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Abstract
Network pruning has been proposed as a rem-
edy for alleviating the over-parameterization prob-
lem of deep neural networks. However, its value
has been recently challenged especially from the
perspective of neural architecture search (NAS).
We challenge the conventional wisdom of pruning-
after-training by proposing a joint search-and-
training approach that directly learns a compact
network from the scratch. By treating pruning as a
search strategy, we present two new insights in this
paper: 1) it is possible to expand the search space of
networking pruning by associating each filter with
a learnable weight; 2) joint search-and-training can
be conducted iteratively to maximize the learning
efficiency. More specifically, we propose a coarse-
to-fine tuning strategy to iteratively sample and up-
date compact sub-network to approximate the tar-
get network. The weights associated with network
filters will be accordingly updated by joint search-
and-training to reflect learned knowledge in NAS
space. Moreover, we introduce strategies of ran-
dom perturbation (inspired by Monte Carlo) and
flexible thresholding (inspired by Reinforcement
Learning) to adjust the weight and size of each
layer. Extensive experiments on ResNet and VG-
GNet demonstrate the superior performance of our
proposed method on popular datasets including CI-
FAR10, CIFAR100 and ImageNet.

1 Introduction
Network pruning has been a popular remedy for the over-
parameterization problem of deep neural networks [Liu et
al.2018b]. A typical procedure of network pruning consists
of three stages: train, prune, and fine-tune. Traditional
approaches implement the strategy of pruning unimportant
network structures by applying various heuristics such as
sparsity regularization [Lin et al.2019], low-rank approx-
imation and weight quantization. There are two common
beliefs about network pruning: 1) the necessity of training a
large, over-parameterized network (as the target for network
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pruning); and 2) the importance of preserving both pruned
architecture and its associated weights.

It turns out that both believes are not necessarily true for
several reasons [Frankle and Carbin2018, Liu et al.2018b,
Dettmers and Zettlemoyer2019, Gu et al.2018]. First, so-
called lottery ticket hypothesis [Frankle and Carbin2018]
claims that there exist smaller subnetworks that can reach at
least similar performance (accuracy and efficiency) to their
larger counterparts. Second, structured pruning techniques
can often automatically discover compact network architec-
tures from the scratch and without preserving the weights.
Inspired by these latest findings, a flurry of recent works
have explored novel ways of reducing the computational cost
of deep neural networks in low-resource settings such as
sparse momentum [Dettmers and Zettlemoyer2019], early-
bird tickets [You et al.2019], and regularized evolution [Real
et al.2019].

By casting pruning as a special case of neural architecture
search (NAS), we advocate a novel joint search-and-training
framework for learning efficient compact networks. Inspired
by the latest advances in architecture engineering, we intro-
duce two new insights to the field in this paper. First, we pro-
pose to expand the search space of networking pruning by as-
sociating each filter with a learnable weight. Similar to Trans-
formable Architecture Search(TAS) [Dong and Yang2019a],
we find a compact network by calculating the distribution of
corresponding weights. Second, we propose to iteratively up-
date the network architecture in a coarse-to-fine fashion to
maximize the learning efficiency (conceptually similar to pro-
gressive NAS). Combining the strategy of NAS with iterative
training, it is possible to obtain highly competitive compact
networks from the scratch for only a few hours instead of
days.

Under the proposed joint search-and-training framework,
we have developed a new algorithm for efficiently learning
compact networks (refer to Figure 1). In our approach, we
alternate between two phases: sampler and updater. In sam-
pling stage, we search for a compact network by weight cal-
culation and thresholding; in the updating stage, the parame-
ters and weights of trained compact network are mapped back
to the target network. Meantime, strategies of random pertur-
bation and flexible thresholding are introduced to further im-
prove the efficiency of sampler [Dong and Yang2019c]. Af-
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Figure 1: Overview of our joint search-and-training approach. The ’sampler’ searches for compact sub-networks from the target network,
while the ’updater’ maps the trained sub-networks back to the target network. The best performing sub-network will be further fine-tuned as
the final output.

ter iterative search-and-training, we select the best compact
networks and fine-tune them to convergence. We have vali-
dated the proposed method on both ResNet and VGGNet and
several well-known datasets (CIFAR-10, CIFAR-100 and Im-
ageNet). Our experimental results show that our method can
achieve better accuracy results and shorter wall-clock running
time when compared to other competing methods.

