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Abstract

Quantification is a task similar to classification in
the sense that it learns from a labeled training set.
However, quantification is not interested in predict-
ing the class of each observation, but rather mea-
sure the class distribution in the test set. The com-
munity has developed performance measures and
experimental setups tailored to quantification tasks.
Nonetheless, we argue that a critical variable, the
size of the test sets, remains ignored. Such dis-
regard has three main detrimental effects. First,
it implicitly assumes that quantifiers will perform
equally well for different test set sizes. Second,
it increases the risk of cherry-picking by selecting
a test set size for which a particular proposal per-
forms best. Finally, it disregards the importance
of designing methods that are suitable for differ-
ent test set sizes. We discuss these issues with the
support of one of the broadest experimental evalua-
tions ever performed, with three main outcomes. (7)
We empirically demonstrate the importance of the
test set size to assess quantifiers. (ii) We show that
current quantifiers generally have a mediocre per-
formance on the smallest test sets. (iif) We propose
a meta-learning scheme to select the best quantifier
based on the test size that can outperform the best
single quantification method.

1 Introduction

Quantification is a recently proposed Data Mining task to es-
timate the class distribution in a test set. This task has found
numerous applications where the primary interest is not in
the classification of individuals, but rather the understand-
ing of the behavior of groups. Typical uses of quantifica-
tion are, for instance, sentiment analysis when we want to
estimate the proportion of positive tweets about a particular
product [Gonzdlez et al., 2017b]; quantify the marine ecology
from images [Beijbom er al., 2015]; or, mosquito surveillance
when we need to calculate the number of disease-carrying
mosquitoes captured by an insect trap [Chen et al., 2014;
Silva et al., 2015; Maletzke et al., 2018b].

Quantification and classification are closely related areas.
The simplest quantification method, classify and count (CC),
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merely uses the outcome of a classifier to count how many
objects belong to each class. Nevertheless, classification and
quantification have fundamental differences, the main one
being that classifiers provide predictions for individual data
points, whereas quantifiers issue predictions for sets with sev-
eral instances.

Therefore, we should consider such differences when de-
signing and evaluating quantification methods. In particular,
the size of the test set is a characteristic that can affect the
performance of quantification methods. In classification, the
relationship between the training set size and error rate is a re-
curring theme of investigation of practitioners and theorists,
being the focal point of the statistical learning theory [Vap-
nik, 2013]. As a consequence, quantification methods that
adopt classifiers in intermediate steps naturally inherits this
relationship. Therefore, they can benefit from the same theo-
retical and practical findings in literature. Conversely, the size
of the test set is usually not a point of concern for classifica-
tion. However, the size of the test set influences the quality of
a quantifier and must be regarded in the design, analysis and
evaluation of new quantification methods.

Thus far, the quantification community has mostly ignored
the importance of test set sizes. Unfortunately, such disregard
has detrimental effects on the quality of the research in the
area. First, it implicitly assumes that a method that performs
well for large test sets will perform equally well for small
test sets. Such an assumption can be invalidated by a sim-
ple experiment as the one shown in Figure 1. In this figure,
we summarize a comparison between five well-known quan-
tifiers on several benchmark datasets with test set sizes of 500
instances (A) and ten instances (B). The ranking of the algo-
rithms has significantly changed depending on the size of the
test set, even though all other variables remained unchanged.

Second, not explicitly acknowledging the effects of vary-
ing test sample size increases the chances of cherry picking
in quantification research. For instance, a paper that proposes
a new quantification method that relies on estimating several
statistics from the test set may deliberately choose to evaluate
the proposal only on large test sets, where the method bene-
fits the most: with more data, there is a higher chance of ac-
curately estimating the required statistics, making the method
more competitive.

Finally, by ignoring the importance of the test sample size,
we disregard this variable in the design of quantification al-
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Figure 1: Nemenyi’s post hoc test for mean absolute quantification
error. Groups of methods which are not significantly different at
p < 0.05 are connected.

gorithms. As different applications may pose distinct require-
ments, the community should be focusing on proposing meth-
ods that perform well on a variety of test sets sizes. From
our experiments, we observe that several approaches perform
well for larger test sets with more than 100 instances. On the
other hand, for tiny test sets of 10 data points, only two strate-
gies (Median Sweep and SORD) outperformed the arguably
naive and frequently criticized Classify and Count algorithm.
In our opinion, this is evidence that the community has given
little attention to this setting, and further research needs to be
developed to propose accurate methods for small test sets.

