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Abstract
This paper introduces a novel Robust Regression
(RR) model, named Sinkhorn regression, which
imposes Sinkhorn distances on both loss function
and regularization. Traditional RR methods tar-
get at searching for an element-wise loss func-
tion (e.g., Lp-norm) to characterize the errors such
that outlying data have a relatively smaller influ-
ence on the regression estimator. Due to the ne-
glect of the geometric information, they often lead
to the sub-optimal results in the practical applica-
tions. To address this problem, we use a cross-
bin distance function, i.e., Sinkhorn distances, to
capture the geometric knowledge from real data.
Sinkhorn distances is invariant in movement, rota-
tion and zoom. Thus, our method is more robust to
variations of data than traditional regression mod-
els. Meanwhile, we leverage Kullback-Leibler di-
vergence to relax the proposed model with marginal
constraints into its unbalanced formulation to adapt
more types of features. In addition, we propose an
efficient algorithm to solve the relaxed model and
establish its complete statistical guarantees under
mild conditions. Experiments on the five publicly
available microarray data sets and one mass spec-
trometry data set demonstrate the effectiveness and
robustness of our method.

1 Introduction
Regression analysis is an important statistical technique fre-
quently applied in machine learning for a large variety of
tasks such as image classification [Naseem et al., 2010] and
subspace segmentation [Lu et al., 2012]. However, traditional
linear regression models (e.g., least square regression) are
mainly based on the normal population, which cannot pro-
vide the robustness against outlier. To address this problem,
robust regression has emerged as a powerful tool to handle
the data with non-Gaussian noises. The representative mod-
els include Robust Sparse Coding (RSC) [Yang et al., 2011]
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and Correntropy based Sparse Representation (CESR) [He et
al., 2011]. They can be viewed as M-estimation problems in-
duced by different influence functions which can make outly-
ing data have a relatively smaller influence on the regression
estimator.

However, those robust regression methods ignore the spa-
tial structure information of real noises since they usually as-
sume that noise pixels are independently generated. To alle-
viate this problem, [Li et al., 2013] proposed the Structured
Sparse Error Coding (SSEC) model by exploring the intrin-
sic structure of continuous occlusion. [Jia et al., 2012] used
a class of structured sparsity inducing norms to fit structural
noises. [Yang et al., 2017] presented the two-dimensional
image-matrix-based error models by employing nuclear norm
to characterize the practical noise matrix. Although these
methods have shown great potential in handling structural
noises such as occlusion and illumination, they cannot char-
acterize the geometric knowledge that often exists in real data
and is helpful for improving the model performance.

More recently, Wasserstein distance, derived from the Op-
timal Transport (OT) theory, has drawn ample attention in
many machine learning tasks. Differing from Lp distances
(p ≥ 1) or Kullback-Leibler and other f -divergences, which
require distributions to be absolutely continuous with respect
to each other or to a base measure, Wasserstein distance
is well-defined between any pair of probability distributions
over a sample space equipped with a metric. Thus, it provides
a meaningful notion of closeness (i.e., distance) for distribu-
tions supported on non-overlapping low dimensional mani-
folds. Due to this advantage, Wasserstein distance has been
successfully applied to cancer detection [Ozolek et al., 2014]
and super-resolution [Kolouri and Rohde, 2015] problems. In
addition, Kusner et al. [Kusner et al., 2015] proposed the
Word Mover’s Distance (WMD), an implementation of the
Wasserstein distance for textual data. To capture both global
(at distribution scale) and local (at samples’ scale) interac-
tions between classes, Flamary et al. [Flamary et al., 2016]
described a new Wasserstein Discriminant Analysis by using
a mechanism that can induce neighborhood preservation.

Motivated by the success of Wasserstein distances, in this
paper, we propose a novel efficient and robust Matrix Re-
gression method by employing joint Sinkhorn distances (i.e.,
Wasserstein distances with Entropic constraints) minimiza-
tion on both loss function and regularization. This is the first
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time for exploiting Sinkhorn distances to characterize both er-
ror and coefficient matrix in the regression model. To provide
the high flexibility for non-distribution features (e.g., origi-
nal data features), we relax the proposed new model into its
unbalanced formulation by virtue of Kullback-Leibler diver-
gence. According to the OT geometry [Janati et al., 2018], we
know that using Sinkhorn distance as regularizer can promote
parameters that are close since it takes into account a prior
geometric knowledge on the regressor variables. As a result,
our method is more reliable and applicable than traditional re-
gression method using Lp-norm regularizer. To solve SMR,
we derive an efficient algorithm based on Sinkhorn iteration,
which iterates through applications of alternating optimiza-
tion. Moreover, as the theoretical contribution of this paper,
we provide a statistical bound for the proposed new model
by leveraging the Rademacher complexity. We apply the pro-
posed algorithm to feature selection problem, and make com-
parisons with some existing approaches. The experimental
results show that the proposed method is more effective than
the state-of-the-art methods.

