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Abstract

Partial Multi-Label Learning (PML) aims to learn
from the training data where each instance is as-
sociated with a set of candidate labels, among
which only a part of them are relevant. Exist-
ing PML methods mainly focus on label disam-
biguation, while they lack the consideration of
noise in feature space. To tackle the problem, we
propose a novel framework named partial multi-
label learning via MUIti-SubspacE Representation
(MUSER), where the redundant labels together
with noisy features are jointly taken into consid-
eration during the training process. Specifically,
we first decompose the original label space into a
latent label subspace and a label correlation ma-
trix to reduce the negative effects of redundant la-
bels, then we utilize the correlations among fea-
tures to map the original noisy feature space to a
feature subspace to resist the noisy feature infor-
mation. Afterwards, we introduce a graph Lapla-
cian regularization to constrain the label subspace
to keep intrinsic structure among features and im-
pose an orthogonality constraint on the correlations
among features to guarantee discriminability of the
feature subspace. Extensive experiments conducted
on various datasets demonstrate the superiority of
our proposed method.

1 Introduction

Partial Multi-Label Learning (PML) is a weakly supervised
multi-label learning framework, where each instance is asso-
ciated with a set of labels contained redundant information.
The task of PML is to learn a precise predictor for unseen
instances from the training data with redundant label infor-
mation. A straightforward way to solve the problem is apply-
ing off-the-shelf MLL methods to train the model [Gibaja and
Ventura, 2015]. However, the redundant noise labels mixed
in training data will degenerate the performance.

To overcome the problem, [Xie and Huang, 2018] pro-
posed the first PML framework, which provided an effective
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Figure 1: An example of partial multi-label learning with noisy fea-
tures. Among nine candidate labels of the example, six in black
font are ground-truth labels while three in red font are noisy labels.
Obviously, the noisy features derived from the high speed motion.

solution to cope with the redundant candidate labels. Exist-
ing PML methods can be roughly classified into two cate-
gories: unified strategy and two-stage strategy. For unified
strategy-based methods, the whole training process is uni-
fied, the prediction model is learned with optimizing candi-
date labels simultaneously. PML-fp and PML-l¢ [Xie and
Huang, 2018] optimized label confidence values and trained
the model by minimizing the ranking loss and exploiting data
structure information. fPML [Yu ez al., 2018] adopted a fea-
ture and label coherent matrix to factorize the original ma-
trix for prediction model training. PML-LRS [Sun et al.,
2019] utilized the idea of low-rank and sparse decomposition
to get the ground-truth labels and trained the model simul-
taneously. For two-stage strategy-based methods, the whole
training process is divided into two stages, including reliable
label selection by disambiguating strategy and model training
by using the reliable labels. PARTICLE [Fang and Zhang,
2019] developed iterative label propagation to extract credi-
ble labels with high-confidence values, then used the credible
labels to train the prediction model. DRAMA [Wang ef al.,
2019] performed the feature manifold to get the reliable la-
bels with high-confidence values and introduced a gradient
boost model for training.

Obviously, existing PML methods mainly focus on the
noise in label space while the noise concealed in feature
space is regrettably ignored, such as shadow and blurry in
multi-label image recognition field. If we directly learn the
PML model from such ambiguous features, the performance
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of the learned model would degenerate inevitably. For ex-
ample, in Figure 1, due to high speed motion, the blue
train’s feature information is blurred. If the blurred feature
information is utilized in the training process directly, the
performance of the prediction model will be affected. To
get a robust PML model for feature noise, we propose a
novel method named partial multi-label learning via MUIti-
SubspacE Representation(MUSER), which simultaneously
utilizes the feature mapping and label decomposition to train
the desired model. Specifically, we firstly decompose the
original label matrix into a low-dimensional label subspace
matrix and a corresponding label correlation matrix. Sec-
ondly, we introduce a graph Laplacian regularization to con-
strain the latent label subspace matrix to keep the intrinsic
structure information among feature information. Thirdly,
to resist the feature noise information during training pro-
cess, we employ a low-dimensional feature subspace ma-
trix mapped by feature correlation matrix to train the model,
which can reduce the negative effects in feature space and
boost performance by offering a more accurate feature ma-
trix. Meanwhile, to ensure the feature subspace space more
discriminative, an orthogonality constraint is imposed on the
feature correlation matrix. Finally, the unified prediction
model is optimized in an alternative manner by minimizing
the least square loss. Extensive experiments have demon-
strated that our proposed method can achieve superior per-
formance against state-of-the-art methods.