Although the smallest test sets are the most challenging
to provide accurate results for, we do not think the commu-
nity should entirely focus on them. We believe that most ap-
plications require quantifying sets of varying sizes. For in-
stance, for the sentiment analysis and insect counting applica-
tions mentioned before, an important outcome is the number
of positive tweets/captured insects over different periods of
time, such as the last hour, day, and week. This setting leads
to the operation of quantification methods on different test
set sizes. We explore this idea by proposing a simple meta-
learning strategy that selects the quantification algorithm ac-
cording to the size of the test set at hand.

Our objective is to call the community attention to the im-
portance of the test set size when designing and evaluating
quantification methods. To support our claims, we define
a new experimental design to evaluate quantification algo-
rithms. To the best of our knowledge, we perform the most
comprehensible evaluation of quantification methods in liter-
ature. We compare 12 quantification methods representative
of different counting paradigms on 13 benchmark datasets,
with 14 test set sizes and 100 class distributions.

Our main contributions are: (i) we empirically demonstrate
the importance of the test set size to assess the performance
of quantification methods; (i7) we show that current quantifi-
cation methods generally have a mediocre performance on
the smallest test sets; and (iif) we propose a meta-learning
scheme to select the best quantifier based on the test set size
that can outperform the best single quantification method.

At last, we advocate that, for now on, quantification re-
search should use the experimental setup proposed in this
paper to evaluate their proposals and compare to the state-
of-the-art. To support these comparisons, we created a pa-
per website! with all data, code and detailed results so that

Isites.google.com/site/andregustavom/research/mlq- framework
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other researchers can directly use our results when evaluating
newly-proposed methods.

This paper is organized as follows: Section 2 provides the
necessary background information on the quantification task;
Section 3 summarizes the relevant literature; Section 4 de-
scribes the experimental setup proposed in this paper; Sec-
tion 5 presents our meta-learning framework for recommend-
ing quantifiers according to each test set; Section 6 discusses
the experimental setup and Section 7 presents the empiri-
cal results and discussion of a comprehensible evaluation
of quantification methods; Finally, Section 8 concludes this
work and present directions for future work.

2 Background

Consider the labeled set D = {(Z1,41),..., (Zn,yn)}, in
which each example Z; € X’ is a vector in the m-dimensional
feature space X, and y; € C = {c1,..., ¢y} is its respective
class label. We can formally define a quantifier as a model
that predicts the prevalence of each class in a sample accord-
ing to the following equation:

Q:8Y —0,1]*

where S% denotes the universe of possible samples from X.
Given a specific sample S € S*, the quantifier outputs a
vector, ¢(S) = [p1(S),...,Pr(S)], that estimates the prior
probability for each respective class cy, . . ., cx, subject to the
constraint Zle pi(S) = 1. A good quantifier is one that
produces a ¢(.S) that reasonably approximates the true class
ratios ¢ = [p1(S),...,pr(S)] of the probability distribution
from which S was sampled.

All interesting quantification problems undergo a class dis-
tribution drift from training to test data. Otherwise, we could
use the class ratios from the training set to predict the dis-
tribution of the test sets. For our previous examples, senti-
ment analysis and insect counting, the class distribution in
the training set is not a suitable predictor of the class ratio in
newly observed data. More importantly, we expect the class
distribution to change on multiple occasions over time. On
sentiment analysis, the ratio of positive comments can vary
with the development of events that affect public opinion or
even due to the work of automated trolls commanded by a bad
actor. In the insect quantification problem, both relative and
absolute numbers of captured insects for each species vary
according to the local population, circadian rhythm and am-
bient factors such as temperature [Maletzke er al., 2018al.

3 Related Work

In the last decade, several algorithms for quantification have
been proposed. Although they share the same general set-
ting and objective, their introduction by different communi-
ties led to different names for the quantification task: preva-
lence estimation [Barranquero et al., 20131, class prior esti-
mation [Chan and Ng, 2006], and class distribution estima-
tion [Gonzdlez-Castro et al., 2013].

Gonzdlez et al. [2017a] organized most of the prior work
according to similarities between algorithms, resulting in a
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taxonomy of quantification methods described by three dif-
ferent groups:

I. Classify, Count, and Correct: methods that classify
each instance firstly and then count how many belong
to each class. Methods that apply any correction to their
predictions are included in this group as well;

1. Adapting traditional classification algorithms: algo-
rithms that modify the mechanics of traditional classifi-
cation learning methods so that they become quantifiers;

III. Distribution matching: algorithms that parametrically
model the training distribution and later search the pa-
rameters that produce the best match against the test set.