2 Related Works
Unstructured Network Pruning. Unstructured Pruning
methods aim to emphasize the sparseness of filters or
channels in large networks. In this way, according to the
sparse theory, the pruned network after trimming the sparse
terms will have distribution similar to that of large networks
without pruning. To optimize the number of neurons in a
network, thus the number of parameters, [Zhou et al.2016]
incorporates a sparse constraint into the objective function
and decimate the number of neurons during the training
stage. [Alvarez and Salzmann2016] propose to apply group
sparsity regularization on the parameters of the network,
where each group is defined to act on a single neuron.
Similar to our algorithm, an efficient neural network pruning
algorithm is proposed in [Kim et al.2019], which can prune
the network in a few minutes. However, due to manual
design, this method has no advantage in performance and
also relies on the well-trained target network.

Structured Network Pruning. Structured Pruning meth-
ods iteratively prune and tune filters or layers in the network
to reduce the performance damage of hand-crafted design.
A typical pruning paradigm is to first train a large target
network, then pruning, and finally fine-tune the compact
network. The pruning regulation is to prune the relatively
unimportant filters and combine the remaining filters into a
new compact network. The mainstream pruning methods
focus on how to prune properly under the framework of
training before pruning. For example, in [He et al.2019],
the redundancy of the filter is determined by introducing
geometric median; [He et al.2018a] additionally updates the
pruned filter to increase the capacity of the model; [Dong and

Yang2019a] applies NAS to search the optimal depth and
width of the network; [Liu et al.2019] automatically prune
networks by meta-learning. In contrast to previous pruning
methods, our method allows direct learning of a compact
network through joint search and training in the unpruned
network, thereby greatly improving the efficiency.

Lightweight Network Designing. Lightweight Network
Designing methods avoid pruning by constructing a simpler
network structure than standard networks, while achieving
the goal of reducing model parameters and calculations.
The most popular lightweight network design methods are
MobileNet and ShuffleNet. MobileNet achieves network
lightweighting by replacing a standard convolution with
a depth-wise separable convolution , which contains a
depth-wise convolution and a 1 × 1 convolution. ShuffleNet
architecture uses two operations: pointwise group convolu-
tion to help reduce computational complexity, and channel
shuffle to help information flow. For a given computational
complexity budget, ShuffleNet allows more feature maps to
be used to help encode more information on small networks.

Network Architecture Search. Network Architecture
Search methods aim to find the potentially optimal net-
work structure from hyper-parameterized networks, but usu-
ally requires a lot of computing resources and time. Espe-
cially for methods based on evolutionary algorithms (EA)
[Real et al.2019] and reinforcement learning (RL) [Pham et
al.2018, Zoph et al.2018], although those algorithms have
made some efforts to improve efficiency. Gradient-based
methods [Liu et al.2018a] can effectively reduce the cal-
culation cost. However, in order to make the error back
propagation, the number of filters in all candidates is fixed,
which also leads to the bloated target network. In [Dong and
Yang2019b, Cai et al.2018], the algorithm based on one-shot
learning greatly speeds up the training process with parame-
ter sharing, but training a over-parameterized network is still
a heavy burden.
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Figure 2: Comparison with method with fixed pruning rate.The
number in the figure represent the weight of the corresponding filter,
and the ones framed in red are reserved. In (a) and (b), inappro-
priate pruning occurs (highlighted by purple color in weights) due
to a fixed pruning rate: filter with small weight is retained and the
one with large weight is discarded. In our method, we tend to con-
sider the distribution of weights as a whole and prune them more
adaptively.