2 Related Work

As a weakly supervised multi-label learning framework, par-
tial multi-label learning aims to learn a precise multi-label
predictor from training data with redundant labels. Actually,
PML can be seen as a fusion of two popular learning frame-
works: multi-label learning and partial label learning.

Multi-Label Learning (MLL) aims to predict the ground-
truth labels for unseen instances, where each instance is as-
sociated with a set of accurate labels [Liu and Tsang, 2017;
Liu er al., 2018; Feng et al., 2019]. Existing MLL meth-
ods can be roughly divided into two categories: 1) Prob-
lem transformation methods tackle MLL problem by process-
ing the multi-label training samples to other learning prob-
lems [Boutell et al., 2004]. 2) Algorithm adaptation meth-
ods tackle MLL problem by adopting the improvment of the
commonly used supervised algorithms [Elisseeff and Weston,
2001; Zhang and Zhou, 2007]. Recently, some weakly super-
vised MLL frameworks are proposed, but most of them are
designed to solve missing labels, such as [Sun er al., 2010;
Chen et al., 2015].

Partial Label Learning (PLL) is a weakly supervised
multi-class learning framework, where each instance is as-
sociated with a set of candidate labels and only one la-
bel is correct [Feng and An, 2019a; Feng and An, 2019b;
Lyu et al., 2019; Lyu et al., 2020]. Existing PLL methods
can be roughly divided into three categories: 1) Averaging
disambiguation strategy-based methods predict the ground-
truth label by the average outputs from the whole candidate
label set [Zhang and Yu, 2015]. 2) Identification disambigua-
tion strategy-based methods predict the ground-truth label by
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refining the model latent parameters [Jin and Ghahramani,
2003]. 3) Disambiguation-free strategy-based methods learn
the PLL model by adapting off-the-shelf learning techniques
directly without disambiguation process [Zhang et al., 2017;
Wu and Zhang, 2018].

Partial Multi-Label Learning (PML) combines the char-
acteristics of MLL and PLL, where each instance is associ-
ated with a set of candidate labels and only a part of the
them are relevant. Existing PML methods can be roughly
divided into two categories: 1) Unified strategy-based meth-
ods tackle the PML problem in a unified framework, where
the prediction model is trained with optimizing candidate la-
bels simultaneously [Xie and Huang, 2018; Yu et al., 2018;
Sun et al., 2019]. 2) Two-stage strategy-based methods de-
compose PML problem into two subproblems, refining the
candidate labels and training the predictor with the refined
candidate labels [Wang er al., 2019; Fang and Zhang, 2019].

3 The Proposed Method

Formally speaking, we denote X=[x1,Xa,...,Xp] € Rdxn
as the instance-feature matrix for n instances, Y =
[¥1;¥2; .- yn] € {0,1}"*? as the candidate label matrix
where y; corresponds to ¢-th instance’s label vector, y;; = 1
means the j-th label is included in the candidate label set of
instance x;, ¥;; = 0, otherwise. PML aims to learn a multi-
label model from the feature matrix together with candidate
label matrix and assign the predictive labels for unseen in-
stances.

3.1 Formulation

MUSER is a novel PML framework based on multi-subspace
representation, which can reduce the negative effects caused
by redundant labels and noisy features during training pro-
cess.

Label Subspace We suppose Y € {0, 1}"* is the ground-
truth label matrix, and it is not accessible to PML algorithm
during the training process. Inspired by the low-rank label
matrix in multi-label learning that labels are correlated [Yu
et al., 2018], the ground-truth label matrix Y can also be as-

sumed to be low-rank in PML. Thus, Y can be reduced to a
lower-dimensional label subspace U, which is approximated
as the product of two matrices:

Y ~ UP, (1)

where U € R™*¢ denotes the instances representation in c-
dimensional latent label subspace and P € R¢*? encodes the
label correlation between ¢ labels and c latent labels. Each
original label may be affected by all c latent labels, which
implies high-order one-to-all label correlation.