Experiments in quantification are usually more involved
than those in classification. The evaluation process is data
hungry since it requires measuring the performance on entire
samples with several data points. Moreover, we need to re-
peat the experiment to obtain confidence intervals, collect the
test samples from a larger pool to guarantee some diversity
among the samples, and vary the class distribution to simu-
late the expected data distribution variability.

Due to the similarity between the quantification and clas-
sification tasks, quantification experiments are typically con-
ducted using classification datasets. The experimental setup
usually follows these two steps: (i) each dataset is divided
into two subsets using stratified sampling, resulting in train-
ing and test sets; and (if) given the test set with np. data
points, a collection of samples with length mp, < npe is
extracted varying the class distribution randomly or accord-
ing to a predefined range.

This approach allows simulating a range of class distri-
bution drifts, and has been used by several authors, includ-
ing Forman et al. [2005], Bella et al. [2010], Barranquero et
al. [2013], Milli et al. [2013], Reis et al. [2018a] and Pérez-
Gillego et al., [2019], and Maletzke et al. [2019].

However, to the best of our knowledge, every paper in
quantification research uses a fixed and arbitrary mr.. The
only exception is the paper of Maletzke et al. [2019]. In that
paper, the authors are interested in characterizing the perfor-
mance of a smaller set of quantification methods and under-
stand the importance of their internal parameters.

4 Designing experiments in quantification

The experimental design used in the vast majority of quantifi-
cation papers ignore the influence of the test set size. In this
paper, we argue this is a severe flaw since the performance of
quantifiers fluctuates according to this variable. Identifying
the performance in a single test sample size does not provide
enough information to characterize the behavior of a method.
For this reason, we include an additional step into the stan-
dard evaluation procedure so that we can assess the perfor-
mance on distinct test sizes, in addition to varied class distri-
butions. Algorithm 1 describes the steps to generate samples
for the evaluation.

In Algorithm 1, T§¢ C T includes all observations from
T, that belong to class ¢;. The function getSample returns
a sample, given the number of observations and class distri-
bution, using the examples from the 7,.. For most datasets,
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Algorithm 1: Generating test samples

Input: Test set T,
Output: Set of test samples St
Ss  {Sminy ..., min(L, [T, ..., |T*|)} {Sample
sizes, Smin > 1 and L is a hard limit}
Pregass < {[pts Pty ooy Y, oo, Y} {N class
distributions }
Rsampie < R {Replication}
for i <— 1, length(S;) do
for j < 1, length(Pre4ss) do
for k <+ 1, Ryampie do
St, < Sr. U {getSample(T., Ss[i], Preiass[i])}
end for
end for
end for
return St ;

due to limited data, different samples can share observations.
However, one observation should not appear more than once
in a same sample.

S Meta-learning Quantification

We argue that the best quantification algorithm for large sets
may not be the best method for small sets, and vice versa. We
later empirically confirm this hypothesis. Thus, two strate-
gies could be applied to improve our evaluation procedure.
First, the proposal of new quantifiers that can perform well
independently of the size of the test set. Second, a mecha-
nism to autonomously select the quantifier, from a group of
options, that is the most adequate for a given test set. In this
paper, we adopt the latter strategy: our proposal is not a new
quantification algorithm by itself, but rather a framework that
recommends quantifiers according to each test set. To achieve
this effect, we employ an algorithm recommendation method
with meta-learning. As stated by Pavel et al., [2009], meta-
learning systems are used to indicate which algorithm should
be used to reach the best possible results for each individual
task, according to its particularities.

Our framework, named Meta-Learning Quantification
(MLQ), applies meta-learning concepts to describe each
problem and learn a recommender that predicts which quan-
tifier should be used for each test set. Figure 2 shows the
architecture of our framework.

First, we gather several datasets and split each one into two
halves (training and test halves). The training half is used to
learn all quantifiers that can be recommended for quantifying
sets, which are extracted from the testing half. We also use
the training half to learn our recommender, following path
two in Figure 2. Then, we break up the training half into two
new halves, which are the training and validation sets for the
meta-learning procedure. From the validation half, we ex-
tract several test sets of different sizes and class distributions.
For each one, we extract metafeatures and measure the per-
formance of all quantifiers. As a result, a tuple composed
of metafeatures and the identification of the best quantifier is
recorded in a metatable (item four in Figure 2). We repeat
this process several times to get a vast diversity of tuples. Af-
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Figure 2: Framework architecture for quantifiers recommendation.

ter that, this metatable is used to induce our recommendation
model, which is a classifier where the classes represent dif-
ferent quantification algorithms.