3 Efficient Compact Network Learning
3.1 Overview
Different from network pruning, our method does not rely
on a pre-trained and over-parametrized model but directly
searches and learns a compact network from the scratch. As
shown in Figure 1, our approach tackles the problem of joint
search-and-training in a coarse-to-fine manner by alternat-
ing between two stages: sampler and updater. The sampler
searches for compact sub-networks from the target network,
while the updater maps the trained sub-networks back to the
target network. The best performing sub-network will be fur-
ther fine-tuned as the final output. Inspired by Monte Carlo
and Reinforcement Learning, we count on random perturba-
tion and iterative thresholding to efficiently search a compact
network during the sampler stage.

At the starting point, we first need to train the target net-
work coarsely before searching. Similar to previous works
[Ye et al.2018], we introduce the concept of setting a flexible
threshold for the pruned filter, which requires that the weight
can correspond to the importance of the corresponding filter.
For this reason, we have added an additional constraint on the
weight distribution as a term of training errors in addition to
the cross-entropy classification loss. At the initialization, the
complete training loss function `coarse to coarsely train the
target network T is given by:

`coarse =CrossEntropyLoss(yi, T (xi,Ω, α))

+ λ ‖α‖2
(1)

where (xi, yi) denote the pair of input/output training data,
α is the weight associated with each filter, Ω refers to

Figure 3: The structure of our proposed ThresNet. The ThresNet
is totally consist of fully connected layers, and for network weights
input with different size, we process them with different fully con-
nected layers. The final output is the pruning threshold of the corre-
sponding input layer.

parameters in the target network T , ‖·‖2 refers to the `2 norm
regularization of the weights and λ is the hyper-parameter.

After coarsely training the target network, we continue to
iteratively search and obtain a series of compact networks
S0, S1, . . . , ST as shown by the sampler in Figure 1. These
networks will be mapped back to the target network after
proper training, which can be interpreted as pruning-based
NAS in a coarse-to-fine manner. After the search, we choose
a compact network that performs the best on the test set
and fine-tune it until reaching convergence. At the core of
each sampler is a Threshold network, which plays the role of
adapting the thresholds of input layers for network pruning.

3.2 Flexible Pruning via ThresNet

Filters pruning operations are the soul of networking prun-
ing methods because the filter kept at each layer will affect
the accuracy of pruned network. Therefore, the pruning op-
eration needs to strike the optimal tradeoff between perfor-
mance (e.g., accuracy) and cost (e.g., drop rate). Previous
filter-wise pruning methods manually control the number of
pruned filters. Other filter pruning methods (e.g., [Dong and
Yang2019a]) search for the depth and width of a small net-
work and transfer the knowledge from the trained large net-
work to the searched small network. However, the optimality
of those filter pruning for a fixed number or drop rate is ques-
tionable. For example, when the number of filters selected for
each layer is fixed (as shown by the top diagram in Figure 2),
it may be the case that some large and significant weights get
pruned or some small and insignificant weights get reserved
in order to meet the strict pruning rate constraint.

It is conceptually desirable to prune the filters more adap-
tively - e.g., via thresholding the weights (as shown by the
bottom diagram in Figure 2). Inspired by [He et al.2018b]
that used reinforcement learning to effectively sample the
space of NAS, we propose to train a network called Thres-
Net to automatically learn the threshold for each layer of the
network. We formulate the threshold learning as a sequential
decision making process, where an agent - ThresNet param-
eterized by Φ - can make a sequence of decisions about the
threshold βl according to the filter weight αl.
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βl = Φ
(
αl
)

(2)

The ThresNet takes αl of each convolutional layer as the
input and selects a threshold in the range (e.g., [0.6,0.8] as
shown in Figure 3) for each layer as the output decision. This
network consists of two parts. The first part is an expansion
network decomposed of fully connected layers with varying
shape sizes corresponding to different shapes of αl . For ex-
ample, the varying shape sizes of αl are 16/32/64 respectively
in ResNet for the CIFAR dataset. We design a fully connected
network with 3 layers/2 layers/1 layer separately in order to
make the input shape size (128) consistent. The second part is
a shrinking network that reduces the feature dimension from
128 to the shape size in the threshold space and pick the ap-
propriate threshold as the network output.

