
Feature Statistics Guided Efficient Filter Pruning

Hang Li1 , Chen Ma1∗ , Wei Xu2 and Xue Liu1

1School of Computer Science, McGill University
2Institute for Interdisciplinary Information Sciences, Tsinghua University

{hang.li3, chen.ma2}@mail.mcgill.ca, weixu@tsinghua.edu.cn, xueliu@cs.mcgill.ca

Abstract

Building compact convolutional neural networks
(CNNs) with reliable performance is a critical but
challenging task, especially when deploying them
in real-world applications. As a common approach
to reduce the size of CNNs, pruning methods delete
part of the CNN filters according to some met-
rics such as l1-norm. However, previous meth-
ods hardly leverage the information variance in a
single feature map and the similarity characteris-
tics among feature maps. In this paper, we pro-
pose a novel filter pruning method, which incorpo-
rates two kinds of feature map selections: diversity-
aware selection (DFS) and similarity-aware selec-
tion (SFS). DFS aims to discover features with low
information diversity while SFS removes features
that have high similarities with others. We conduct
extensive empirical experiments with various CNN
architectures on publicly available datasets. The
experimental results demonstrate that our model
obtains up to 91.6% parameter decrease and 83.7%
FLOPs reduction with almost no accuracy loss.

1 Introduction
Deep convolutional neural networks (CNNs) have evolved
to the state-of-the-art technique on various tasks, includ-
ing image classification [Krizhevsky et al., 2012], object
detection [Girshick et al., 2014] and sentence classifica-
tion [Kim, 2014]. Due to the parameter sharing and lo-
cal connectivity schemes, CNNs own the powerful repre-
sentation and approximation ability that can benefit down-
stream tasks. For example, the classification accuracy of
CNNs in the ImageNet challenge has increased from 84.7%
in 2012 (AlexNet [Krizhevsky et al., 2012]) to 96.5% in 2015
(ResNet-152 [He et al., 2016a]).

Although CNNs yield the state-of-the-art performance on
various tasks, they still suffer from high storage and computa-
tion overheads. Specifically, CNNs cost a huge space to store
millions or even billions of parameters; the floating-point op-
erations (FLOPs) of CNNs are intensive since a large quantity

∗Corresponding Author

of multiplication and addition operations are executed in con-
volutional layers. These two drawbacks impede deploying
CNNs in real-world applications especially when the storage
and computation resources are limited.

Filter pruning, as a promising solution to address the afore-
mentioned issues, has drawn significant interests from both
academia and industry. The reasons are two-fold. First, most
filter pruning methods are conducted on predefined architec-
tures without extra designs [Han et al., 2015]. Second, filter
pruning techniques do not introduce sparsity to architectures
like weight pruning methods [Li et al., 2016]. In particu-
lar, local pruning methods remove less important filters ac-
cording to the pruning ratios in each layer, which leads to
a fixed architecture with finely trained weights. For exam-
ple, [Li et al., 2016] prunes filters with a low l1-norm in each
layer. However, [Liu et al., 2018] shows that once the pruned
architecture has been defined, the performance relies more
on the architecture rather than learned weights, which makes
local pruning less effective. Compared with local pruning,
global pruning distinguishes the importance of filters across
all layers, which can achieve better performance. The pruned
architecture is automatically determined by the global prun-
ing algorithm. As a representative approach of global prun-
ing, [Liu et al., 2017] imposes a sparsity-induced regulariza-
tion on the scaling factors of batch normalization layers and
prunes those channels with smaller factors.

Even though previous works have proposed effective meth-
ods to compress the CNN architecture, we argue that two fac-
tors of feature maps are rarely incorporated. On the one hand,
the information variance of a feature map can be a good in-
dicator for discriminating the effectiveness of feature maps.
That is, if the values in a feature map do not vary a lot, the
amount of information it contains may be limited. On the
other hand, the relationships (e.g. similarity) between fea-
ture maps play a significant role in preserving effective fea-
ture maps. If two features have high similarities, then one
of them can be considered as redundant. However, previous
works mainly utilize the metrics within a feature map with-
out considering the similarities between feature maps. For
example, [Li et al., 2016] only applies l1-norm to select fea-
ture maps. Solely depending on l1-norm may keep multiple
similar feature maps with the same l1-norm value, which will
lead to incomplete pruning.