Meta-learning literature reports several metafeatures to de-
scribe characteristics of a dataset or a group of data points,
such as information theory and statistics measures [Lemke et
al., 2015]. In our framework, in addition to the test size it-
self, as a numerical feature, we use simple statistic measures
and the distance reported by the DyS framework when quan-
tifying [Maletzke et al., 2019]. The statistics measures used
were: coefficient of variation, kurtosis, skewness, and corre-
lation. The average value of all attributes was calculated to
describe a set of observation points.

Finally, we follow the path three (Figure 2) to build the
final quantifiers that can be chosen by the recommender in the
test phase. Path five represents the experimental evaluation,
described in the next section.

6 Experimental Setup

In this section, we describe a set of experiments with several
well-known quantification algorithms, aiming to show the in-
fluence of varying test set size on their performance. Table 1
presents all binary quantifiers evaluated in our experiments.
Methods such as CC, ACC, T50, X, MAX, and MS were pro-
posed by Forman [2005; 2006]. The PACC method or also
named Scaled Probability Average (SPA) was proposed by
Bella et al., [2010]. Quantification trees were proposed by
Milli et al., [2013] and EMQ by Saerens et al., [2002]. Fi-
nally, both distribution matching methods, HDy and DyS,
were proposed by Gonzéles-Castro et al., [2013] and Malet-
zke et al., [2019], respectively.

DyS framework was evaluated including the top five sim-
ilarity functions according to Maletzke et al. [2019]: ORD,
Sample ORD (SORD), Probabilistic Symmetric (PS), Jensen
Difference (JD), and Topsge (TS). We report the positive class
ratio that is the median for a varying number of bins, from 2
to 20 with increments of 2, following the findings.

We must note that, we only used binary quantification
datasets. This allowed us to test a wider range of algorithms
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. Taxonomy
Quantifier Acronym Group
Classify and Count CcC
Adjust Classify and Count ACC
Probabilistic Classify pPCC
Probabilistic Adjust Classify and Count PACC
Threshold Selection Method

Set the decision threshold where tpr = 50% T50 I

Set the decision threshold where (1 — 1pr) = fpr X

Set the' de'cmon threshold where tpr — fpr MAX

is maximized

Estimate tpr and fpr for several thresholds,

. f MS

returning the median of them
Quantification Trees QT 11
Expectation Maximization Quantification EMQ
Distribution matching with Hellinger Distance HDy I
Mixture Model Framework DyS

Table 1: Quantifiers evaluated.

and simplify the design of experimental evaluation.

However, limiting our setup to binary quantification does
not disqualify the point we are making regarding the rele-
vance of test sample size. Indeed, if this variable affects bi-
nary quantification, it stands to reason that it also affects mul-
ticlass quantification.

We uniformly split each dataset into two parts: training
and test. With the training part, we performed 10-fold cross-
validation to obtain the classification scores used by the mix-
ture models that follow the DyS framework, as well as to cal-
culate the #pr and fpr performance statistics used by ACC and
its variations. The full training half was also used to train a
single scorer that was applied on the individual data points in
the test half, to obtain a set of test scores. We produced all
scores using Random Forests with 200 trees. Test samples
were obtained from the test part according to Algorithm 1.
We also use Random Forests to induce the recommendation
model for MLQ framework.

We varied the test set size from 10 to 100 with increments
of 10 data points, and from 100 to 500 with increases of 100.
For each test set size, we varied the positive class proportion
from 0% to 100% with increments of 1%. We execute 10 runs
for each pair of test set size and class distribution.

As the time complexity of SORD grows linearithmic with
the total number of observations, we undersampled training
scores to 1,000 per class, whenever there were more than
that. EMQ has used five iterations as a stopping condition.

We measured the performance of quantifiers in our exper-
iments using the Mean Absolute Error (MAE) [Sebastiani,
2019]. MAE is the average of absolute differences between
true (¢) and predicted (§) quantification for a set of classes
C. The performances were compared using the Friedman test
with 95% confidence level and Nemenyi post hoc test.

