the untrusted set, the loss is calculated by Eq. 6 based
on the attention mechanism [Vaswani et al., 2017].

Z Z a; g log(p(y] |z:)), (6)

=1 j=1
where a; denotes the attention value obtained from the la-
bel confidence, and m. is the number of the query data sam-
pled from the untrusted set. Since the encoder is trained from
scratch, the estimation result is unstable in the former itera-
tions. In this case, we initialize the label confidence to 0 and
calculate the attention value with a threshold §.

5 ={ 5 theruor @
Then, the loss function for the classification task is designed
as follows:
L+ Ly
n—+m+ Y02 I(a;)
where 1(.) is the indicator function.

Based on the above analysis, Eq. 4 and Eq. 8 are combined
to form the loss function for training the estimation model.

jLDCE = »Csim + ['cls~ 9
Algorithmic detailes are shown in Algorithm 1.

‘Ccls =

(®)

3.3 Learning with Purified Data

After obtaining the label confidence, the boundary between
clean labels and noisy labels becomes clear by assuming that
clean labels get higher label confidence. In this case, the sam-
ples with high confidence scores are selected with the same
threshold in the estimation model, and the selected samples
are named as purified data. Then, we combine the purified
data with the classical correction method GLC [Hendrycks
et al., 2018] by proposing a revised correction loss, and the
learning method is named as Purified Data based Loss Cor-
rection (PDLC).
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Algorithm 1 Label Distribution based Confidence Estimation

Input: Trusted data D;, Untrusted data D, fq, fo.
Parameter: batch size n, m1, mo, max iterations 7', step size
«, threshold 6.

1: Initialize model parameter 8, ¢ and label confidence.

2: forv=1to T do

3. {z®) y)} « SampleMiniBatch(D;, n)

. {x(@ y@} « SampleMiniBatch(D;, m1)

{x(@ §(@} « SampleMiniBatch(D,,, my)
2" fo(x{”), 217 « fo(a\V), 27  fo(xP).
Calculate the label distribution d; by Eq. 1-2.
Formulate the learning function by Eq. 4-9.
Update model parameter 8, ¢ in backward process.
. Update label confidence by Eq.3.
11: end for

4
5
6:
7:
8.
9

10

Revised Forward Correction Loss

In [Patrini et al., 20171, forward correction loss is proposed
to tackle the noisy label problem. The loss function is shown
as

") =—log Y  Cp(yl|a:), (10)

Jj=1

Ecorr (p(yz | xv) ’ 'gv

where e* denotes the k-th standard canonical vector, i.e.,
ek € {0,1}¢and 1Te* = 1. C € R*¢ is the noise tran-
sition matrix and Cj, = p(g = e*|y = e’). How to obtain
C is the same as [Hendrycks et al., 2018].

Since the purified data contains mainly samples with clean
labels, forward correction loss does not perform well on pu-
rified data when compared with cross entropy loss. However,
simply replacing the correction loss with the cross entropy
loss will mitigate the correction effects on the remaining un-
trusted samples. In this case, we design a revised forward cor-
rection loss by combining forward correction loss with cross
entropy loss. The combination loss function is shown as

gpurified = )\gce + (]- - )\)gcorrv (11

Specifically, A € (0, 1) is the hyperparameter to balance the
cross entropy loss and the initial correction loss, which is se-
lected according to the model performance on each noise pat-
tern. We observe that the case with a high noise ratio favors a
small A value, while the case with a small noise ratio prefers
a high X value.

Final Objective

After obtaining the purified data, the whole training set is di-
vided into three parts. The first part is the pre-acquired trusted
samples D, with ground-truth labels, and the loss function is
the cross entropy loss /... The second part is the purified data
D,, with high label confidence, and the loss on D,, is the re-
vised forward correction 10SS £}, fieq. The last part is the
remaining samples with relatively low label confidence that
recorded as 25“, and the loss on Zsu is calculated by the for-
ward correction 10SS copy.