To incorporate the aforementioned intuitions, we propose

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2619



a framework containing two steps of feature map selections
to prune less diverse feature maps and corresponding filters.
The first step employs the diversity-aware feature selection
(DFS) to remove feature maps with less information variance.
In particular, we apply the mean standard deviation (M-std)
of values in a feature map to measure the information vari-
ance degree. The feature map with the lowest M-std will
be pruned. The second step is the similarity-aware feature
selection (SFS) for deleting feature maps that have high sim-
ilarities with each others. We compute the cosine similar-
ity among all features and delete the feature whose similar-
ity is larger than a threshold. Moreover, we observe that the
M-std distribution varies a lot in different layers of ResNet.
This motivates us to adopt a fine-grained pruning strategy,
which contains two pruning processes working on different
parts of a residual block. We extensively evaluate our method
with many state-of-the-art approaches and different metrics
on three publicly available datasets. The experimental results
show the improvements of our model over other baselines.

Our contributions are summarized as follows:
• We introduce an effective filter pruning method to com-

press CNN models that have a large number of parameters
and FLOPs. We employ a diversity-aware feature selec-
tion to distinguish informative feature maps and propose a
similarity-aware feature selection to remain representative
feature maps.

• Our method is a global filter pruning method that compares
the redundancy degree of feature maps across all layers.
More importantly, we propose a fine-grained pruning strat-
egy for ResNet, which differs from many existing meth-
ods [He et al., 2019; Li et al., 2016; Luo et al., 2017].

• We extensively evaluate our methods with multiple CNN
architectures on three datasets. We show the significantly
improved effectiveness of our proposed method, which
can reduce parameters of MobileNet by up to 91.6% and
FLOPs decrease up to 83.7% with limited accuracy drop.

2 Related Works
Convolutional neural networks have many parameters to pro-
vide enough model capacity, making them both computation-
ally and memory intensive. Pruning methods aim to reduce
the number of parameters in a CNN model. Based on the
over-parameterization hypothesis [Ba and Caruana, 2014],
a considerable amount of parameters can be pruned while
CNNs maintain a promising accuracy. By reducing the num-
ber of weights or filters, we can save the storage space and
also reduce the computational complexity and memory foot-
print of a model during testing.

Weight pruning is a strategy that deletes parameters with
small “saliency”. [LeCun et al., 1990] introduces the Opti-
mal Brain Damage(OBD) method which is one of the ear-
liest attempts at pruning neural networks. OBD defines the
“saliency” by calculating the second derivative of the objec-
tive function concerning the parameters. [Han et al., 2015]
present a generic iterative framework for neural network
pruning, in which all weights below a threshold are removed
from the network. [Guo et al., 2016] propose a dynamic com-
pression algorithm named Dynamic Network Surgery(DNS)

to prune or rebuild the connections during the learning pro-
cess. Weight pruning is fairly efficient in terms of reducing
model size. However, networks compressed by weight prun-
ing methods become sparse, requiring additional sparse li-
braries or even specialized hardware to run. The filter struc-
ture of CNNs allows us to perform filter pruning, which is
a naturally structured method without introducing sparsity.
And in this paper, we also focus on the filter pruning method.

Filter pruning methods prune the convolutional filters or
channels of CNN models which make the deep networks thin-
ner. Based on the assumption that CNNs usually have a sig-
nificant redundancy among filters, researchers introduce vari-
ous metrics [Li et al., 2016; Luo et al., 2017; Liu et al., 2017;
Wang et al., 2019] to measure the importance of filters, which
is the key issue of filter pruning. [Li et al., 2016] measures
the relative importance of a filter in each layer by calculat-
ing the sum of its absolute kernel weights. Beyond such a
magnitude-based method, [Hu et al., 2016] proposes that if
the majority of the value in a filter is zero, this filter is likely
to be redundant. They compute the Average Percentage of
Zeros (APoZ) of each filter as its importance score.