To learn Y effectively, we minimize the reconstruction er-
ror between the candidate label matrix Y and the product of
U and P as follows:

1 )
min o|[Y - UP|[r + R(U,P), 2)

where R(U,P) denotes the regularization to control the
model complexity.
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Usually, the ideal latent label subspace is expected to be
consistent with intrinsic structural among features [Zhu et al.,
2017]. In our model, a graph Laplacian regularization is in-
troduced to ensure such consistency between features and la-
tent labels. Specifically, we define S € R™*"™ as a pairwise
similarity matrix, where S;; = exp(—||x; — x;[|3/0?) if in-
stance ¢ and instance j are the mutually k-nearest neighbors,
Si; = 0, otherwise. Then we can get the following regular-
ization term:

I~ o u; u;
SN Syl - 2= r(UTLY), ()

2 i=1 j=1 Eq; VE;j;
where L = E~2(E — S)E~2 is a graph Laplacian matrix
and E is a diagonal matrix with E;; = Z;’:l Si;. By com-
bining the regularization Eq. (3), the formulation can be up-
dated as follows:

win %HY ~UP|% + gTr(UTLU) +R(U,P), (4)

here «, 5 denote the trade-off parameters.

Feature Subspace As mentioned before, most existing
PML methods just focus on the noisy information in label
space and lack the consideration of noise in feature space.
Actually, in the real-world application, feature information
can be often corrupted by outliers and noise, just like label
space. Therefore, we introduce the second subspace repre-
sentation, latent feature subspace, in our prediction model.
A feature correlation matrix Q € R*™ is learned to map
the original feature space to a low-dimensional feature sub-
space, which can provide compact and discriminative feature
information for reducing the negative effects caused by noisy
feature information. Here m is the dimension of feature sub-
space. The latent feature representation in m-dimensional
subspace can be formulated as X T Q.

We further introduce a model coefficient matrix WeR™*¢,
which can map the instance from latent feature subspace to
latent label subspace. Accordingly, we can obtain the final
objective function for the proposed partial multi-label learn-
ing method MUSER:

. 1 T 2 @ 2
Witin | 5U=XTQW[} + 2 — UP|}
B

+ 5 Tr(UTLU) + R(W, U, P) )

st. QTQ=1,

where R(W, U, P) = Z(|W/% + [U[}% + [P[%). and the
orthogonality constraint for Q is to ensure the latent feature
subspace be more compact after mapping.

In summary, MUSER utilizes both label and feature sub-
space representations to train the desired model. For the la-
bel subspace representation, it can reduce the negative effects
caused by redundant labels. For the feature subspace repre-
sentation, it can reduce the feature noise and generate a dis-
criminative feature information. Combining above two sub-
spaces, the trained PML model is desired to be more effective
and robust to both feature and label noises.
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Prediction In the predict stage, we firstly adopt the ob-
tained feature correlation matrix Q to map the unseen in-
stances matrix X* to a latent feature subspace, then we utilize
the coefficient matrix W to predict the latent semantics in la-
bel subspace, finally we use the label correlation matrix P to
recover the ground-truth labels from the label subspace.

Y = X*TQWP, (6)
here Y is the prediction label matrix corresponding to the X*.

3.2 Optimization

Our proposed method is convex and it can be solved effec-
tively by an alternating optimization scheme.

Step 1: Calculate P. With U, Q, W fixed, Eq. (5) can be
reduced to:

- v 2
=Y - UP|3 + = |P 7
min < I3+ ZiPy3, ™)
and we can get the closed form solution:

P=(@U'U+-1)'aUTY. (8)
Step 2: Calculate U. With P, Q, W fixed, we can calcu-

late U by minimizing the following objective function:

1 o
min ~|U = XTQW|% + Y - UP|%

n gTr(UTLU) T %HUH%.

€))

The objective function is differentiable, thus U can be opti-

mized via the standard gradient descent algorithm:

Vu=(1+7)U+BLU +aUPP' —aYP' - X'QW

(10)
U:=U-\Vyu

Vv is the gradient of Eq (9), Ay is the stepsize of gradient

descent which is obtained by armijo rule [Bertsekas, 1999].
Step 3: Calculate Q. With U, P, W fixed, the subprob-

lem to variable Q) is simplified as:

1
in -||U - XTQW|?
méHZH QW|%

st. QTQ=1
Similarity to Step 2, we can get Q as follows:
Q:=Q (- XUW' +XX"TQWW'). (12

To satisfy the constraint Q" Q = I, we map each row of Q
onto the unit norm ball after each iteration:
Qi :
i 7’, 13
Q. Q.. (13)

where Q; . is the i-th row of Q.