D

»Ctrusted = Z gce (fcp (CBZ), yi)v

=1

12)
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Dy |
Epurified - ngurified(f¢(mi)7gi))7 (13)
=1
D.,
Cuntrusted - Z ecorr‘(f(p (a:l)) gl)) (14)
i=1
j _ Etrusted + me“ified + Euntrusted (15)

[De| + |Dp| + [Dul

The DNN model is denoted as f,,. By minimizing Eq. 15,
the optimal parameter ¢ of the DNN model can be obtained.

4 Experiments

4.1 Experimental Setup

Datasets

The experiments are conducted on CIFAR10 and CIFAR100
[Krizhevsky er al., 2009] with synthetic label noise and
Clothing 1M [Xiao er al., 2015] with real-world label noise.

CIFAR10 & CIFAR100 are two datasets consists of 32 x
32 color images. The two datasets both contain 50,000 train-
ing samples and 10,000 test samples. CIFAR10 assigns the
samples with 10 classes, while CIFAR100 assigns the sam-
ples with 100 classes.

Since a trusted set is essential in the learning settings, the
training set is split into two parts with the trusted fraction of
5% and 10%. Then, the synthetic label noise is added into
the untrusted set. Following the previous literature [Chen et
al., 2019], experiments are conducted on two representative
types of label noise: symmetric noise and asymmetric noise.
As illustrated in Fig. 4, the label noise is uniformly distributed
among all other classes in the symmetric case. In the asym-
metric case, label noise is generated by flipping a label to a
different class. The noise ratio € denotes the proportion of
wrong labels. In this paper, we test noise ratio 20%, 50% and
80% for both symmetric and asymmetric noise.

ClothinglM is a dataset collected with real-world label
noise. The training set consists of 1M images with noisy la-
bels from 14 fashion classes and 47,570 images with manu-
ally refined labels. The validation set and test set have 14,313
and 10,526 images respectively. The images with manually
refined labels in training set are used as trusted samples.

(a) Symmetric Noise

(b) Asymmetric Noise

Figure 4: Examples of noise transition matrix C' (taking 5 classes
and noise ratio € = 40% as an example).
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The striped bars denote the methods learned with purified data.

Implementation Details

The experiments are implemented with PyTorch framework.
Detailed implementations for each dataset are as follows.

CIFAR10 & CIFAR100. For estimation model, we use a
ResNet-32 [He et al., 2016] as the feature encoder. The
learning rate is 0.1 with a deacy step 60 and a decay rate
0.1. The hyper-parameters is «=0.6, 6=0.5. We observe
that the hyper-parameters, which are selected by experience,
are not very sensitative to different noise patterns. Thus, the
hyper-parameters are fixed for all noise patterns. For classi-
fier model, we adopt a Wide Residual Network [Zagoruyko
and Komodakis, 2016] of depth 40 and a widening factor of
2. The learning rate is 0.1 with a multi-step deacy [60, 80,
90] and a deacy rate 0.2. For both estimation model and clas-
sifier model, we use SGD optimizer with 0.9 momentum, a /o
weight decay 1 x 10~ and train the models for 100 epochs.

ClothinglM. Following the previous works [Tanaka et al.,
2018; Shu et al., 2019], we use ResNet-50 [He et al., 2016]
pre-trained on ImageNet for both the feature encoder and
classifier model. The hyper-parameters is the same with CI-
FAR10 and CIFAR100. The learning rate is 0.01 with a decay
step 5 and a deacy rate 0.1. We use SGD optimizer with a mo-
mentum 0.9, a £, weight decay 1 x 10~3 and train the models
for 10 epochs. For preprocessing, we resize each image to
256 x 256, crop the middle 224 x 224 as input, and perform
normalization.

Baselines

We compare our algorithm with Trusted Only, referring to
learning DNNs with only trusted samples, and Fine-tuning,
referring to fine-tuning DNNSs trained on corrupted data with

trusted samples [Shu er al., 2019]. Other than the two meth-
ods above, classical comparison methods with the same learn-
ing settings include: Distillation [Li et al., 2017], Mentor-
Net [Jiang et al., 2018], L2RW [Ren et al., 2018], MW-Net
[Shu et al., 2019], GLC [Hendrycks et al., 2018].

For fair comparisons, all the contrast methods are evaluated
with the same setup. To ensure that the empirical results are
reliable, we repeat each experiment on synthetic noise cases
5 times with different random seeds.