Table 2 presents a brief description of the datasets
used in our experiments obtained from UCI [Dheeru and
Karra Taniskidou, 20171, OpenML [Vanschoren et al., 2013],
and Reis [dos Reis et al., 2018b] repositories. Specific cita-
tions are requested for HTRU2 [Lyon et al., 2016], Mozilla4
[Koru et al., 2007], Nomao [Candillier and Lemaire, 2012],
and Occupancy Detection [Candanedo and Feldheim, 2016].

A couple of observations about the datasets are due. First,
Wine Type dataset is similar to Wine Quality. However, we
want to differentiate between white and red wines, rather than
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Dataset Size Features ~ Repository
AedesSex 24,000 27 Reis
Anuran Calls 6,585 22 ucCt
ArabicDigit 8,800 27 ucI
BNG (vote) 39,366 9 OpenML
Spambase 4,601 57 UcCI
Handwritten-QG 4,014 63 Reis
Wine Type 6,497 12 UCI
Wine Quality 6,497 12 UCI
HTRU2 17,898 8 UCI
Letter Recognition 20,000 16 UCI
Mozillad 15,545 5 OpenML
Nomao 34,465 118 OpenML
Occupancy Detection 20,560 5 UCI

Table 2: Datasets description.

the wine quality. Second, ArabicDigit is a preprocessed ver-
sion of the original so that all examples have the same number
of features [dos Reis et al., 2018b], and the objective is to pre-
dict the sex of the speaker rather than which digit is spoken.

7 Experimental Evaluation

We open this section by showing the quantification results for
all algorithms and datasets, considering only our largest test
set size of 500 observation points. Figure 3 shows the critical
difference diagram.

DyS+PS - HDy-LP

Dys+Ts —! T50

DyS+JD ACC
SORD cc

DyS+ORD ———————— PACC

MAX Ms

X PCC
EMQ art

Figure 3: Nemenyi’s post hoc test for mean absolute quantification
error. Test sample composed of 500 cases. Groups of methods which
are not significantly different at p < 0.05 are connected.

According to the results, algorithms based on distribution
matching (IIT - Taxonomic Group) achieve the best perfor-
mance. Particularly, four instances of the DyS framework are
among the top five quantifiers. These results are not surpris-
ing, given the nature of these quantifiers, which are benefited
by test sets with a large number of instances, allowing them
to model the data distribution precisely.

These results are a typical summary of the experimental
results we can find in quantification literature. In short, a set
of algorithms compared over a collection of datasets for an
arbitrary test set size. However, as discussed in Section 1,
such results would only be representative of the whole spec-
trum of test set sizes if the performance of the quantification
algorithms were independent of such a variable.

To illustrate that this assumption does not hold, Figure 4
shows the mean absolute error for all test set sizes and class
distributions, for the best-ranked algorithm according to the
previous results in Figure 3. Due to lack of space, our
supplemental material website contains figures for all other
algorithms'.
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Figure 4: Mean absolute error variability for test set size and class
distribution variability for DyS+PS.

Figure 4 exhibits small errors across all class distributions
for test set sizes with more than 100 instances. However, for
smaller test sets, with less than 100 cases, the errors tend to
increase quickly. A worrisome aspect of these results is the
fact that the literature on quantification has mostly ignored
small test sets in their evaluations.

Motivated by our initial results, we reapply the same statis-
tical analysis for all algorithms and a tiny test set size of ten
observations. Figure 5 shows the critical difference diagram
for all quantification approaches. The rank of the algorithms
has significantly changed compared to the ranking built with
test sets of 500 observations.

Ms — 50
SORD ———————— DyS+JD
cc— Dys+TS
EMQ——————— PACC
MAX ——————————————— DyS+PS
x— PCC
ACC HDy-LP
DyS+ORD at

Figure 5: Nemenyi’s post hoc test for mean absolute quantification
error. Test sample composed of 10 cases. Groups of methods which
are not significantly different at p < 0.05 are connected.

For large test set sizes, instances of the framework DyS
produced the best results followed by MAX and X, which
are algorithms from threshold selection family (I - Taxonomic
Group). We also note that HDy-LP performed poorly, albeit
it being similar to DyS. This behavior was reported by Malet-
zke et al. [2019] as well, where the authors noted the influence
of the number of bins used to describe score distributions.