Step 4: Calculate W. With P, U, Q fixed, Eq. (5) can be
reformulated as follows:

1 g
win U= XTQW|§ + J[[W[E, (4

(1)

and we can get the closed form solution:
W=(Q'XX'Q++I)"'Q"XU. (15)

During the entire process of optimization, we first initialize
the required variables, then repeat the above steps until the
function converges or reach the maximum iterations.
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Datasets #n #d #q #Max  #Cardinality
Emotions | 593 72 6 3 1.87
Genbase 662 1185 27 6 1.25
Medical 978 1449 45 3 1.25
Corel5k 5000 499 374 5 3.52

Bibtex 7395 1836 159 28 24
Eurlex-dc | 19348 5000 412 7 1.29
Eurlex-sm | 19348 5000 201 12 2.21

Table 1: Characteristics of the employed experimental datasets. For
each dataset, the number of examples (#n), the dimension of features
(#d), and the number of class labels (#q), the maximum (#Max) and
average (#Cardinality) number of ground-truth labels are recorded.

4 Experiments
4.1 Experimental Setup

We conduct experiments on seven PML datasets, which are
synthesized from widely-used MLL datasets including Emo-
tions [Trohidis et al., 2008], Genbase [Diplaris et al., 2005],
Medical [Pestian et al., 20071, Corel5k [Duygulu et al.,
2002], Bibtext [Katakis et al., 20081, Eurlex-dc and Eurlex-
sm [Mencia and Fiirnkranz, 2008]. These datasets are added
with redundant noise labels by the controlling parameter r.
Here, r € {1,2,3} represents the average number of false
positive labels for training examples. Table 1 shows the char-
acteristics of the experimental datasets.

To highligt the strengths of MUSER method, we compare
it with six state-of-the-art methods, including MLL meth-
ods ML-KNN [Zhang and Zhou, 2007], RankSVM [Elis-
seeff and Weston, 2001], PML methods PML-fp [Xie and
Huang, 2018], fPML [Yu et al., 2018], PARTICLE [Fang
and Zhang, 2019], DRAMA [Wang et al., 2019]. We also
set the trade-off parameters according to the suggestions in
respective literatures. Parameters in MUSER method includ-
ing a, 3,~ are chosen from {1073,1072,...,10%,103} with
a grid search manner. Five widely-used multi-label metrics
are employed to evaluate each comparing method, including
Hamming Loss, Ranking Loss, One-Error, Coverage and Av-
erage Precision. Meanwhile, we use 10-fold cross-validation
to train the model.

4.2 Experimental Results

Table 3 and Table 4 illustrate the experimental comparisons
between our MUSER and other six methods. Due to page
limited, we just report part of results, the extra results are re-
ported in the supplementary materials. Out of 735 (7 datasets
x 3 configurations X 5 metrics x 7 methods) statistical com-
parisons, the following observations can be made:

e On twenty-one datasets (7 datasets x 3 configurations)
across all evaluation metrics, MUSER ranks 1s¢ in
74.29% cases and ranks 2nd in 17.14% cases.

e For each comparing method, MUSER obviously outper-
forms the counterpart PML methods including PML-{p,
fPML, PARTICLE and DRAMA in 99.05%, 87.62%,
91.43% and 89.52% cases, and significantly outper-
forms the tailored MLL methods including ML-KNN
and RankSVM in 90.48% and 99.05% cases.
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Evaluation Fr Critical value
Ranking Loss 15.8407

Hamming Loss 14.2050

One Error 15.6569 2.1750
Coverage 15.8641

Average Precision  19.8548

Table 2: Friedman statistics F'r in terms of each evaluation metric
and the critical value at 0.05 significance level(#comparing methods
k = 7, #datasets N = 21)

0.7 -e-Ranking Loss 08 e Ranking Loss J

0. -4 Hamming Loss 0.7 - Hamming Loss
0.5 | Coverage 0.6 Coverage
0.4 One Error 0.5 [+ One Error
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Figure 2: The performance of MUSER changes as the dimension of
subspaces proportion changes. Here ¢q and d are the dimensions of
original label and feature space.

e For each evaluation metric, MUSER achieves almost op-
timal in terms of all evaluation metrics. MUSER is su-
perior to other comparing methods in 96.03% cases on
Ranking Loss, 89.68% cases on Hamming Loss, 92.86%
cases on One Error, 91.27% cases on Coverage, 96.83%
cases on Average Precision.