4.2 Experimental Results

Results on CIFAR10 & CIFAR100

The label confidence obtained from the estimation model is
critical for the learning method PDLC. To investigate the per-
formance of the estimation model, we firstly illustrate the dis-
tribution of label confidence in the interval [§, 1] (§ = 0.5)
on CIFARI10 with 5% trusted fraction. As can be seen from
the Fig. 5(a)-5(c), for both symmetric and asymmetric noise
types, the purified data, i.e., samples with label confidence in
the interval [d, 1], mainly consists of the samples with clean
labels. In other words, only limited wrong-labeled samples
exist in the purified data, which verifies the effectiveness of
the estimation model and the capability of label confidence in
identifying the clean labels.

To further investigate the effectiveness of the purified data,
we combine the purified data with methods Trusted Only,
Fine-tuning and Distillation. Since the three methods are
easy to implement, we only need to enrich the trusted samples
with purified data. Fig. 5(d)-5(e) summarize the results. It
can be observed that the three methods combined with the
purified data all achieved performance gain, which verifies
the effectiveness of the purified data.
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dataset noise noise method
(trusted fraction) type ratio | Trusted Only Fine-tuning Distillation =~ MentorNet L2RW MW-Net GLC PDLC
20% 87.52+0.20 84.04+0.40 91.26+0.17 88.49+£0.29 91.544+0.40 92.06+0.11 92.14+0.11
symmetric | 50% | 67.78+0.58  82.82+0.36 73.924+2.36 85.82+0.27 83.39+0.71 86.37+£0.38 87.10+0.31 87.36+0.43
CIFAR10 (5%) 80% 65.90+1.78 66.524+3.33 44.48+6.62 56.61+£1.75 64.06+£0.65 70.42+1.43 77.80+2.23
20% 88.88£0.16  84.56+0.62 92.524+0.27 89.64+0.12  92.73£0.28 93.38+£0.22 93.42+0.18
asymmetric | 50% | 67.78+£0.58  87.94+0.44 73.36£2.51 72.90+3.06 87.47+0.45 69.30£3.10 93.00+£0.43 92.96+0.35
80% 87.82+0.40 66.64+3.47 - 82.42+0.80 - 92.70+0.37 92.40+0.33
20% 88.80+0.25 87.20+0.32 91.42+0.16 87.88+0.13 91.224+0.26 92.16+0.15 92.28+0.15
symmetric | 50% | 79.38+0.67  85.12+0.46 79.18+1.84 86.34+0.23 83.75+£0.44 86.284+0.33 87.66+0.19 88.56+0.22
CIFAR10 (10%) 80% 76.48+1.54 73.84+2.81 63.90+1.81 64.59+0.88 72.89+0.84 80.72+0.49 84.18+0.82
20% 89.86£0.09 86.44+0.64 92.2440.17 88.97+0.23  92.25+0.41 93.52+0.16 93.62+0.22
asymmetric | 50% | 79.38+£0.67 89.04+0.17 79.06£2.43 82.40+1.21 87.05+0.32 83.87£1.77 93.24+0.22 93.32+0.23
80% 88.88+0.40 73.50+3.41 - 83.26+0.40 - 92.78+0.41 92.86+0.19
20% 62.38+£0.24 66.52+0.33 69.52+0.26 60.98+1.32 69.28+0.21 71.2440.17 71.48+0.41
symmetric | 50% | 23.40+0.51 54.48+0.19 49.2840.50 59.44+0.57 51.29+1.87 61.44+2.03 62.76+0.42 63.48+0.63
CIFAR100 (5%) 80% 30.18+£1.76  26.90+1.26 15.50+2.48 23.51+3.03 37.40+4.80 34.26+1.08 40.46+1.21
20% 64.66+0.74  68.184+0.63  71.78+£0.24 61.12£1.80 68.11£0.33 74.86+0.19 74.90+0.20
asymmetric | 50% | 23.40£0.51 63.40+0.87 45.58+£1.06 43.34+1.37 54.54+1.75 41.05£0.76 74.28+£0.36 74.44+0.43
80% 62.72£0.55 22.00+1.08 - 33.08+3.01 - 74.12+0.31 73.72+0.42
20% 64.28+£0.39 64.66+£0.28 69.58+0.67 59.60£0.79 68.26+£0.70 71.76+0.22 72.06+0.42
symmetric | 50% | 38.70+0.29  58.04+0.64 52.36+0.66 60.70£0.72 50.83+£2.28 60.33+3.26 64.82+0.39 65.30+0.31
CIFAR100 (10%) 80% 41.324+1.49 39.14+1.64 23.70+4.40 28.64+2.56 47.98+0.67 47.78+0.93 52.421+0.46
20% 66.2840.43  66.04+0.67 71.92+0.13  60.71£0.89  66.82+0.29 74.88+0.22 74.98+0.20
asymmetric | 50% | 38.70£0.29  65.544+0.23 51.16£0.77 49.78+1.69 55.23+1.35 45.17£1.00 74.24+0.18 74.54+0.27
80% 64.48+£0.31 36.20+1.37 - 37.73£0.78 - 74.14£0.15  74.24+0.30