Except for adopting the magnitude of a filter as an impor-
tant metric, feature maps are also significant. Reconstruction-
based methods seek to do filter pruning by minimizing the re-
construction error of feature maps between the pruned model
and a pre-trained model. [Luo et al., 2017] propose ThiNet
which transforms the filter selection problem into the op-
timization of reconstruction error computed from the next
layer’s feature map. [He et al., 2017] uses the LASSO re-
gression to obtain a subset of filters that can reconstruct
the corresponding output in each layer. Even though this
reconstruction-based method considers the feature map infor-
mation, it has a limitation that the reconstructed feature map
might have high similarity which is redundant information.

Besides the aforementioned methods that prune filters af-
ter obtaining a trained neural network, there are some explo-
rations [Liu et al., 2019; He et al., 2018] to get the importance
of each filter during the training process. In [Liu et al., 2017],
a scaling parameter γ is introduced to each channel and is
trained simultaneously with the rest of the weights by adding
L1-norm of γ in the loss function. Channels with small fac-
tors are pruned and the network is fine-tuned after pruning.
[Yamamoto and Maeno, 2018] inserts a self-attention module
in the pre-trained convolutional layer or fully connected layer
to learn the importance of each channel. [Luo and Wu, 2018]
learn a 0-1 indicator which can multiply with feature maps as
the input of the next layer in a joint training manner.

However, our proposed method is different from previous
approaches. We apply a diversity-aware feature selection pro-
cess to remove features with lower information variance. Be-
sides, a similarity-aware feature selection process is utilized
to discover those closely related features.

3 Methodology
3.1 Preliminaries
Given a convolutional neural network (CNN) with L convo-
lution layers, we assume the dimension of the input feature
Xi at the ith layer is RNi×Wi×Hi , where Ni, Hi and Wi de-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2620



Figure 1: The framework of our proposed feature pruning approach. After obtaining feature maps of a trained CNN model, we first do the
diversity-aware feature selection (DFS) by removing feature maps with the smaller M-std value. Then the similarity-aware feature selection
(SFS) is further used to prune the redundant feature maps with higher cosine similarity.

Figure 2: Distributions of M-std, M-corr and Top5-corr of features
in VGGNet trained on CIFAR 10 dataset.

note the number of channels, rows and columns, respectively.
The output dimension at this layer is RNi+1×Wi+1×Hi+1 .
The corresponding filter set of the ith layer is Fi =
{Fi,1,Fi,2, ...,Fi,Ni+1

}, where Fi,j ∈ RNi×K×K and K ×
K is the kernel size. The convolutional operation of the ith
layer is denoted as:

Xi+1,j = Fi,j ∗Xi , 1 6 j 6 Ni+1, (1)

where Xi,k ∈ RWi×Hi represents the feature map of the kth
channel at the ith layer.

Given a model M trained on dataset {(x̂i, ŷi)}, our task is
to delete redundant feature maps and corresponding filters.

3.2 Diversity and Similarity in Feature Maps
To measure the diversity and similarity of feature maps, we
adopt two metrics:

• Mean standard deviation (M-std). The mean standard de-
viation of each feature map is defined as:

M-std(Xi,j) =
1

T

T∑
m=1

√∑WiHi

p=1 (xmp − xm)2

WiHi − 1
, (2)

where xmp is the pth element in xm
i,j ∈ R1×WiHi of a flat

feature map Xm
i,j ∈ RWi×Hi , m (m 6 T ) represents the

sample index, and xm is the mean of {xmp }. Smaller M-std

Figure 3: M-std and M-corr of all feature maps in VGGNet trained
on CIFAR 10 dataset.

value means the corresponding feature map has less hetero-
geneity. This lower information diversity contributes more
inadequate to further feature extraction.