2 Preliminaries
We summarize the notations and definitions used in this pa-
per. Matrices are written as boldface uppercase letters. Vec-
tors are written as boldface lowercase letters. ‖ · ‖F and
‖ · ‖∗ denote Frobenius norm and nuclear norm [Liu et
al., 2010], respectively. 〈·, ·〉 is the inner product operation.
eNS ∈ RNS is a column vector of ones. R+ denotes the
set of all non-negative real number. RNS×NG+ denotes the
set of all positive semi-define matrices on RNS×NG . For
matrix M ∈ Rn×m, its i-th row, j-th column are denoted
by mi, mj , respectively. The L2,1-norm of M is defined as

‖ M ‖2,1=
∑n
i=1

√∑m
j=1m

2
ij =

∑n
i=1 ‖ mi ‖2, where

‖ · ‖2 denotes the L2-norm. We define the Kullback-Leibler
(KL) divergence [Janati et al., 2018] between two positive
vectors x and y by

KL(x, y) = 〈x, log(x/y)〉+ 〈y− x, e〉. (1)

The KL divergence between two matrices A ∈ RNS×NS+

(i.e., aij ≥ 0 for all (i, j)) and B ∈ RNS×NS++ (i.e., bij >
0 for all (i, j)) is defined as

KL(A|B) =

NS∑
i,j

aij(log(
aij
bij

)− 1). (2)

Optimal transport: OT theory, originally used to study
the problem of resource allocation, provides a powerful geo-
metrical tool for comparing probability distributions.

In a more formal way, given access to two sets of points
XS = {xSi ∈ Rd}

NS
i=1 and XG = {xGi ∈ Rd}

NG
i=1, we con-

struct two discrete empirical probability distributions as:

µ̂S =

NS∑
i=1

pSi δxSi
and µ̂G =

NG∑
i=1

pGi δxJi
, (3)

where pSi and pGi are probabilities associated to xSi and xGi
respectively and δx is a Dirac measure that can be interpreted

as an indicator function taking value 1 at the position of x
and 0 elsewhere. For these two distributions, the optimal
transport (or Monge-Kantorovich) problem consists in find-
ing a probabilistic coupling defined as a joint probability mea-
sure over XS × XG with marginals µ̂S and µ̂G that mini-
mizes the cost of transport with respect to some ground met-
ric D : Xs ×Xg → R+ :

minP∈Uµ̂S,µ̂G < P,C >, (4)

where Uµ̂S ,µ̂G = {P ∈ RNS×NG+ : PeNG =

pS , PT eNS = pG} is a set of doubly stochastic matrices,
pS = [pS1 , p

S
2 , · · · , pSNS ]T and pG = [pG1 , p

G
2 , · · · , pGNG ]T .

C ∈ RNS×NG+ is a given cost matrix, i.e., ci,j = D(xSi , xGj ),
defining the energy needed to move a probability mass from
xSi to xGj . This problem admits a unique solution P∗ and de-
fines a metric on the space of probability measures (called the
Wasserstein distance) as

W (µ̂S , µ̂G) = minP∈Uµ̂S,µ̂G < P,C > . (5)

Entropic regularization: Solving problems with Wasser-
stein distance fitting errors can require solving several costly
optimal transport problems. As a minimum of affine func-
tions, the Wasserstein distance itself is not a smooth func-
tion. To avoid both of these issues, [Cuturi, 2013] proposed to
smooth the optimal transport problem with an entropic term:

Wγ(µ̂S , µ̂G) = minP∈Uµ̂S,µ̂G < P,C > −γe(P). (6)

where γ > 0 and e is the (strictly concave) entropy function:

e(P) = −〈P, logP〉. (7)

(6) allows to solve the optimal transportation problem effi-
ciently using Sinkhorn-Knopp matrix scaling algorithm [Cu-
turi, 2013]. Thus, (6) is also called Sinkhorn distance, which
preserve all advantages of Wasserstein distance. Compared
to the original case (5), it can obtain smoother and more nu-
merically stable solutions.

