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Abstract
Machine teaching studies the interaction between a
teacher and a student/learner where the teacher se-
lects training examples for the learner to learn a spe-
cific task. The typical assumption is that the teacher
has perfect knowledge of the task—this knowledge
comprises knowing the desired learning target, hav-
ing the exact task representation used by the learner,
and knowing the parameters capturing the learn-
ing dynamics of the learner. Inspired by real-world
applications of machine teaching in education, we
consider the setting where teacher’s knowledge is
limited and noisy, and the key research question we
study is the following: When does a teacher suc-
ceed or fail in effectively teaching a learner using its
imperfect knowledge? We answer this question by
showing connections to how imperfect knowledge
affects the teacher’s solution of the corresponding
machine teaching problem when constructing opti-
mal teaching sets. Our results have important impli-
cations for designing robust teaching algorithms for
real-world applications.

1 Introduction
The field of machine teaching studies the interaction be-
tween a teacher and a student/learner where the teacher’s
objective is to select a short sequence of examples for the
learner to learn a specific task [Goldman and Kearns, 1995;
Zhu et al., 2018]. An important application is in education
where the learner is a human student, and the teacher is a
computerized intelligent tutoring system (ITS) that selects a
curriculum of learning material for the student [Zhu, 2015;
Rafferty et al., 2016; Sen et al., 2018; Hunziker et al., 2019].
Another concrete application is the data poisoning (training-
time) adversarial attacks where the learner is a machine
learning (ML) system, and the teacher is a hacking algo-
rithm that poisons the training data to maliciously change
the learner’s output to a desired target [Mei and Zhu, 2015;
Zhu, 2018]. Regardless of the application and the teacher’s
intentions, machine teaching provides a formal model of quan-
tifying the teaching effort and an algorithmic framework for
∗Authors contributed equally to this work.

deriving an optimized curriculum of material to have maxi-
mum influence on the learner with minimal effort. Considering
applications in educational settings, the problem of designing
an optimized curriculum is of utmost importance because it
leads to more effective learning, increased engagement, and
reduced drop-out of students [Archambault et al., 2009].

The key issue in applying machine teaching algorithms
to real-world applications is that these algorithms (and the
corresponding theoretical guarantees) often make unrealis-
tic assumptions about the teacher’s knowledge of the learner
and the task. It is typically assumed that the teacher has
perfect knowledge of the following: (i) the learner, e.g., a
computational model of the learning dynamics, and param-
eters capturing initial knowledge and learning rate, (ii) task
specification, e.g., a complete ground truth data and represen-
tation of the task as used by the learner. Assuming such a
powerful teacher might be meaningful for deriving theoreti-
cal guarantees (e.g., computing information-theoretic lower
bounds of teaching complexity [Goldman and Kearns, 1995;
Zilles et al., 2011; Chen et al., 2018b; Mansouri et al., 2019])
or for understanding the vulnerability of an ML system (e.g.,
against a white-box poisoning attack [Zhang et al., 2018;
Ma et al., 2019]). However, for applications in educa-
tion where the student is a human learner, this assumption
is clearly unrealistic: learning dynamics and task specifi-
cations are usually obtained from domain expertise or in-
ferred from historical student data (see [Singla et al., 2014;
Piech et al., 2015; Settles and Meeder, 2016; Sen et al., 2018;
Hunziker et al., 2019]), and this information is often incom-
plete and noisy.

1.1 Our Approach and Contributions
Ironically, while the promise of machine teaching algorithms
lies in providing a near-optimal teaching curriculum with guar-
anteed performance, the fundamental assumptions required by
these algorithms are clearly violated in practice. The main re-
search question we study in this paper is the following: When
does a teacher succeed or fail in effectively teaching a learner
using its imperfect knowledge?

To answer this question, we require a formal specification
of the task, a learner model, and a concrete teaching algorithm.
In our work, we study a classification task in the context of
teaching human students the rules to identify animal species—
an important skill required for biodiversity monitoring related
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citizen-science projects [Sullivan et al., 2009; Van Horn et
al., 2018]. This is one of the few real-world applications for
which machine teaching algorithms with guarantees have been
applied to teaching human learners in educational settings (see
[Singla et al., 2013; Singla et al., 2014; Chen et al., 2018a;
Mac Aodha et al., 2018]) and hence is well-suited for our
work. We highlight some of the key contributions and results
below:

• We formally study the problem of robust machine teach-
ing. To quantify the effectiveness of teaching, we introduce
two metrics that measure teacher’s success in terms of the
learner’s eventual error, and the size of the teaching set as
constructed by a teacher with imperfect knowledge (Sec-
tion 2).