Furthermore, Friedman test [Demsar, 2006] is utilized as
the statistical test to analyze the relative performance among
the comparing methods in this paper. Table 2 reports the
Friedman statistics Fr and the corresponding critical value.
Then the post-hoc Bonferroni-Dunn test [Demsar, 2006] is
also utilized to show the relative performance among the
comparing methods. Here, MUSER is used as the control
method whose average rank difference against the compar-
ing algorithm is calibrated with the critical difference (CD).
Accordingly, MUSER is deemed to have a significantly dif-
ferent performance to one comparing method if their average
ranks differ by at least one CD (CD = 1.759 in this paper: #
comparing methods k = 7, # datasets N = 7 x 3 = 21).
Figure 3 illustrates the CD diagrams on each evaluation met-
ric, where the average rank of each comparing algorithm is
marked along the axis (lower ranks to the right). In each sub-
figure, any comparing methods whose average rank is within
one CD to that of MUSER is interconnected to each other
with a thick line. Obviously, MUSER performs significant
superiority against other comparing methods.

4.3 Further Analysis

Robust Analysis: In order to learn the influence of the vary-
ing subspace dimensions, we choose the dimension of label
subspace ¢ from {10%gq, 30%g, ..., 90%¢q} and feature sub-
space m from {10%d, 30%d, ..., 90%d}. Figure 2 shows the
results of MUSER with different values of m and ¢ over
CorelSk. According to the experimental results, it is noted
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Datasets | ML-KNN RankSVM PML-fp fPML PARTICLE DRAMA MUSER
Ranking Loss (the smaller, the better)
Emotions 0.170 £0.022 0.244 £0.092 0.285 £0.060 0.423 £0.043 0.241 £0.022 0.264 £0.031 0.168 £0.031
Genbase 0.006 £0.006 0.005 £0.005 0.079 £0.033 0.009 £0.008 0.022 £0.015 0.006 £0.009 0.002 £0.004
Medical 0.072 £0.009 0.086 4-0.001 0.050 £0.010 0.043 £0.011 0.099 40.025 0.049 £0.026 0.024 £0.006
Corel5k 0.133 £0.006 0.112 £0.006 0.152 £0.016 0.138 £0.006 0.354 £0.055 0.185 £0.003 0.110 £0.007
Bibtex 0.243 £0.007 0.224 £0.001 0.336 £0.011 0.092 £0.007 0.307 £0.009 0.192 £0.012 0.113 £0.004
Eurlex_dc 0.064 £0.003 0.120 £0.005 0.075 £0.018 0.072 £0.002 0.058 £0.004 0.062 £0.009 0.045 £0.003
Eurlex_sm 0.050 £0.005 0.079 £0.006 0.076 £+0.009 0.065 +0.008 0.049 4+0.002 0.062 £0.004 0.047 £0.003
Hamming Loss (the smaller, the better)
Emotions 0.203 £0.017 0.276 £0.054 0.300 £0.035 0.394 £0.021 0.224 £0.024 0.258 £0.020 0.202 £0.021
Genbase 0.005 £0.003 0.014 £0.005 0.054 £0.010 0.005 £0.002 0.012 £0.006 0.003 £0.000 0.003 £0.001
Medical 0.021 £0.001 0.053 £0.002 0.055 40.005 0.012 £0.006 0.020 40.003 0.016 £0.002 0.014 £0.002
Corel5k 0.009 £0.000 0.010 £0.002 0.012 £0.001 0.009 £0.000 0.010 £0.001 0.013 £0.002 0.009 £0.000
Bibtex 0.015 £0.000 0.021 £0.001 0.018 £0.000 0.013 £0.000 0.016 £0.001 0.010 £0.000 0.014 £0.009
Eurlex_dc 0.002 £0.000 0.003 £0.001 0.010 £0.003 0.006 £0.002 0.003 £0.000 0.004 £0.001 0.002 £0.002
Eurlex_sm 0.008 £0.001 0.009 £0.005 0.013 £0.002 0.010 £0.003 0.006 £+0.000 0.008 £0.001 0.006 +0.000
One Error (the smaller, the better)
Emotions 0.327 £0.060 0.387 £0.134 0.349 £0.046 0.561 £0.052 0.290 £0.049 0.383 £0.059 0.270 £0.080
Genbase 0.021 £0.026 0.056 £0.023 0.174 £0.053 0.003 £0.006 0.015 £0.012 0.009 £0.015 0.002 £0.005
Medical 0.383 £0.035 0.532 £0.043 0.282 4+0.053 0.196 £0.036 0.245 40.045 0.249 £0.012 0.159 £0.032
Corel5k 0.715 £0.017 0.758 £0.013 0.732 £0.025 0.649 £0.024 0.812 £0.075 0.679 £0.026 0.663 £0.020
Bibtex 0.723 £0.009 0.518 £0.003 0.465 £+0.010 0.406 £+0.015 0.575 £0.013 0.402 £0.012 0.368 £0.019
Eurlex_dc 0.413 £0.010 0.581 £0.021 0.412 £0.009 0.432 £0.014 0.376 £0.009 0.392 £0.012 0.277 £0.006
Eurlex_sm 0.230 £0.016 0.241 £0.009 0.283 +0.015 0.252 +0.016 0.230 4+0.027 0.243 £0.012 0.226 £0.012
Coverage (the smaller, the better)
Emotions 0.304 £0.026 0.372 £0.079 0.425 £0.056 0.511 £0.028 0.362 £0.040 0.381 £0.043 0.300 £0.032
Genbase 0.021 £0.011 0.026 £0.005 0.132 £0.028 0.030 £0.017 0.042 40.025 0.025 £0.016 0.013 £0.007
Medical 0.097 £0.014 0.105 £0.016 0.050 £+0.033 0.063 £0.016 0.115 4+0.028 0.063 £0.012 0.038 £0.011
Corel5k 0.305 £0.011 0.435 £0.012 0.532 4+0.021 0.321 £0.010 0.558 £0.059 0.465 £0.015 0.273 £0.015
Bibtex 0.382 £0.012 0.276 £0.013 0.325 £0.013 0.163 +0.011 0.469 £0.012 0.198 £0.015 0.211 £0.009
Eurlex_dc 0.081 £0.004 0.149 £0.031 0.109 £0.013 0.108 £0.012 0.094 £0.004 0.075 £0.016 0.058 +£0.013
Eurlex_sm 0.088 +0.006 0.356 £0.012 0.153 4+0.006 0.108 £-0.006 0.110 0.004 0.092 £0.005 0.095 £0.006
Average Precision (the larger, the better)