Matrix regression: In data mining and machine learning,
a common paradigm for matrix regression is to minimize the
penalized empirical loss:

minZL(Y− ATZ) + λΩ(Z), (8)

where λ > 0 is the balance parameter, Z ∈ Rm×n is the pa-
rameter to be estimated from the training sample matrix A ∈
Rm×l and the response matrix Y ∈ Rl×n, L(Y− AZ) is the
empirical loss on the training set, and Ω(Z) is the regulariza-
tion term that encodes feature relatedness. Different assump-
tions on the loss Y − AZ and variate Z can lead to different
models. For example, if both L(·) and Ω(·) are L2,1-norm,
(6) becomes the feature selection model based on L2,1-norms
[Nie et al., 2010]; if L(·) is L1-norm [Yang et al., 2012;
Yang et al., 2013] and Ω(·) is nuclear norm, (6) leads to the
Low Rank Representation (LRR) model [Liu et al., 2010];
if both L(·) and Ω(·) are the square of Frobenius norm, (6)
is the well-known Least Squares Regression (LSR) model.
These models have been widely applied to many tasks such
as feature selection, subspace segmentation and image classi-
fication.
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3 Matrix Regression Based on Joint Sinkhorn
Distances

In the above formulations, the loss term and estimated vari-
ate are characterized via the simple matrix norm. Thus,
these models can be easily solved by conventional convex
optimization methods (e.g., ADMM [Liu et al., 2010] and
reweighted iterative methods [Nie et al., 2010]). However,
they suffer from two limitations. First, these matrix norm
cannot offer the exibility in adapting them to various data
types since they are nonparametric. Secondly, they do not
taking into account the geometry of the data through the pair-
wise distances between the distributions’ points. Accord-
ingly, these models often achieve the suboptimal results in
practical applications, especially when real data is corrupted
by noise.

Sinkhorn Regression. Comparing with matrix norm,
Sinkhorn distance can circumvent the above limitations (as
stated in the introduction). Therefore, we propose to use
Sinkhorn distance to jointly characterize loss term and esti-
mated variate Z, which is formulated as

minZ,d

l∑
i=1

Wγ(h(ZT ai), h(yiT )) + λ
m∑
i=1

Wγ(h(ziT ), d),

(9)
where h(·) denotes the histogram operator and the la-
tent variable d consists in estimating the barycenter of
{h(z1T ), h(z2T ), · · · , h(zmT )}.

In model (9), the histogram operator is used to constrain
ZT ai, YT and ZT , respectively. Thus, we do not need to
extract the histogram features of data in the preprocessing
stage. Meanwhile, since histogram features are invariant in
movement, rotation and zoom, our method is more robust to
the real noisy data than the other methods using matrix norm
over original data.

Remark 1. Sinkhorn distance is used to compare row
vectors of ATZ and Y in model (9). In fact, Sinkhorn distance
can also be imposed on the corresponding column vectors,
which induces the following model:

minZ,d

n∑
i=1

Wγ(h(AT zi), h(yi)) + λ
n∑
i=1

Wγ(h(zi), d).

The algorithm for solving the above model is similar to Algo-
rithm 1. Due to the space limitations, we only focus on model
(9) in this paper.

The proposed algorithm. Solving problem (9) is ex-
tremely challenging since it not only contains the compo-
sition of h(·) and W (·, ·), but also the computations of
Sinkhorn distances with regard to different terms. Some ex-
isting algorithms [Rolet et al., 2016; Sommerfeld et al., 2018]
are only suitable for solving Wasserstein loss minimization
with matrix norm regularizer (e.g., L1- and L2,1-norm). To
cope with this challenge, we relax the marginal constraints
Uµ̂S ,µ̂G in (6) using a Kullback-Leibler divergence from the
matrix to target marginals µ̂S and µ̂G is [Frogner et al., 2015],

Algorithm 1 Solving (13) via Alternating Optimization

Input: data matrix A and Y, parameters λ, γ, µ and ρ
Initialization: P0 and P̂

0

Output: model parameter Z
Repeat
for i = 1 to m do

Update each zi with proximal coordinate descent.
end for
for i = 1 to l do

Update each ui with proximal coordinate descent.
end for
Update d with proximal coordinate descent.
Update P1, · · ·,Pl, P̂1, · · ·, P̂m via Sinkhorn iteration