As the searching process for compact networks goes, the
forward propagation loss of each S is first calculated. The
opposite of the average of losses in every K episodes is then
used as a part of the reward (as in reinforcement learning). In
order to avoid finding too large sub-networks, the parameter
amount is counted as a restriction and the opposite of it is also
used as a part of the reward.

R = − (lavg + γ × param (S))) (3)

Where R refers to the reward, lavg is the average of losses,
γ is the hyper-parameter that balance the two parts of the
reward and param (S) denotes the parameter amount. We
opt to train the ThresNet using a policy gradient algorithm to
learn the policy πΦ with parameters Φ by maximizing the re-
wards. The policy gradient can be approximated by [Ashok
et al.2017]

OΦJ(Φ) ≈ 1

K

K∑
k=1

L∑
l=1

RkOΦ log πΦ

(
βl|αl

)
(4)

where Rk is the reward computed at the k-th episode and βl

is the threshold agent decided at layer l. Training ThresNet
makes it possible to adaptively learn the structure of compact
sub-networks, which brings more flexibility to our NAS
method. The sequence of thresholds learned by ThreshNet
will be exploited to search for a compact sub-network S next.

3.3 Sampler: Search the Compact Subnetwork
Given a target Network T with L layers, we denote all
convolution filters in the l-th layer by W l

1,W
l
2, · · · ,W l

Cl
∈

RCl−1×k×k, where Cl indicates the channel depth of the l-th
layer and k represents the kernel size. Therefore, for a given
input feature map Il ∈ RCl−1×Hl−1×Wl−1 , the output of the
l-th layer Ol can be expressed as:

Ol = Concat(Il ∗W l
1, Il ∗W l

2, · · · , Il ∗W l
Cl

) (5)

where ∗ indicates the convolution operation. Note that each
channel of the output in this layer can be regarded as the
convolutional output of the input and the corresponding con-
volution filter separately. The goal of network pruning is to

Algorithm 1: Sampler

Input: αl and W l
1,2,...,Cl

1 Add uniform noise on α :
nl = αl − log(log(u)) s.t. u ∈ U(0, 1);

2 Calculate the probability of the j-th candidate :

n̂lj =
exp(nl

j)∑Cl
k=1 exp(nl

k)
;

3 Calculate the threshold for l-th layer’s weigh :
thl = ThresNet(αl) ;

4 for c = 1; s < thl; c+ + do
5 Calculate the sum of the largest c candidates in n̂l

: s = sum(Top(n̂l, c));
6 pl = Top(αl, c);
7 W l

1,2,...,Fl
= Top(W l

1,2,...,Cl
, c);

Output: pl and W l
1,2,...,Fl

eliminate unimportant filters for the purpose of reducing the
amount of parameters and calculations from the target net-
work. In order to characterize the importance of each convo-
lution filter more directly, we introduce a filter-related weight
αl ∈ RCl into those filters and rewrite Eq. (5) as:

Ol = Concat(Il ∗ α̂l
1W

l
1, Il ∗ α̂l

2W
l
2, · · · , Il ∗ α̂l

Cl
W l

Cl
)

s.t. α̂l
c =

exp(αl
c)∑Cl

k=1 exp(α
l
k)

(6)

Taking filters and their associated weights αl as inputs,
sampler outputs a compact subnetwork with pruned filters
and updated weights pl. Two optimization strategies are
introduced to our sampler: 1) we propose to expand the
search space by exploiting the randomness - i.e., filter-related
weights are randomly perturbed by uniform noise before cal-
culating the probabilities; 2) we propose to make the thresh-
olds flexible with respect to each layer by leveraging the
power of ThreshNet in the previous subsection. When com-
bined together, these two strategies can be interpreted as NAS
based on Monte Carlo Search [Dai et al.2019] and Reinforce-
ment Learning [Zoph et al.2018]. The detailed procedure for
Sampler is shown in Algorithm 1 where we elaborate on how
to choose pruned weights pl and filters W l

1,2,...,Fl
for the l-th

layer based on input weights.