Emotions 0.793 £0.020 0.724 £0.087 0.710 £0.064 0.577 £0.032 0.758 £0.023 0.705 £0.028 0.797 £0.034
Genbase 0.980 £0.018 0.965 £0.014 0.815 £0.073 0.985 +0.012 0.972 +0.020 0.986 £0.027 0.994 £0.007
Medical 0.701 £0.021 0.599 £0.024 0.706 £0.016 0.852 4+0.031 0.756 £0.041 0.811 £0.026 0.880 £0.022
Corel5k 0.255 £0.007 0.265 £0.008 0.260 £-0.009 0.276 40.009 0.167 £0.046 0.234 £0.006 0.290 £0.011
Bibtex 0.260 £0.007 0.325 £0.008 0.325 £0.011 0.542 4+0.012 0.291 £0.010 0.534 £0.012 0.568 +£0.010
Eurlex_dc 0.635 £0.008 0.449 £0.015 0.637 £0.012 0.663 £0.022 0.674 £0.083 0.682 £0.021 0.762 £0.004
Eurlex_sm 0.794 £+0.005 0.532 £0.012 0.609 +0.016 0.735 +0.012 0.678 +0.014 0.749 £0.012 0.770 £0.012

Table 3: Comparison of MUSER with state-of-the-art MLL and PML methods on five evaluation metrics, where the best performances are

shown in bold face. (r = 1, pairwise ¢-test at 0.05 significance level)

Ranking Loss l-lamming Loss One Error
7 3 2 1 7 6 2 1 7 6 5 3 2 1
1 L | [ l
PML rp_| Lniknn I—MUSER PML-fp—] MUSER RcmkSVMPML ; J | | DRAMA I—MUSER
PARTI(,LE tPML Rﬂnl\SVM P PARTICLE
RankSVM DRAMA PARTICLE tPML ML KNN ML KNN TPMI-
Coverage Average Precision
7 6 S 2 1 7 6 S 4 3 2 1
L | I
_| |__|— RankSVM _|
PARTIPCLE fp |_ DRAMA — MUSER L o fPML I—MUSER
RankSVM ML-KNN PARTICLE DRAMA
fPML ML-KNN

Figure 3: Comparison of MUSER against six comparing methods with the Bonferroni-Dunn test. Methods not connected with MUSER in
the CD diagram are considered to have a significantly different performance from MUSER (CD = 1.759 at 0.05 significance level)

that the performance of MUSER is less sensitive to both m
and ¢, and thus in our experiment, m and c are set to 50% of
original feature and label space.