(Algorithms 2)
until convergence

i.e., (5) is converted as

Wγ(µ̂S , µ̂G) = minP∈RNS×NG
+

γKL(P|K) + µKL(PeNG |µ̂S)

+ µKL(PT eNS |µ̂G),
(10)

where K = exp(−C/γ) and C is defined in Eq.(4). Let

fµ̂S ,µ̂G(P) = γKL(P|K) + µKL(PeNG |µ̂S)

+ µKL(PT eNS |µ̂G),
(11)

and assume A,Y > 0. Then model (9) ultimately becomes:

min
Z,d,P1,···,Pl,P̂1,···,P̂m

l∑
i=1

fZai,yiT (Pi)+λ

m∑
i=1

fziT ,d(P̂i). (12)

where each zi > 0, i = 1, 2, · · · ,m.
To facilitate the design of the algorithm, we bring into an

auxiliary variable U = ATZ and rewrite model (12) as:

min
U,Z,d,P1,···,Pl,P̂1,···,P̂m

l∑
i=1

fuiT ,yiT (Pi) + λ
m∑
i=1

fziT ,d(P̂i)

+ρ ‖ ATZ− U ‖2F . (13)

where ρ > 0.
The block coordinate descent method can be used to solve

(13). This method alternates the minimization with respect to
the variables {P1, · · ·,Pl, P̂1, · · ·, P̂m}, Z, U and d. It is easy
see that these variables are independent. Thus, they can be
updated in parallel. The main iterative procedure for solving
model (13) is summarized in Algorithm 1. In the following,
we give the details for optimizing each variable.

Updating coefficient matrix Z. For each zi, fixing other
variables, problem (13) is simplified as:

minziλµKL(P̂ie|zi
T

) + ρ ‖ ATZ− U ‖2F . (14)

Considering the definition of KL divergence, (14) becomes

minziλµ(ziT − P̂ielogziT ) + ρ ‖ ATZ− U ‖2F . (15)
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Algorithm 2 Sinkhorn iteration for optimizing P1, · · · ,Pl
Input: data matrix A, coefficient matrix Z and auxiliary
variable U
Output: P1, · · · ,Pl
for i = 1 to l do
Ki = exp(−Ci/γ), where Ci is the ground metric matrix
between uiT and yi

T .
repeat

wi ← uiT /Kvi; vi ← yi
T
/KTwi.

until convergence
Pi ← (p(i)jt)n×n, where the (j, t)-th element of Pi is
p(i)jt = wi(j)k(i)jtvi(t) (wi(j) is the j-th element of wi).
end for

To solve problem (15), we introduce the following Lemma:
Lemma 1. [Janati et al., 2018] Let a, b, α ∈ R+. The func-
tion η : x → (x − alog(x)) + bx is convex on R+ and its
proximal operator can be obtained in closed form, i.e.,

proxαη(·)(y) =
1

2
[−α(b+1)+y+

√
(α(b+ 1)− y)2 + 4αa].

(16)
Let

ς(zi) = λµ(ziT − P̂ielogziT ). (17)
By Lemma 1, we can easily obtain the proximal operator
proxς(·). Therefore, using proximal coordinate descent, each

ziT can be updated by

ziT ← proxς(·)(ziT − δ(ZT (AAT )(i) − yiT )), (18)

where δ > 0 is the step size and (AAT )(i) is the i-column of
AAT .

Updating auxiliary variable U. For each iteration, we ob-
tain the optimal ui by solving

min
ui
µKL(Pie|ui

T
) + ρ ‖ U− ATZ ‖2F , (19)

which can be further written as

minuiµ(uiT − P̂ieloguiT ) + ρ ‖ uiT − ZT ai ‖2F . (20)

Using the similar approach as in (15-18), uTi is updated by

ziT ← proxτ(·)(uiT − δ(uiT − ZT ai)), (21)

where τ(ui) = µ(uiT − P̂ieloguiT ).
Updating auxiliary variable d. We can use the similar

method as in (18) or (19) to update d. Here we omit it.
Updating parameter set {P1, ···,Pl, P̂1, ···, P̂m}. For fixed

Z and U, the update of each Pi or P̂i boils down to an OT
problem, which can be solved via Sinkhorn iteration [Cuturi,
2013]. These steps are summarized in Algorithm 2, where
we list the detailed iteration process for each Pi. For each P̂i,
we can use the similar method to optimize it. The detailed
iterative process is listed in Algorithm 3.