• Mean cosine similarity (M-corr). We use the cosine sim-
ilarity to measure the relevance between feature maps.
Since the dimensions of feature maps vary in different
layers, we compute the feature similarity within the same
layer. The M-corr can be computed as:

M-corr(Xi,j) =
1

T

T∑
m=1

∑Ni

p=1

∣∣cos(xm
i,j ,x

m
i,p)
∣∣

Ni
. (3)

The feature map with a larger M-corr value tends to have
high similarity with each feature in its layer. Comparing with
M-corr, mean Top-k cosine similarity (Topk-corr) is an an-
other commonly used metric that can also reflect the similar-
ity characteristic of feature maps. The Topk-corr of a feature

map Xi,j is 1
T

∑T
m=1

∑Ni
p=1 Ai,p· |cos(xm

i,j ,x
m
i,p)|

k . Ai,p = 1 if
xm
i,p is among the Top-k cosine values of xm

i,j , Ai,p = 0 oth-
erwise.

To highlight the characteristics of feature maps, we train a
VGGNet model on the CIFAR10 dataset and obtain the statis-
tical information of feature maps. Figure 2 gives an illustra-
tion of the overall distributions of M-std, M-corr, and Topk-
corr. As shown in Figure 2a, there are nearly a half number
of feature maps with M-std less than 0.05, which reveals that
these feature maps may not contain much information. Fig-
ure 2b indicates there are around half of the feature maps that

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2621



Algorithm 1 Our proposed filter pruning scheme
Input: Sample data {x̂i}Ti=1, model M, threshold ν
Output: Selected filter subset F̂

1: Construct feature maps {Xm
i }Li=1 for each data sample

2: Compute M-std {std} from Equation 2 for each feature
using {Xm

i }Li=1

3: Let X̂← ∅, β ← mean({std})
4: for i ∈ {1, 2, ..., L} do
5: Find X̂i according to Equation 4
6: Obtain X̃i using Algorithm 2, X̃i ← SFS(X̂i, ν)
7: Let X̂← X̂ ∪ X̃i

8: end for
9: Find F̂ according to X̂

have M-corr value over 0.3. Figure 2c shows that there are
about a quarter of feature maps with Top-5 cosine similar-
ity values exceed 0.8, even 0.9. Similar feature maps can
be treated as redundant features, making less contribution to
the network. These metrics demonstrate there exist redundant
feature maps in CNNs.

The details of the statistic value of each feature map are
shown in Figure 3. We can see that most of the M-std values
become lower with the increase of layer depth and most of the
M-corr values enhance as the number of channels gets larger.
M-std and M-corr have a weak negative correlation between
each other in this case. Their Pearson correlation [Galton,
1886] is -0.38. These two criteria can complement each other
when selecting important features.

3.3 Filter Pruning
We aim to prune redundant filters of deep CNNs in a sim-
ple but effective scheme. The central idea of our method has
two steps of feature map selections (see Figure 1): diversity-
aware feature selection (DFS) and similarity-aware feature
selection (SFS). After obtaining a pre-trained CNN model,
we first compute the M-std values for all feature maps. Then
we prune feature maps with the smallest values and save the
unpruned feature maps. Finally, we calculate the cosine simi-
larity among the unpruned feature maps and prune those fea-
tures with high similarity for further compression. The over-
all filter pruning scheme is illustrated in Algorithm 1.

We adopt M-std as the diversity criteria. Specifically, in the
i-th layer, the selected feature X̂i at DFS is:

X̂i = {Xi,j |M-std(Xi,j) > β}, j = 1, 2, ..., Ni , (4)

where β is the hyper-parameter which is chosen according to
percentiles of M-std values of all feature maps, making our
method a global pruning across all layers.