Complexity Analysis: For our proposed model, at each
iteration of the method, the main computational complexity
includes matrix inversion and multiplication operations. The
cost complexity of matrix inversion is O(c® +m?), and gen-
erally, m < d and ¢ < g, the overall complexity of MUSER
is O(ndq + ng® + n%q + nd? + ¢ + m3).

Convergence Analysis: We conduct the convergence anal-
ysis of MUSER on Medical dataset, where the convergence
curve is shown in the left sub-figure of Figure 4. We can ob-
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serve that the objective function value gradually decreases to
a stationary state as the number of iteration increases. There-
fore, the convergence of MUSER is demonstrated.
Parameter Analysis: There are three trade-off parame-
ters in MUSER, including «, 5,7. We chose them from
{1073,1072,...,10%,10%}. To learn the influence of param-
eters, we show the experimental results of the three param-
eters under different configurations on Medical dataset. The
right three sub-figures of Figure 4 show the performance of
MUSER changes as each parameter increases with other pa-
rameter fixed. According to the experimental results, the
parameters usually follow the optimal configurations (o« =
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Datasets | ML-KNN RankSVM PML-fp fPML PARTICLE DRAMA MUSER
Ranking Loss (the smaller, the better)
Emotions 0.204 £0.018 0.225 £0.065 0.401 £0.035 0.377 £0.078 0.252 £0.028 0.265 £0.031 0.192 £0.030
Genbase 0.008 £0.003 0.006 £0.004 0.009 £0.001 0.007 £0.005 0.025 £0.016 0.008 £0.003 0.002 £0.002
Medical 0.072 £0.009 0.086 4-0.001 0.050 £0.010 0.043 £0.011 0.099 40.025 0.049 £0.026 0.030 £0.011
Corel5k 0.135 £0.007 0.165 £0.008 0.162 £0.013 0.137 £0.004 0.349 40.070 0.192 £0.012 0.120 £0.005
Bibtex 0.223 £0.007 0.243 £0.008 0.341 £0.009 0.087 £-0.004 0.287 £0.011 0.203 £0.011 0.123 £0.004
Eurlex_dc 0.072 £0.005 0.132 £0.006 0.079 £0.016 0.078 £0.001 0.062 £+0.004 0.068 £0.008 0.049 £0.002
Eurlex_sm 0.032 £+0.001 0.082 £+0.003 0.082 £0.012 0.068 +0.008 0.053 4+0.001 0.051 £0.006 0.043 £0.003
Hamming Loss (the smaller, the better)
Emotions 0.258 £0.011 0.363 £0.074 0.392 £0.023 0.430 £0.037 0.229 £0.017 0.289 £0.028 0.226 £0.019
Genbase 0.005 £0.002 0.021 £0.005 0.036 £0.002 0.003 £0.001 0.010 £0.005 0.002 £0.004 0.002 £0.002
Medical 0.021 £0.001 0.053 £0.002 0.055 40.005 0.012 £0.006 0.020 40.003 0.016 £0.002 0.014 £0.002
Corel5k 0.009 £0.000 0.012 £0.001 0.012 £0.001 0.009 £0.000 0.009 £0.000 0.015 £0.003 0.009 £0.000
Bibtex 0.013 £0.001 0.025 £0.002 0.017 £0.002 0.013 £0.000 0.016 £0.001 0.012 £0.001 0.009 £0.000
Eurlex_dc 0.010 £0.002 0.005 £0.002 0.007 £0.005 0.008 £0.005 0.003 £0.001 0.006 £0.002 0.002 £0.002
Eurlex_sm 0.008 +0.002 0.011 £0.004 0.015 £+0.004 0.012 £0.004 0.009 £+0.001 0.010 £0.002 0.013 £0.001
One Error (the smaller, the better)
Emotions 0.319 £0.075 0.371 £0.097 0.476 £0.067 0.558 +0.061 0.293 £+0.065 0.383 £0.089 0.295 £0.04
Genbase 0.024 £0.022 0.053 £0.038 0.000 £0.000 0.002 £0.005 0.003 +0.006 0.000 £0.015 0.003 £0.005
Medical 0.383 £0.035 0.532 £0.043 0.282 4+0.053 0.196 £0.036 0.245 40.045 0.249 £0.012 0.176 £0.035
Corel5k 0.724 £0.021 0.768 £0.012 0.746 £0.021 0.672 £0.030 0.823 4+0.091 0.680 £0.012 0.665 +£0.016
Bibtex 0.620 £0.024 0.529 £0.016 0.435 £0.012 0.406 £0.021 0.549 £0.015 0.413 £0.012 0.377 £0.017
Eurlex_dc 0.469 £0.013 0.589 £0.012 0.405 £0.003 0.441 £0.012 0.357 £0.007 0.401 £0.008 0.283 £0.012
Eurlex_sm 0.186 +0.004 0.246 £0.010 0.286 +0.016 0.249 +0.013 0.244 4+0.006 0.236 £0.009 0.226 £0.010
Coverage (the smaller, the better)
Emotions 0.346 £0.030 0.352 £0.053 0.487 £0.052 0.471 £0.054 0.366 +0.046 0.378 £0.046 0.326 £0.033
Genbase 0.024 £0.009 0.017 £0.007 0.028 £0.008 0.012 £0.011 0.046 +0.030 0.026 £0.015 0.012 £0.006
Medical 0.097 £0.014 0.105 £0.016 0.050 £+0.033 0.063 £0.016 0.115 4+0.028 0.063 £0.012 0.045 £0.012
Corel5k 0.310 £0.014 0.445 £0.035 0.436 £0.016 0.318 40.008 0.561 40.063 0.468 £0.012 0.279 £0.010
Bibtex 0.358 £0.013 0.285 £0.011 0.333 £0.015 0.156 4-0.006 0.450 £0.014 0.205 £0.011 0.231 £0.008
Eurlex_dc 0.102 £0.005 0.152 £0.008 0.091 £0.012 0.099 £0.008 0.097 £0.007 0.081 £0.012 0.063 £0.002
Eurlex_sm 0.086 £0.006 0.359 £0.011 0.155 4+0.009 0.100 4-0.007 0.113 +0.003 0.096 £0.008 0.085 £0.006
Average Precision (the larger, the better)