• We show that teaching is much more brittle w.r.t noise in
learning rate and less so when considering noise in prior
knowledge of the learner. This theoretical result aligns with
a similar observation recently made in the context of a very
different learning model (Section 3).

• When studying robustness w.r.t. noise in task specification,
we provide natural regularity conditions on the data distri-
butions and then use these conditions when specifying the
guarantees. This allows us to take a less pessimistic view in
comparison to contemporary works that study the worst-case
setting (Section 4).

Remarks on proofs and reproducibility. Detailed proofs
of theorems are provided in the longer version of the paper [De-
vidze et al., 2020]. For the reproducibility of experimental
results and facilitating research in this area, the code and
dataset are publicly available.

1.2 Related Work on Robust Machine Teaching
A growing body of contemporary works has tackled the prob-
lem of robust machine teaching in different forms, however,
with a very different focus compared to ours. For instance,
[Liu et al., 2018; Melo et al., 2018; Dasgupta et al., 2019;
Kamalaruban et al., 2019] have studied the problem of teach-
ing a “blackbox" learner where the teacher has very limited
or no knowledge of the learner. The focus of these papers
has been on designing an online teaching algorithm that infers
the learner model in an online fashion. These works often
conclude that an offline teaching algorithm that operates with
limited knowledge can perform arbitrarily bad by considering
a worst-case setting. However, designing and deploying online
algorithms is a lot more challenging in practice—the results in
contemporary works have mostly been theoretical and might
not be directly applicable in practice given the high sample
complexity of online inference. The focus of our work is pri-
marily on offline teaching algorithms, where knowledge about
the task is usually obtained from domain expertise or inferred
from historical student data. We aim at developing a fun-
damental understanding of how the performance guarantees
of a teaching algorithm degrade w.r.t. the noise in teacher’s
knowledge when considering natural data distributions.

In another line of contemporary work on teaching a rein-
forcement learning agent, [Haug et al., 2018; Tschiatschek
et al., 2019] have considered the setting where teacher and

learner have different worldview and preferences—the focus
of these works is on designing a teaching algorithm to ac-
count for these mismatches, and do not directly tackle the
question we study in this paper. There has also been some
empirical work on understanding the robustness and effect of
different model components as part of the popular Bayesian
Knowledge Tracing (BKT) teaching model used in ITS [Klin-
gler et al., 2015; Khajah et al., 2016]—we see this work as
complementary to ours as we take a more formal approach
towards understanding the robustness of theoretical guarantees
provided by machine teaching algorithms.

2 Problem Formulation
In this section, we first introduce the task representation, the
learner’s model, and the teacher’s optimization problem. Then,
we formulate the problem of teaching with imperfect knowl-
edge, and discuss the notions of successful teaching.

2.1 Teaching Task and Representation
We consider the problem of teaching a binary classification
task. LetX denote a ground set of instances (e.g., images), and
the learner uses a feature representation of φ : X → Rd. LetH
be a finite class of hypotheses considered by the learner where
each hypothesis h ∈ H is a function h : X → {−1,+1}. As
a concrete setting, H could be the set of hypotheses of the
form h(x) = sign(〈θh, φ(x)〉) where θh ∈ Rd is the weight
vector associated with hypothesis h.

Each instance x ∈ X is associated with a ground truth label
given by the function y∗ : X → {−1, 1}, and we denote the
ground truth label of an instance x as y∗(x). The ground truth
labels given by y∗ are not known to the leaner. We use Z to
denote instances with their labels where a labeled example
z ∈ Z is given by z = (x, y∗(x)).

As typically studied in machine teaching literature, we
consider a realizable setting where there exists a hypothe-
sis h∗ ∈ H such that ∀x, h∗(x) = y∗(x).1 The teacher’s goal
can then be stated as that of teaching the hypothesis h∗ to the
learner by providing a minimal number of labeled examples
to the learner. Before formulating the teacher’s optimization
problem of selecting labeled examples, we state the learning
dynamics of the learner below.

2.2 Learner Model
We consider a probabilistic learner model that generalizes
the well-studied version space models in classical machine
teaching literature (see [Goldman and Kearns, 1995]). At a
high-level, the learner works as follows: During the learning
process, the learner maintains a score for each hypothesis
given by Q(h) capturing learner’s belief of how good the
hypothesis h is. Given Q(h), the learner acts probabilistically
by drawing a hypothesis with probability Q(h)∑

h′∈HQ(h′) . Next,
we discuss how the scores are updated.