Convergence analysis. As pointed out by [Sandler and
Lindenbaum, 2011], the alternate optimization process (Al-
gorithm 1) generates a sequence of lower bounded non-
increasing values for the objective of Problem (12), so the

Algorithm 3 Sinkhorn iteration for optimizing P̂1, · · · , P̂m
Input: data matrix A and coefficient matrix Z

Output: P̂1, · · · , P̂m
for i = 1 to m do
Ki = exp(−Ci/γ), where Ci is the ground metric matrix
between ziT and εenT , ε > 0.
repeat

wi ← ziT /Kvi; vi ← εen
T /KTwi.

until convergence
P̂i ← (p̂(i)jt)n×n, where the (j, t)-th element of P̂i is
p̂(i)jt = wi(j)k(i)jtvi(t) (wi(j) is the j-th element of wi).
end for

sequence of objectives converges. Meanwhile, according to
[Janati et al., 2018], we know that every accumulation point
of the sequences of iterates of Z, U and Pi (or P̂i) is a gener-
alized fixed point. For the convergence of Algorithm 2, it can
be guaranteed by [Cuturi, 2013]. Here we omit it.

4 Theoretical Guarantee for Sinkhorn
Regression

Tremendous studies have already been done on the statisti-
cal properties of Wasserstein Distances. For example, [Ar-
ras et al., 2017] provided the bound to estimate the 2-
Wasserstein distance between random variables which can
be represented as linear combinations of independent random
variables. [Frogner et al., 2015] showed that Wasserstein loss
can encourage smoothness of the predictions with respect to
a chosen metric on the output space. However, theoretical
Guarantee of the Sinkhorn distance loss minimization is still
deficient. To bridge this gap, we will establish risk bounds of
JWMR in this section. For the convenience, as in (8), let

L(Z) =
l∑
i=1

Wγ(h(ZT ai), h(yiT )),

Ω(Z) =

m∑
i=1

Wγ(h(ziT ), d),

(22)

For a sequence S = {(Z1, y1), · · · , (ZN , yN )} of i.i.d.
training samples, we denote the empirical error and its ex-
pectation of L(Z) as

Re(Z) =
1

N

N∑
i=1

L(Zi), R(Z) = EZ(L(Z)), (23)

where E(·) is the expectation operator.
To derive the bound of model (9), we need to introduce the

following definition and Lemmas.
Definition 1. [Bartlett and Mendelson, 2002] Let G be a fam-
ily of mapping from Z to R, and S = (z1, · · · , zN ) a fixed
sample from Z . The empirical Rademacher complexity of G
with regard to S is defined as

RS(G) = Eσ[supg∈G
1

N

n∑
i=1

σig(zi)] (24)
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where σ = (σ1, σ2, · · · , σN ), with σ′is independent uniform
random variables taking values in {+1,−1}. σ′is are called
the Rademacher random variables. The Rademacher com-
plexity is defines by taking expectation with respect to the
samples S,

RN (G) = ES [R̂S(G)]. (25)

We define a space of loss function induced by the hypoth-
esis space Z as

L = {ι : (Z, y) :→Wγ(h(ZT a), h(y)),Z ∈ Z}. (26)

Lemma 2. [Frogner et al., 2015] For any δ > 0, with proba-
bility at least 1− δ, the following holds for all ι ∈ L,

E [ι]− ÊS [ι] ≤ 2RN (L) +

√
M2
C log(1/δ)

2N
(27)

with the constant MC = maxi,jci,j .
Assume that Z∗ is the optimal solution of model (9), we

have the following theorems:
Theorem 1. For any δ > 0, with probability at least 1− δ, it
holds that

Re(Z∗)−R(Z∗) ≤ 16lKCMRN (H0) + 2lMC

√
log(1/δ)

2N
(28)

where the constant MC = maxi,jci,j and RN (H0) is the
Rademacher complexity measure the complexity of the hy-
pothesis spaceHo.

proof. Assume that the loss function Wγ(h(ZT a), h(y)) is
preceded with a softmax layer