Emotions 0.765 £0.023 0.735 £0.062 0.618 £0.240 0.605 £0.049 0.749 £+0.029 0.716 £0.046 0.779 £0.025
Genbase 0.977 £0.010 0.964 £0.025 0.986 £0.004 0.989 £0.006 0.978 +0.016 0.986 £0.019 0.994 +0.006
Medical 0.701 £0.021 0.599 £0.024 0.706 £0.016 0.852 4+0.031 0.756 £0.041 0.811 £0.026 0.861 £0.025
Corel5k 0.252 £0.011 0.250 £0.045 0.250 40.009 0.268 +0.013 0.162 40.054 0.228 £0.004 0.289 £0.007
Bibtex 0.319 £0.015 0.356 £0.005 0.319 £0.009 0.544 4+0.011 0.315 £0.012 0.549 £0.008 0.550 £0.014
Eurlex_dc 0.625 £0.009 0.432 £0.009 0.618 £0.006 0.658 +0.019 0.631 £0.009 0.675 £0.010 0.752 £0.009
Eurlex_sm 0.773 £0.005 0.528 +0.011 0.600 +0.016 0.729 +0.013 0.667 +0.028 0.752 £0.013 0.774 £0.009

Table 4: Comparison of MUSER with state-of-the-art MLL and PML methods on five evaluation metrics, where the best performances are

shown in bold face. (r = 2, pairwise ¢-test at 0.05 significance level)
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Figure 4: The left subfigure shows the objective function value of MUSER changes with increasing number of iterations. The right three
subfigures show performance of MUSER changes as each parameter increases with other parameters fixed.

1,8 = 1,y = 1) but vary with minor adjustments on differ-
ent datasets.

5 Conclusion

In this paper, we propose a novel PML framework named
MUSER, which trains a robust model by considering the
noise in both feature space and label space. Specially, we use
low-rank decomposition to reduce the negative effects of re-
dundant labels and introduce graph Laplacian regularization
to ensure the label subspace be in consistent with features,
then we utilize feature subspace mapping and orthogonal sub-
space projection to provide a discriminative feature informa-

tion. Empirical studies on various datasets demonstrate the
superiority of MUSER.
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