1This assumption is w.l.o.g.: In a non-realizable setting, the
teacher could consider h∗ ∈ H as a hypothesis with minimal er-
ror in terms of disagreement of labels w.r.t. the labels given by y∗

and the results presented in this paper can be extended to this general
setting.
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Before teaching starts, the learner’s prior knowledge about
the task is captured by initial scores given by Q0(h). For
simplicity and as considered in [Singla et al., 2014; Chen
et al., 2018a], we will assume that Q0(h) is a probability
distribution over H. After receiving a set of labeled exam-
ples S = {(xs, ys)}s=1,2,... from the teacher, we denote the
learner’s score as Q(h|S) which are updated as follows:

Q(h|S) = Q0(h) ·Πs=1,2,...,|S|J(ys|h, xs, η) (1)

where J is a likelihood function parameterized by η ∈ (0, 1].
In this paper, we consider the following likelihood function
given by:

J(ys|h, xs, η) =

{
1− η for h(xs) 6= ys
1 o.w.

(2)

Here, the quantity η captures a notion of the learning rate.
This model reduces to a randomized variant of the classical
learner model [Goldman and Kearns, 1995]) for η = 1. The
main results and findings in the paper also generalize to more
complex likelihood functions such as the logistic functions
considered by [Singla et al., 2014; Mac Aodha et al., 2018].

An important quantity of interest in this paper is the
learner’s expected error after receiving a set of examples S.
Let err(h) =

∑
z=(x,y)∈Z 1h(x) 6=y

|Z| be the expected error of h.
The learner’s expected error is given by the following:

ERR(S) =
∑
h∈H

Q(h|S)∑
h′∈HQ(h′|S)

err(h) (3)

2.3 Teaching with Perfect Knowledge
We first consider the optimal teaching problem when the
teacher has perfect knowledge of the teaching task represented
as (Q0, η,Z, h∗, φ,H). In particular, the teacher’s knowledge
comprises: (i) learning dynamics captured by learner’s initial
knowledge Q0 and learning rate η, (ii) task specification cap-
tured by the target hypothesis h∗, the ground set of labeled
examples Z , the feature map φ, and hypothesis classH.

Teacher’s primary goal is to find a smallest set of labeled
examples to teach so that learner’s error is below a certain
desirable threshold ε. To construct the optimal teaching set,
instead of directly optimizing for a reduction in error, it is
common in the literature to construct surrogate objective func-
tions which capture learner’s progress towards learning h∗
(also, see [Goldman and Kearns, 1995; Singla et al., 2014;
Chen et al., 2018a; Mac Aodha et al., 2018].).

Let us define a set function F : 2Z → R≥0 as follows:

F (S) =
∑
h∈H

(
Q0(h)−Q(h|S)

)
· err(h) (4)

Here, the quantity
(
Q0(h)−Q(h|S)

)
captures the reduction

in the score for hypothesis h after learner receives examples
set S. In particular, the surrogate objective function F is
a soft variant of set cover, and allows one to design greedy
algorithms to find near-optimal teaching sets.

For a given ε, one can find a corresponding (sufficient) stop-
ping value Cε such that F (S) ≥ Cε implies that ERR(S) ≤ ε.
As used in the optimization frameworks of [Singla et al., 2014;

Mac Aodha et al., 2018], we useCε =
∑
h∈HQ0(h)·err(h)−

ε ·Q0(h∗). This leads to the following optimization problem:

min
S⊆Z
|S| s.t. F (S) ≥

∑
h∈H

Q0(h) · err(h)− ε ·Q0(h∗) (5)

where F (S) is given in Eq. 4. We use OPTε to denote the
optimal teaching set as a solution to the problem (5).

2.4 Teaching with Imperfect Knowledge
We now consider a teacher with imperfect knowledge and
study the following different settings:
• having noise on learner’s initial knowledgeQ0 ( Section 3.1)
• having noise on learner’s learning rate η (Section 3.2).
• having access to ground truth labels for only a subset of

instances instead of the whole ground set X (Section 4.1).
• having a noisy feature map, i.e., teacher’s assumed feature

map does not match with φ used by the learner (Section 4.2).
We denote the teacher’s view of the imperfect knowledge as

(Q̃0, η̃, Z̃, h̃∗, φ̃, H̃). Given this knowledge, the teacher has
its own view of quantities such as Q̃(h|S) (cf., Eq. 1), ẽrr(h)