Table 1: Average test accuracy (%, 5 runs) with standard deviation on CIFAR10 and CIFAR100 under symmetric noise with ratio 20%, 50%,
80%, and asymmetric noise with ratio 20%, 50%, 80%. The best test accuracy is bolded.

Next, we evaluate the performance of PDLC by comparing
the method with seven contrast methods on different noise
patterns and trusted fractions. Different from the above ex-
periments that simply enrich the trusted samples with puri-
fied data, PDLC leverages the purified data with a revised
correction loss function. Table 1 summarizes the experimen-
tal results. It can be observed that PDLC achieves favorable
performances among different noise patterns.

For symmetric noise cases, PDLC outperforms all the com-
parison methods in all noise ratios and trusted fractions.
When the noise ratio is small (e.g., 20%), most of the compar-
ison methods can achieve high test accuracies. Even in such
cases, PDLC still achieves higher test accuracies. When the
noise ratio is high (e.g., 80%), the performances of the clas-
sifier models drop significantly. In this case, PDLC shows
strong superiority over the contrast methods.

For asymmetric noise cases, PDLC also achieves better test
accuracies in most cases. Since the forward correction loss
used in both GLC and PDLC is well-designed for asymmetric
noise, both the two methods can achieve high test accuracies.
In this case, the purified data used in PDLC can play a lim-
ited role in performance improvements, which explains why
PDLC does not rank first in some cases.

Results on Clothing1M

To verify the effectiveness of the proposed method on real-
world data, experiments are conducted on Clothing 1M, which
is a dataset with real-world label noise. We compare PDLC
with several methods, including Cross Entropy, Forward [Pa-
trini et al., 2017], LCCN [Yao et al., 2019], PENCIL [Yi and
Wu, 2019], MW-Net [Shu et al., 2019] and GLC [Hendrycks
et al., 2018]. The results are summarized in Tabel 2. Row 1
to 4 and row 6 are quoted from [Shu er al., 2019], and row 5
is quoted from [Yi and Wu, 2019]. Row 7 to 8 are obtained
by our own implementations. It can be observed that PDLC
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# method accuracy | # | method | accuracy
1 | Cross Entropy 68.96 5 | PENCIL 73.49
2 Forward 69.84 6 | MW-Net 73.72
3 LCCN 73.03 7 GLC 73.53
4 MLNT 73.47 8 | PDLC 74.15

Table 2: Test accuracy (%) on Clothing1 M.

achieves the best performance against the other methods.

5 Conclusion

In this paper, a novel method LDCE is proposed to estimate
label confidence. The label confidence is a metric designed
for measuring the reliability of labels. LDCE estimates the
label confidence by generating label distribution. Then, the
samples with high confidence scores are selected as purified
data. To verify the effectiveness of LDCE, we design a learn-
ing method PDLC by leveraging the purified data. The exper-
iments conducted on both synthetic and real-world datasets
substantiate the superiority of the learning method.

This paper has shown that estimating the label confidence
from the corrupted data is a feasible strategy in the noisy la-
bel problem. In the future, we will explore more effective
approaches for estimating and utilizing the label confidence.
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