To select a subset of features with lower correlations, we
employ a direct way to delete redundant features with high
similarity. In particular, we compute the cosine similarity
among all the features of X̂i, which can form a correlation
set si = {sij,p} ,

sij,p =
1

T

T∑
m=1

|cos(xm
i,j ,x

m
i,p) |

T
,xi,∗ ∈ X̂i. (5)

Algorithm 2 Similarity-aware feature map selection (SFS)
Input: Feature map set Xi, threshold ν
Output: Selected feature subset Bi

1: Initialize Bi ← ∅
2: Form the correlation set si according to Equation 5
3: Find the max value max in si
4: while max > ν do
5: Find Xi,r and Xi,c have the max similarity value
6: Let Bi ← Bi ∪Xi,r

7: for Xi,j ∈ Xi do
8: if sir,j > ν then
9: Remove sir,j from si and remove Xi,j from Xi

10: end if
11: end for
12: Find max in si
13: end while
14: Let Bi ← Bi ∪Xi

15: return Bi

We find the largest value in si and its corresponding feature
pair, then we save one of the pair as a reference feature xi,r .
As a result, we can safely delete features whose similarity
with xi,r is bigger than a pre-defined threshold ν because
these features could be replaced by xi,r. SFS is summarized
in Algorithm 2.

3.4 Pruning for Multiple Branch Networks
The multiple branch networks illustrate a kind of CNNs that
the output of one layer may be the input of multiple subse-
quent layers, which are more complicated to prune than single
branch networks. For instance, ResNet [He et al., 2016a] is
a representative example of multiple branch networks, which
has a sequential branch and a shortcut branch. The outputs of
these two branches will conduct an element-wise addition op-
eration. Since the outputs require equal channel dimensions,
this makes pruning ResNet more difficult.

We use two separate feature map selection processes for
the sequential branch and the shortcut branch, respectively.
The features except for the last layer within all sequential
branches compose one group, the results after branches com-
bination form another group. Filter pruning is operated on
each group individually. These two separate filter pruning
strategies are inspired by the statistic information of feature
maps in PreResNet [He et al., 2016b]. Figure 4a gives an
example of the bottleneck architecture, which is one of the
multiple-branch building blocks of ResNet. This bottleneck
includes three layers with 1 × 1, 3 × 3, and 1 × 1 con-
volutional filters. The element-wise addition is performed
channel by channel on two output feature maps of sequen-
tial and shortcut branches. We train a PreResNet-164 on the
CIFAR10 dataset and compare the statistical information of
feature maps between those in the first two layers of sequen-
tial branches (f1+f2) and those after the additional operation
(f-last). Figure 4b shows the M-std values of part of the fea-
ture maps. The overall pattern of M-std for all feature maps is
similar to Figure 4b. We can clearly see that all M-std values
form two groups, the upper part corresponds to f1+f2, and the
lower one represents f-last. Besides, the distribution of M-std

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2622



(a) bottleneck (b) M-std of part feature maps.
(c) M-std distribution of first two
layers within sequential branches.

(d) M-std distribution of combina-
tion layers.

Figure 4: Bottleneck and M-std values of ResNet-164 on CIFAR-10.

Dataset Method Acc.(%) FLOPs ↓(%) Para.↓(%)

C10 VGGNet 93.74 0.0 0.0
L1-Prune 93.12 - 88.5
N-Slim∗ 93.80 51.1 88.5
PFGM∗ 94.0 35.9 -
Ours 94.05 56.3 90.7

C100 VGGNet 73.41 0.0 0.0
L1-Prune 71.64 - 76.0
N-Slim∗ 73.48 37.1 75.1
Ours 73.69 45.0 75.9

Table 1: Results of pruned VGGNet on CIFAR dataset. C10 and
C100 mean the CIFAR 10 and CIFAR 100, respectively. Acc. is the
classification accuracy, and Para. is short for parameters. The ↓ is
the drop percent between the pruned model and the original model,
the smaller, the better. Results with ∗ are got from original papers.
− denotes the results are not reported.

of f1+f2 is mainly from 0 to 0.1, which is shown in Figure 4c.
From Figure 4d, we could conclude that the M-std of f-last
is about 0.05 to 0.2. The percentile of f1+f2 is higher while
the one of f-last is lower, which motivates us to use two dif-
ferent pruning thresholds. Thus, we utilize two feature map
selection processes for f1+f2 and f-last layer, respectively.