3.4 Joint Search-and-Training
For a searched compact network, the output of each layer can
be written as:

Ôl = Concat(Îl ∗ p̂l1W l
1, Îl ∗ p̂l2W l

2, · · · , Îl ∗ p̂lFl
W l

Fl
)

s.t. p̂lc =
exp(plc)∑Fl

k=1 exp(p
l
k)

(7)

where pl is the output of Algorithm 1 and p̂lc indicates the
normalized weights for each layer. By sampling each layer
of the network, we can get a compact sub-network S of the
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Algorithm 2: Search-and-Training Algorithm
Input: The whole available training set D

1 Initialize the target network T with filter-related
weight α using Eq. (6);

2 Split the whole training set D into Dtrain and Dvalid;
3 Coarsely train the target network T on D by Eq. (1);
4 for t = 1→ T do
5 Sample a sub-network St(Θ, p) ⊂ T based on

Algorithm 1;
6 for m = 1→M do
7 Sample train batch Bt = {(xi, yi)}batchi=1 from

Dtrain

8 Optimize Θ on the Bt by Eq. (8)
9 for n = 1→ N do

10 Sample valid batch Bv = {(xi, yi)}batchi=1 from
Dvalid

11 Optimize p on the Bv by Eq. (9)
12 Update T via optimized Θ and α;
13 Pick up the best performing network S and fine-tune it

on D until convergence;
Output: A compact network S

target network T , whose parameters and weights can be ex-
pressed by Θ and p, respectively. By feeding these informa-
tion back to the resampler though the updater as shown in
Figure 1, we observe that the search for the most compact
subnetwork can be solved iteratively in a coarse-to-fine man-
ner.

Just like the NAS method [Zoph et al.2018], we can update
the parameters and weights on the training set Dtrain and val-
idation sets Dvalid successively, which can be formulated as:

Θ = argmin
Θ

Bt∑
i=1

`train(yi,S(xi,Θ, p)) (8)

p = argmin
p

Bv∑
i=1

`val(yi,S(xi,Θ, p)) (9)

where (xi, yi) indicates the input and corresponding label,
`train and `val are the cross-entropy classification loss of the
networks, Bt denotes the sampled batches from Dtrain, and
so is Bv from Dvalid. After obtaining the optimized Θ and
p, we update these parameters back into the target network
T . Naturally, in the next search procedure, the sampling of
compact subnetworks can benefit from the experience of pre-
vious search. In other words, learned knowledge in the NAS
space can be iteratively fed back to the sampler, which fur-
ther improves search efficiency and training performance. In
summary, the complete procedure of our joint Search-and-
Training Approach is referred to Algorithm 2.

4 Experimental Results
4.1 Experimental Setting
Datasets. We validate our network cropping method on
several mainstream datasets. Among them, CIFAR-10 con-

tains 60,000 images categorized into 10 classes. The training
set has 5000 images per class, 50,000 images in total. The
test set contains 1000 images per class, 10,000 images in
total. CIFAR-100 is similar to CIFAR-10. It contains 50,000
training and 10,000 test images, categorized into 100 classes.
All images are 32x32 colored ones. ImageNet is a large-scale
image classification dataset, containing 1000 classes, 1.28
million training images and 50,000 validation images.