L = {ν : (Z, y) :→Wγ(s(h(ZoT a)), s(h(y))),Zo ∈ Zo}
(29)

We know that the function space can be expressed as:

Ho × · · · × Ho︸ ︷︷ ︸
K copies

×I × · · · × I︸ ︷︷ ︸
K copies

(30)

with I a singleton function space with only the identity map.
Since R̂S(I) = 0 (see (25)), it holds

R̂S(L) ≤ 8MC(KR̂S(Ho)+KR̂S(I)) = 8KMCR̂S(Ho).
(31)

Therefore, connecting Lemma 1, we have

Re(Z∗)−R(Z∗)

≤
l∑
i=1

supZ∈Z |re(Z)− r(Z)|

≤
l∑
i=1

(16KCMRN (H0) + 2CM

√
log(1/δ)

2N
)

< 16lKCMRN (H0) + 2lMC

√
log(1/δ)

2N
.

(32)

This theorem shows that the Sinkhorn Regression estima-
tor, as well as the empirical risk minimizer asymptotically
reaches a

√
1/2N speed of convergence under very weak hy-

potheses.

5 Experiments
In Section 3, we provided a general framework for Joint
Sinkhorn matrix regression, which can be applied to many
tasks such as feature selection, multi-task learning and image
classification, etc. In this paper, we evaluate the performance
of Sinkhorn regression using the feature selection task, which
is important for many real-world applications, such as bioin-
formatics, text mining, etc. Here, A = [ai, a2, · · ·, an] ∈
Rm×l is a data matrix and Y = [y1, y2, · · ·, yn]T ∈ Rn×c

is a label matrix. Our goal is to choose a subset of features
for improving prediction accuracy or decreasing the size of
the structure without significantly decreasing prediction ac-
curacy of the classifier built using only the selected features.

5.1 Data Descriptions
We use five publicly available microarray data sets and one
Mass Spectrometry (MS) datasets: ALLAML data set [Fodor,
1997], the malignant glioma (GLIOMA) data set [Nutt et al.,
2003], the human lung carcinomas (LUNG) data set [Bhat-
tacharjee et al., 2001], Human Carcinomas (Carcinomas)
data set [Yang et al., 2006], Prostate Cancer gene expres-
sion (Prostate-GE) data set [Singh et al., 2002] for microarray
data; and Prostate Cancer (Prostate-MS) [Petricoin III et al.,
2002] for MS data. To be fair, the Support Vector Machine
(SVM) classifier is employed to these data sets, using 5-fold
cross-validation for all compared methods.

5.2 Compared Methods
To validate the effectiveness of Sinkhorn regression for fea-
ture selection, we compare it with several classical feature
selection methods. The compared algorithms are enumerated
as follows.

1) F-statistic(F-s) [Ding and Peng, 2005]: it describes the
statistically expected level of (usually) heterozygosity in a
population; more specifically the expected degree of a reduc-
tion in heterozygosity when compared to Hardy–Weinberg
expectation.

2) ReliefF(RF) [Kira and Rendell, 1992]: It relies entirely
on statistical analysis and employs few heuristics and is less
often foled.

3) mRMR [Sulaiman and Labadin, 2015]: A two-stage fea-
ture selection algorithm by combining mRMR and other more
sophisticated feature selectors. 4) T-test: it determines if two
sets of data are significantly different from each other

5) Information Gain (IG) [Raileanu and Stoffel, 2004]: A
formal comparison of the behavior of two of the most popular
split functions

6) Robust Feature Selection Based on L2,1-Norms (RFS)
[Nie et al., 2010]: The L2,1-norm is emphasizing on both
loss function and regularization.

7) Clustering-Guided Sparse Structural Learning (CGSSL)
[Li et al., 2014]: An unsupervised feature selection frame-
work by exploiting the cluster analysis and structural analysis
with sparsity simultaneously.