4 Experiments
4.1 Experimental Setting
Dataset. We perform experiments on publicly available
datasets. CIFAR10 and CIFAR100 [Krizhevsky et al., 2009]
are two widely used datasets with 32× 32 colour natural im-
ages. They both contain 50, 000 training images and 10, 000
test images with 10 and 100 classes respectively. The data
is normalized using channel means and standard deviations.
And the data augmentation approach we used is consistent
with [Liu et al., 2017]. ILSVRC-2012 is a large-scale dataset
with 1.2 million training images and 50, 000 validation im-
ages of 1000 classes. Following the common training proce-
dure in [Liu et al., 2017; He et al., 2019], we adopt the same
data augmentation approach and report the single-center-crop
validation error of the final model.

Network models. We test the performance of our pruning
method on several famous CNN models. VGGNet is a re-
markable single branch network which is widely used for
computer vision task. ResNet [He et al., 2016a] and Pre-

Dataset Method Acc.(%) FLOPs ↓(%) Para.↓(%)

C10 PreResNet 94.86 0.0 0.0
N-Slim∗ 94.73 44.9 35.2
Ours 94.93 56.1 40.5

C100 PreResNet 76.88 0.0 0.0
N-Slim∗ 76.09 50.6 29.7
Ours 76.18 53.4 35.9

Table 2: Comparisons of pruning PreResNet on CIFAR dataset.

ResNet [He et al., 2016b] are two popular multiple branch
network. MobileNet [Howard et al., 2017] is a compact net-
work designing for effective use on mobile devices.
Configuration. We train or fine-tune all the networks using
SGD. For CIFAR, we set the mini-batch size to 64, epochs
to 160 with a weight decay of 0.0015 and Nesterov momen-
tum [Sutskever et al., 2013] of 0.9. For ILSVRC-2012, we
use the pre-trained ResNet-50 released by Pytorch. We train
MobileNet for 60 epochs with a weight decay of 0.0015. The
pruning ratio is determined by two factors, one is a percentile
among M-std and the other is the threshold for SFS, i.e. 40%
for DFS, 0.85 for SFS.

4.2 Compared Algorithms
• L1-Prune1 [Li et al., 2016] uses the l1-norm of filters as

the important measurement.
• ThiNet [Luo et al., 2017] is a feature-map based method

that selects the filter subset reconstructing the next layer.
• N-Slim [Liu et al., 2017] gets the importance of each

filter during the training process according to the batch-
normalization scaling factors.

• PFGM [He et al., 2019] prunes redundant filters utilizing
geometric correlation among filters in the same layer.

4.3 Experimental Results
Single branch network. We first prune the trained VG-
GNet on CIFAR10 and CIFAR100. We compare the perfor-
mance of our method with the state-of-the-art methods. Ta-
ble 1 lists the results of the classification accuracy, the reduc-
tion of parameters, and the decrease in FLOPs, respectively.
Although all approaches can reduce the model size with lim-
ited accuracy drop, our method has the highest compression

1The result of L1-Prune is obtained from [Liu et al., 2017].

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2623



Method Acc.(%) FLOPs ↓(%) Para.↓(%)
ResNet 76.15 0.0 0.0
ThiNet 72.04 40.5 33.7
PFGM ∗ 75.03 42.2 39.6
Ours 71.05 40.4 47.8

Table 3: Comparisons of pruning ResNet on ILSVRC-2012.

Dataset Method Acc.(%) FLOPs ↓(%) Para.↓(%)

C10 MobileNet 93.71 0.0 0.0
R1 93.91 47.1 66.7
R2 93.86 65.8 80.7
R3 93.17 83.7 91.6

C100 MobileNet 74.19 0.0 0.0
R1 75.40 29.3 43.8
R2 74.77 47.8 58.3
R3 72.73 62.6 68.3

ILSVRC MobileNet 68.43 0.0 0.0
R1 67.54 37.06 40.18
R2 61.20 61.49 67.13

Table 4: Performance of pruned MobileNet on CIFAR and ILSVRC-
2012. Rk denotes different compression step with β is 25% quantile
of M-std and ν=0.85. R1 is the pruning based on the pre-trained
model. R2 prunes the result of R1. R3 is the final pruning based on
result of R2.

ratio. The scalar factors used in N-Slim are not powerful
enough for compression since it does not consider relation-
ships among features. Although PFGM can achieve satisfac-
tory accuracy, it has low pruning ratio, since it neglects the
feature diversity. On the other hand, our method considers
both the diversity and similarity of features maps, which ben-
efits the performance improvements of our method over other
methods. When pruning 90.7% of parameters and 56.3% of
FLOPs of VGGNet trained on CIFAR 10, our method surpris-
ingly increases the accuracy by 0.31%. One possible reason
is that our method reduces the unnecessary parameters that
cause the overfitting of the original model.