Searching and Training Setup. For searching and train-
ing, we randomly extract 80% of the official training images
as the training set Dtrain in Algorithm 2, and the rest
as the validation set Dval. In our implementation, we
search the compact networks with thresholds in the range
[0.6,0.65,0.7,0.75,0.8] for each layer.The hyper-parameter λ
is set to 0.1, γ is set to 2.0 and all parameters and weights
are initialized by kaiming normal in Pytorch. For different
dataset, we apply different settings: 1) On CIFAR dataset,
we use SGD with the momentum of 0.9 and the weight
decay of 0.00005 as optimizer. At the beginning, we train
the target network coarsely for 100 epochs with batch size
128. The learning rate is started from 0.1 and reduced by
cosine scheduler. Then we search T = 30 compact network,
whose parameters are optimized on Dtrain for M (M = 40
for t 6 20, 30 for t > 20) epochs with learning rate of
0.05/0.01, corresponding to different M. And the weights
are optimized on Dval for N = 5 epochs with fixed learning
rate of 0.001. In the fine-tuning stage, we set batch size of
256, learning rate of 0.01 and optimize the selected compact
network until convergence. The number of GPUs we used is
consistent with the compared method: for the experiments
on CIFAR-10 datasets, we use one NVIDIA Titan XP
GPUs for training and searching, and NVIDIA 1080Ti for
CIFAR-100. 2) On ImageNet datasets, we optimize the
parameters via Adam with weight decay of 0.00001 and the
weights via the same SGD as CIFAR. For ResNet model,
we coarsely train 40 epochs with an initial learning rate of
0.1 and search T = 20 compact networks. M is set to be 10
with learning rate of 0.001 and N is set to be 2. When fine-
tuning, we set the initial learning rate to 0.001 and divided
by 10 every 20 epochs. All experiments on the ImageNet
dataset use 4 NVIDIA Titan XP GPUs with batch size of 256.

On CIFAR-10 Dataset. We evaluate our method on
ResNet-20,56,110 and 164. We have compared several re-
cently proposed pruning methods with our method, including
the soft filter pruning (SFP) [He et al.2018a] method, the
method for pruning filters with efficient ConvNet (PFEC) [Li
et al.2016], the Geometric Median based filter Pruning
(FPGM) [He et al.2019] method and the Transformable
Architecture Search (TAS) [Dong and Yang2019a] method.
For fairness, the results of other methods were directly
borrowed from their papers. As for the consumed time, we
calculate the sum of pre-training time, pruning and tuning
time, where pruning time is not reported in their paper, so
we obtain it through the code and hyper-parameters provided
by [He et al.2018a, He et al.2019, Dong and Yang2019a].
In Table 1, We show comparisons in FLOPs, Accuracy and
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Network Method FLOPs Acc/Drop Time
Pre-trained Pruning Finetuning

ResNet20

SFP [He et al.2018a] 2.43e7/42.2% 90.83/1.37↓ 3h49m 1h20m 7

FPGM [He et al.2019] 2.43e7/42.2% 91.09/1.11↓ 3h50m 3h34m 7

TAS [Dong and Yang2019a] 2.24e7/45.0% 92.88/0.00↓ 3 7h3m 1h18m

Ours 2.27e7/45.1% 91.95/0.86↓ 7 1h23m 2h

ResNet56

PFEC [Li et al.2016] 9.10e7/27.6% 91.31/1.59↓ - - -

SFP [He et al.2018a] 5.94e7/52.6% 93.35/0.24↓ 3h2m 1h7m 7-

FPGM [He et al.2019] 5.94e7/52.6% 93.49/0.32↓ 1h41m 8h6m 7

TAS [Dong and Yang2019a] 5.95e7/52.7% 93.69/0.77↓ 3 16h56m 2h23m

Ours 6.32e7/49.7% 93.68/0.73↓ 7 2h20m 3h6m

Resnet110

PFEC [Li et al.2016] 1.66e8/38.6% 93.44/0.19↓ - - -

SFP [He et al.2018a] 1.50e8/40.8% 93.86/-0.18↓ 10h20m 5h20m 7

FPGM [He et al.2019] 1.21e8/52.3% 93.85/0.17↓ 6h3m 4h20m 7

TAS [Dong and Yang2019a] 1.19e8/53.0% 94.33/0.64↓ 3 15h11m 5h45m

Ours 1.08e8/58.0% 94.22/0.61↓ 7 3h50m 3h30m

Resnet164 TAS [Dong and Yang2019a] 1.78e8/28.1% 94.00/1.47↓ 3 47h58m 6h48m

Ours 1.77e8/28.0% 94.05/1.22↓ 7 6h50m 4h50m

Table 1: Comparison of different pruning algorithms for ResNet on
CIFAR10. “Flops/Drop” means the calculation and pruning rate.
“Acc/Droped” means accuracy and performance drop. “Pre-trained”
represents the time for training the pre training network, “Pruning”,
represents the time for pruning and “Finetuning” represents the time
for the final fine-tuning. Note that the data of SFP and FPGM are
from the training log published by the authors, and the data of TAS
are from the author’s open source code.