Conversely, MS was the best-ranked algorithm for the
smallest test set size followed by SORD (which is also one
instance of DyS), and CC. In the literature, MS is reported as
one of the best quantification algorithms while the CC is con-
sidered the naive strategy and frequently regarded as a base-
line. We also note that EMQ performs better in small test
sets than in large ones. On the other hand, PCC, PACC, and
QT perform poorly in all scenarios (large and small test set
sizes). For QT algorithm, we used source code provided by
the authors [Milli et al., 2013].

Moreover, SORD and DyS+ORD were the only instances
of DyS with no statistical difference against MS when the
test set size is composed of ten cases. The explanation is that
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ORD is less affected by sparse histograms than other distance
functions, since it can compare misaligned histogram bins.
SORD does not use histograms at all.

Another interesting finding is that there is statistical dif-
ference between DyS+PS and MS in both scenarios, even
though DyS+PS was the best performing algorithm in one
setting, and MS was the best in the other one. Nevertheless,
we must keep in mind that these results were obtained for
several datasets from different domains. Each dataset can be
analyzed separately. For the sake of clarity, we include addi-
tional results in our supplemental material website!.

Our results demonstrate that the experimental evaluations
conducted until now by the literature have an incomplete
analysis, since they neglect a relevant aspect of real-world
problems. Consequently, current analyses provide inaccurate
recommendations for quantification tasks.

In our subsequent analysis, we consider all quantification
algorithms and all test set sizes. Figure 6 shows the ranking
of all algorithms. Instances of the framework DyS perform
better than other methods, except when it is using ORD as
similarity function. As previously said, DyS+ORD, differ-
ently from the other instances, is less affected by sparseness,
which seems less relevant for large test sets.

0O o ®» » g 0 X X 0 g 0 o 0 o O &
x 2 P & > x < O P 0o 4 0 = O O©
o % & & W O = < L g a
(PN - + [a]

a a a Q T

o
Quantification algorithms

Figure 6: Aggregation of several rank positions for all quantification
algorithms. Test sample size varied from 10 to 500.

The statistical analysis reveals that four of the five DyS in-
stances evaluated are ranked as top quantifiers when we vary
the test set size. SORD is the best quantifier, but it only per-
forms better than HDy-LP, PACC, MS, PCC, and QT with a
statistical difference (p — value < 0.05).

At last, we apply our proposed meta-learning framework,
MLQ, to select one of the following quantifiers: (i) MS,
which is the top-ranked for small test sets (Figure 5); (ii) DyS-
PS, the best ranked on large test set size (Figure 3); and (iii)
SORD, which has performed better than others when test set
size has varied (Figure 6). Figure 7 shows the ranking of all
algorithms when the test set size varies, including the MLQ.

Our meta-learning framework improves on the best quan-
tifiers and outperform them in a more broad scenario, where
test sample size varies. This achievement corroborates with
our initial hypothesis. We have argued that the test set size
should be considered in the experimental evaluation of quan-
tifiers, guiding practitioners to make the best choice regarding
quantification algorithm for each domain.

Although MLQ has decreased quantification errors when
test set size varies, it is unclear how helpful was the meta-
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Figure 7: Aggregation of several rank positions for all quantifiers,
including MLQ framework. Test sample size varied from 10 to 500.

learning scheme. Ultimately, we fed the method with overtly
simple metafeatures and the best quantifiers for each sce-
nario. To obtain a more conclusive analysis, we investigate
the real contribution of our meta-learning scheme and how
far the MLQ results are from the ideal scenario. We define
the fopline (TOP) and baseline (RND) schemes. The topline
scheme selects the best quantifier for each test set and the
baseline makes this selection randomly. Figure 8 shows the
mean absolute error for MLQ, fopline, and baseline schemes.

82 MLQ

MAE

} ﬁﬁﬁ ﬁéﬁ ﬁ% b, B, Sl d
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Test set size

Figure 8: Mean absolute quantification error of MLQ, TOP, and
RND. For test set varied from 10 to 500.

As expected the fopline (TOP) performs better than our
MLQ and the baseline. Our proposal outperforms the base-
line, indicating that our meta-learning scheme learned how
to properly select a quantification model, even though it can
potentially be improved to get closer to the fopline.

8 Conclusion

This paper is the first to question the relevance of the test set
size in the design and evaluation of quantification methods,
showing that a newly-proposed algorithm will be incomplete
without analyzing its performance with different test set sizes.
We also propose a simple strategy that uses meta-learning to
select the best quantifier. Our proposal uses the test set size
to perform a recommendation and can outperform the best
single quantification method. Our future efforts will deal with
the impact of the score quality on quantification methods.
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