Multiple branch network. We prune PreResNet-164 on
CIFAR and ResNet-50 on ILSVRC-2012, respectively. The
results are reported in Table 2 and Table 3. From the results,
we can observe that even with multiple branch networks, our
method can still compress the model to a satisfactory extent.
After SFS and DFS, our method reduces up to 40% of param-
eters and 56.1% of FLOPs for PreResNet on CIFAR 10 while
maintaining the accuracy as high as 94.93%.

Compact designed network. To further illustrate the gen-
eralization of our method, we prune MobileNet on both CI-
FAR and ILSVRC-2012 datasets. The performance of differ-
ent prune ratios is given in Table 4. With the increase of the
compression ratio, the accuracy of the pruned model drops
gradually. Although the pruned model reduces 91.6% of pa-
rameters and 83.7% FLOPs, its accuracy as high as 93.17%
on CIFAR 10.

The efficiency of feature map selection. The purpose of
our two feature selections is to extract more diverse and less
similar feature maps. We prune a VGGNet trained on CI-

Figure 5: Distributions of M-std and M-corr of all feature maps in
pruned VGGNet trained on CIFAR 10 dataset.

Figure 6: A demonstration of pruned and remained feature maps.

FAR 10 and plot the statistic information of feature maps in
Figure 5. It can be observed that most M-std values of feature
maps are concentrated between 0.1 and 0.2, which is higher
than the original model (i.e. 0.05 in Figure 2a). In addition,
the M-corr values are almost smaller than 0.3, which is much
lower compared with the original model (i.e. Figure 2b).
These indicate the remained features have higher diversities
and fewer similarities. Although there still exist feature maps
with M-std values smaller than 0.05 and M-corr values big-
ger than 0.5, their percentage is quite small. As a result, these
feature maps can keep the generalization ability of the model.

Visualization. We further visualize the pruned and re-
mained feature maps to show the effectiveness of our ap-
proach. Figure 6 shows part of the feature maps of the first
convolutional layer in ResNet-50 trained on LSVRC-2012.
Each feature map in Figure 6b expresses limited information
variance (e.g. ambiguous or no texture) compared with Fig-
ure 6c. The feature maps in Figure 6d are nearly the same as
Figure 6e. Therefore, SFS prunes one of them to keep fewer
similar features.

5 Conclusion
In this study, we investigate the statistical information of fea-
ture maps in CNN for analyzing the diversity and similar-
ity. We propose two feature map selections, namely DFS and
SFS, for removing redundant filters. The pruning method we
proposed can significantly compress the size of CNNs and de-
crease the computational cost with almost no accuracy loss.
To further validate the effectiveness of our proposed method,
different pruning ratio strategies can be evaluated in the fu-
ture. We will also explore more tasks, such as object detec-
tion and text classification.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2624



References
[Ba and Caruana, 2014] Jimmy Ba and Rich Caruana. Do

deep nets really need to be deep? In Advances in neural
information processing systems, pages 2654–2662, 2014.

[Galton, 1886] Francis Galton. Regression towards medi-
ocrity in hereditary stature. The Journal of the Anthropo-
logical Institute of Great Britain and Ireland, 15:246–263,
1886.

[Girshick et al., 2014] Ross Girshick, Jeff Donahue, Trevor
Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 580–587, 2014.

[Guo et al., 2016] Yiwen Guo, Anbang Yao, and Yurong
Chen. Dynamic network surgery for efficient dnns. In Ad-
vances In Neural Information Processing Systems, pages
1379–1387, 2016.