consumed Time in CIFAR-10. With fewer or close FLOPs,
our method can achieve nearly 2× the speed increase, and
even 0.3 ∼ 1.0% higher accuracy, compared to [Li et
al.2016, He et al.2018a, He et al.2019]. Compared with
the best performance method [Dong and Yang2019a], our
algorithm performs slightly worse on ResNet20 and 56, has
lower accuracy on ResNet110 with lower flops, and has
better performance on ResNet164. Although our algorithm
is short of accuracy of some models compared with [Dong
and Yang2019a], it is 3 ∼ 5× faster in speed. Compared
with a slight decrease in accuracy, we think lesstraining time
is more meaningful to a certain extent. At the same time,
you can notice that our baseline is lower than that of [Dong
and Yang2019a], which is caused by hardware devices,
special training skills andexperienced parameter setting. A
more intuitive comparison is ”Dropped Acc”, on which we
arecloser to [Dong and Yang2019a]. Note that only [Dong
and Yang2019a] uses the setting of batchsize = 256(Set
to 128 in other implementations), which means more GPU
occupation. We think that searching the depth and width of
the network at the same time is the reason for more searching
time and higher accuracy.

On CIFAR-100 Dataset. In Table 2, we compare the
performance of different algorithms on ResNet20, 56, 110
and VGG-16. Because the experimental parameter settings
on CIFAR-100 are not provided in [He et al.2019, He et
al.2018a], we do not compare time for the sake of fairness.
For pruning the ResNet model, our method can still maintain
the efficiency of other methods, and the performance is close
to [He et al.2018a,He et al.2019] but only slightly worse than
[Dong and Yang2019a]. This is because on the CIFAR-100
dataset, there are only 600 training pictures of each category,
and only 480 pictures per category in Dtrain, which causes
our method to encounter severe under-fitting problems while
learning the compact model from scratch. For VGGNet, our

Network Method FLOPs/Droped Acc/Droped Time

ResNet20

SFP [He et al.2018a] 2.43e7/42.2% 64.37/3.25↓ -

FPGM [He et al.2019] 2.43e7/42.2% 66.86/0.86↓ -

TAS [Dong and Yang2019a] 2.24e7/45.0% 68.90/-0.21↓ 8.3h

Ours(fixed rate) 2.05e7/49.7% 67.28/1.31↓ 5.5h

Ours 2.27e7/45.9% 66.48/2.11↓ 5.0h

ResNet56

SFP [He et al.2018a] 5.94e7/52.6% 68.79/2.61↓ -

FPGM [He et al.2019] 5.94e7/52.6% 69.66/1.75↓ -

TAS [Dong and Yang2019a] 6.12e7/51.3% 72.25/0.93↓ 20.0h

Ours(fixed rate) 6.72e7/51.1% 70.07/2.86↓ 11.0h

Ours 6.72e7/51.1% 70.63/2.26↓ 11.5h

Resnet110

SFP [He et al.2018a] 1.21e8/52.3% 71.28/2.86↓ -

FPGM [He et al.2019] 1.21e8/52.6% 72.55/1.59↓ -

TAS [Dong and Yang2019a] 1.20e8/51.3% 73.16/1.90↓ 34.5h

Ours(fixed rate) 1.08e8/58.0% 71.69/2.73↓ 13.0h

Ours 1.08e8/58.0% 72.26/2.16↓ 9.5h

VGG-16
GCP [Hu et al.2018] 3.82e8/39.1% 72.01/1.18↓ -

SSS [Huang and Wang2018] 3.08e8/50.6% 72.95/0.24↓ -

Ours 3.22e8/48.4% 74.63/1.12↓ 4.5h

Table 2: Comparison of different pruning algorithms for ResNet on
CIFAR-100. Where ”fixed rate” means pruning with a fixed pruning
rate for each layer in the network.