8) Regularized Self-Representation (RSR) [Zhu et al.,
2015]: An unsupervised features election method by exploit-
ing the self-representation ability of features.
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Databases RF F-s T-Test IG nRMR RFS CGSSL RSR Our method
ALLAML 90.36 89.11 92.86 93.21 93.21 95.89 94.27 93.89 96.31
GLIOMA 50 50 56 60 62 74 71 66 74

LUNG 91.68 87.7 89.22 93.1 92.61 93.63 92.77 89.36 94.78
Carcinom 79.88 65.48 49.9 85.09 78.22 91.38 88.32 87.29 93.14
Pro-GE 92.18 95.09 92.18 92.18 93.18 95.09 92.11 90.98 95.16
Pro-MS 76.41 98.89 95.56 98.89 95.42 98.89 97.32 97.31 98.71
Average 80.09 81.047 79.29 87.09 85.78 91.48 89.32 87.47 92

Table 1: Classification Accuracy (%) of SVM using 5-fold cross validation for all methods: average accuracy of top 20 features

Databases RF F-s T-Test IG nRMR RFS CGSSL RSR Our method
ALLAML 95.89 96.07 94.29 95.71 94.46 97.32 95.21 94.27 97.76
GLIOMA 54 60 58 66 66 70 66 60 70

LUNG 93.63 91.63 90.66 95.1 94.12 96.07 93.50 92.14 96.71
Carcinom 90.24 83.33 68.91 89.65 87.92 93.66 91.21 91.31 94.48
Pro-GE 91.18 93.18 93.18 89.27 86.36 95.09 94.24 92.65 95.89
Pro-MS 89.93 98.89 94.44 98.89 93.14 100 97.39 93.87 100
Average 85.81 87.18 83.25 89.10 87 92.02 89.59 87.37 92.47

Table 2: Classification Accuracy (%) of SVM using 5-fold cross validation for all methods: average accuracy of top 80 features

λ 0.0001 0.001 0.01 0.05 0.1 1 5 10 100
ALLAML 88.75 90.92 92.12 92.87 97.76 97.89 96.65 92.27 86.81
GLIOMA 60 60 68 70 70 70 70 58 50

LUNG 92.17 94.32 96.11 97.23 96.71 95.32 95.11 83.98 72.23
Carcinom 93.80 96.47 96.77 95.21 94.48 93.73 93.23 85.98 81.21
Pro-GE 94.29 94.78 95.02 96.73 95.16 95.49 94.77 84.05 80.85
Pro-MS 97.96 98.87 99.12 99.45 100 100 98.74 88.70 79.92

Table 3: The influence of parameter λ to classification performance with top 20 features

5.3 Classification Accuracy Comparisons
In the experiments, all data sets are standardized to be zero-
mean and normalized by standard deviation. SVM classifier
has been individually performed on all data sets using 5-fold
cross-validation. Our feature selection method is compared
to several popularly used feature selection methods in bioin-
formatics, such as F-statistic, reliefF, mRMR, t-test, and in-
formation gain. Since the above data sets are for multiclass
classification problem, L1−SVM, HHSVM and other meth-
ods that were designed for binary classification are not com-
pared Table 1 and 2 show the detailed experimental results
using SVM classifier. The average accuracy for each feature
selection approach is calculated using the top 20 and top 80
features. It can be seen that our approaches obviously outper-
form most of methods significantly. Specifically, with top 20
features, our method is around 0%-2% better than other meth-
ods all six data sets. With top 80 features, our method achieve
an improvement of 0.45% than the second best method (RFS)
on average accuracy.

Like many other feature selection algorithms, our pro-
posed Sinkhorn regression also requires several parameters
λ, γ and µ to be set in advance. For the results reported in
the above subsection, we do not tune the parameter γ and µ
and only set them as: γ = 0.01 and µ = 0.1. Better results

may be achieved with tuning it. In this subsection, we will
discuss sensitivity of parameter λ. Here, we take the top 20
features as an example on all data sets. The detailed results
are shown in Table 3. It can be found the best results of our
method mainly lie in the interval [0.01 0.5]. But in Table 1
and 2, we choose λ = 0.1.

6 Conclusions

In this paper, we proposed a new robust matrix regression
method with emphasizing joint Sinkhorn distances minimiza-
tion on both loss function and regularization. The Sinkhorn
distances based loss function is robust to noise in data points.
Meanwhile, Sinkhorn based regularizer can promote param-
eters that are close. In addition, the proposed Sinkhorn re-
gression is extended to the unbalanced formulation which
does not rely on distribution features of data. We provided
an efficient algorithm to solve the proposed new model and
described its generalization bound from the statistical view-
point. Our method has been applied into feature selection
task. Extensive empirical studies on six standard data sets
demonstrated that the proposed algorithm works much more
robustly than some existing methods.
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