[Han et al., 2015] Song Han, Jeff Pool, John Tran, and
William Dally. Learning both weights and connections for
efficient neural network. In Advances in neural informa-
tion processing systems, pages 1135–1143, 2015.

[He et al., 2016a] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[He et al., 2016b] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Identity mappings in deep residual net-
works. In European conference on computer vision, pages
630–645. Springer, 2016.

[He et al., 2017] Yihui He, Xiangyu Zhang, and Jian Sun.
Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 1389–1397, 2017.

[He et al., 2018] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang,
Li-Jia Li, and Song Han. Amc: Automl for model com-
pression and acceleration on mobile devices. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 784–800, 2018.

[He et al., 2019] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu,
and Yi Yang. Filter pruning via geometric median for deep
convolutional neural networks acceleration. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 4340–4349, 2019.

[Howard et al., 2017] Andrew G Howard, Menglong Zhu,
Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mo-
bilenets: Efficient convolutional neural networks for mo-
bile vision applications. arXiv preprint arXiv:1704.04861,
2017.

[Hu et al., 2016] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and
Chi-Keung Tang. Network trimming: A data-driven neu-
ron pruning approach towards efficient deep architectures.
CoRR, abs/1607.03250, 2016.

[Kim, 2014] Yoon Kim. Convolutional neural networks for
sentence classification. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1746–1751, Doha, Qatar, Octo-
ber 2014. Association for Computational Linguistics.

[Krizhevsky et al., 2009] Alex Krizhevsky, Geoffrey Hinton,
et al. Learning multiple layers of features from tiny im-
ages. Technical report, Citeseer, 2009.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural in-
formation processing systems, pages 1097–1105, 2012.

[LeCun et al., 1990] Yann LeCun, John S Denker, and
Sara A Solla. Optimal brain damage. In Advances in neu-
ral information processing systems, pages 598–605, 1990.

[Li et al., 2016] Hao Li, Asim Kadav, Igor Durdanovic,
Hanan Samet, and Hans Peter Graf. Pruning filters for ef-
ficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[Liu et al., 2017] Zhuang Liu, Jianguo Li, Zhiqiang Shen,
Gao Huang, Shoumeng Yan, and Changshui Zhang.
Learning efficient convolutional networks through net-
work slimming. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2736–2744, 2017.

[Liu et al., 2018] Zhuang Liu, Mingjie Sun, Tinghui Zhou,
Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018.

[Liu et al., 2019] Zechun Liu, Haoyuan Mu, Xiangyu
Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and
Jian Sun. Metapruning: Meta learning for automatic
neural network channel pruning. In Proceedings of the
IEEE International Conference on Computer Vision, pages
3296–3305, 2019.

[Luo and Wu, 2018] Jian-Hao Luo and Jianxin Wu. Au-
topruner: An end-to-end trainable filter pruning method
for efficient deep model inference. arXiv preprint
arXiv:1805.08941, 2018.

[Luo et al., 2017] Jian-Hao Luo, Jianxin Wu, and Weiyao
Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 5058–5066,
2017.

[Sutskever et al., 2013] Ilya Sutskever, James Martens,
George Dahl, and Geoffrey Hinton. On the importance
of initialization and momentum in deep learning. In
International conference on machine learning, pages
1139–1147, 2013.

[Wang et al., 2019] Wenxiao Wang, Cong Fu, Jishun Guo,
Deng Cai, and Xiaofei He. Cop: Customized deep model
compression via regularized correlation-based filter-level
pruning. In International Joint Conference on Artificial
Intelligence, volume 2019, 2019.

[Yamamoto and Maeno, 2018] Kohei Yamamoto and Kurato
Maeno. Pcas: Pruning channels with attention statis-
tics for deep network compression. arXiv preprint
arXiv:1806.05382, 2018.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2625


	Introduction
	Related Works
	Methodology
	Preliminaries
	Diversity and Similarity in Feature Maps
	Filter Pruning
	Pruning for Multiple Branch Networks

	Experiments
	Experimental Setting
	Compared Algorithms
	Experimental Results

	Conclusion