Method FLOPs/Droped Acc/Droped TimeTop-1 Top-5
SFP [He et al.2018a] 2.38e9/41.8% 74.61/1.54↓ 92.06/0.81↓ 130h

FPGM [He et al.2019] 2.36e9/42.2% 75.50/0.65↓ 92.63/0.21↓ 112h

TAS [Dong and Yang2019a] 2.31e9/43.5% 76.20/1.26↓ 93.07/0.48↓ 170h

Ours 2.25e9/44.9% 75.51/1.01↓ 92.43/0.66↓ 90h

Table 3: Comparison of different pruning algorithms for ResNet-50
model on ImageNet.

method still outperform the sparse based structure selection
method(SSS) [Huang and Wang2018] and the genetic algo-
rithm based channel pruning method(GCP) [Hu et al.2018].

On ImageNet Dataset. In Table 3, we use 4 NVIDIA
2080Ti GPUs to validate our method on the ResNet-50
model. Compared to the other state-of-the-art algorithm, we
still show competitive results. For example, we can prune
ResNet-50 in 88 hours, and the prunned network can achieve
75.51%/92.43% accuracy. The training time of the complete
ResNet-50 model is nearly 80 hours, which means that we
can complete the entire search algorithm in the same time as
other algorithms training unpruned models.

4.2 Ablation Study
In order to show the effect of flexible pruning, we imple-
mented a baseline version of the proposed method, that is,
pruning with a manually determined fixed crop rate (the
”fixed rate” method in Table 2). We calculate the appropriate
pruning rate based on the implementation based on flexible
pruning and apply it to each layer of the network (as shown
top of Figure 2). We verified ResNet-20,56 and 110 on the
CIFAR-100 dataset. Compared with a fixed pruning rate, the
flexible pruning method can effectively speed up the search
and improve the performance of the searched network.For ex-
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Figure 4: We show the performance of all sampled subnetworks dur-
ing the search of resnet-110 on Cifar100 dataset. Before the search,
the target network has been coarsely trained; after the search, the
best performing sub-network will be fine tuned to convergence.

ample, when cropping resnet56, our method based on flexible
pruning achieved a 0.57% performance improvement in less
time than the fixed cropping method. Note that we are just
training a simple fully connected network as a ThresNet with
a basic reinforcement learning strategy, so the performance of
our algorithm can also be improved by using more powerful
networks and more effective reinforcement learning methods.

A very important part of our approach is to select the best
performing sub-networks for fine-tuning at the end of the
training-search process, so to better illustrate the search-and-
training procedure, we provide the performance of all sam-
pled networks. In fact, after the search-and-training proce-
dure (corresponding to lines 4-12 in Algorithm 2), we actu-
ally get some pretty good but not well-trained sub-networks.
Then, as described in Algorithm 2, line 13, we select and op-
timize the network with the best performance. In our method,
it is unnecessary to ensure that every sub-network is well-
trained after search-and-training procedure. And there are
two reasons: first, training every sampled sub-network to
convergence will greatly improve the time cost and calcula-
tion cost of the algorithm; second, in the process of search-
ing, a well-trained sub-network will lead to the reduction of
search space, which limits the sub-network to be searched
later. Therefore, the bias towards the last sampled network
that you’re worried about won’t happen either. In fact, in
our experiments, the best performing sub-network usually ap-
peared in the middle of the training epochs, as shown in Fig-
ure 4

5 Conclusion
In this paper, we propose a new joint search and training
method designed to learn a compact network directly from
scratch. First, we propose to iteratively sample and update
compact networks to approximate the target network. Un-
like most previous methods, we do not follow the rule of
pruning-after-training, but jointly search and train to learn
compact networks directly from unclipped networks. Sec-
ondly, we have developed a flexible pruning method that
flexibly adjusts the weight and size of each layer by learn-

ing a set of filter-related weights. For this part, we pro-
pose to optimize the ThresNet by reinforcement learning.
On some benchmark datasets and network architectures, our
proposed method achieves transcendental efficiency improve-
ments while achieving competitive classification accuracy.
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