(cf., err(.) used in Eq. 3), and F̃ (cf., Eq. 4) as counterparts to
those of a teacher with perfect knowledge. The optimization
problem from the viewpoint of the teacher with imperfect
knowledge can be written as follows:

min
S⊆Z̃
|S| s.t. F̃ (S) ≥

∑
h∈H̃

Q̃0(h) · ẽrr(h)− ε · Q̃0(h̃∗) (6)

In the subsequent sections, we will introduce notions of
∆-imperfect knowledge depending on a set/tuple of parame-
ters ∆. Let us denote by ÕPTε,∆ the teaching set found by
∆-imperfect teacher as a solution to the problem (6). The
following definitions quantify the success of a teacher with im-
perfect knowledge w.r.t. to measure M.1 (related to learner’s
error) and measure M.2 (related to teaching set size).
Definition 1 (M.1-successful). We say a teacher is M.1-
successful if the learner’s eventual error upon receiving the
set ÕPTε,∆ is O(ε) (here we treat the parameters as constant).

Definition 2 (M.2-successful). We say a teacher is M.2-
successful if |ÕPTε,∆| ≤ |OPTε̂|, where ε̂ = Θ(ε) (here we
treat the parameters as constant). In other words, the size of
the teacher’s teaching set is competitive w.r.t. that of a teacher
with perfect knowledge which constructs an optimal teaching
set for an Θ(ε) error threshold.2

3 Imperfect Knowledge about the Dynamics
In this section, we explore the effectiveness of teaching
when the teacher has imperfect knowledge of the learner’s
prior knowledge Q0 and learning rate η. In fact, these

2This is the style of bound often considered in literature when
taking an optimization perspective on teaching [Singla et al., 2014;
Chen et al., 2018a]. One might be tempted to directly bound the size
|ÕPTε,∆| as a function of |OPTε|, however, this is usually not possible
without making further assumptions about the data distribution.
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two parameters are key to many popular learner models
(e.g., Bayesian Knowledge Tracing (BKT) models in edu-
cational applications [Piech et al., 2015; Klingler et al., 2015;
Khajah et al., 2016], spaced-repetition models used in vocabu-
lary applications [Settles and Meeder, 2016; Hunziker et al.,
2019], or gradient learner models studied for data-poisoning
attacks [Liu et al., 2018]).

3.1 Noise in the Learning Prior
Here, we consider the setting where the teacher has a
noisy estimate Q̃0 of learner’s initial distribution Q0, i.e.,
(Q̃0, η̃, Z̃, h̃∗, φ̃, H̃) := (Q̃0, η,Z, h∗, φ,H). The following
definition quantifies the noise in Q̃0 w.r.t. the true Q0.

Definition 3 (∆Q0
-imperfect). Let ∆Q0

= (δ1, δ2) for
δ1, δ2 ≥ 0. We say that teacher’s estimated distribution Q̃0 is
∆Q0

-imperfect if the following holds:

∀ h ∈ H, (1− δ1) ·Q0(h) ≤ Q̃0(h) ≤ Q0(h) · (1 + δ2).

The following theorem quantifies the effectiveness of teach-
ing w.r.t. measures M.1 and M.2 (see Definitions 1, 2).

Theorem 1. Fix ε ≥ 0, δ1 ≥ 0, and δ2 ≥ 0. Consider
a teacher with knowledge (Q̃0, η,Z, h∗, φ,H), where Q̃0 is
∆Q0

-imperfect w.r.t. true Q0 for ∆Q0
= (δ1, δ2). Then, in the

worst-case for any problem setting and any ∆Q0
-imperfect

Q̃0, the teacher is successful w.r.t. measures M.1 and M.2
with the following bounds:

1. The learner’s error is O(ε) and is bounded as
ERR(ÕPTε,∆Q0

) ≤ ε·(1+δ2)
(1−δ1) .

2. The size of the teaching set is bounded as |ÕPTε,∆Q0
| ≤

|OPTε̂| where ε̂ = ε·(1−δ1)
(1+δ2) .

The proof is provided in the longer version of the paper [De-
vidze et al., 2020].

3.2 Noise in the Learning Rate
Next, we consider a setting where the teacher has an imperfect
estimate of the learner’s learning rate η while having perfect
knowledge about the rest of the parameters, i.e., the teacher’s
knowledge is (Q0, η̃,Z, h∗, φ,H). The following definition
quantifies the noise in η̃ w.r.t. true η.

Definition 4 (∆η-imperfect). Let ∆η = (δ) for δ ≥ 0. We
say that a teacher’s estimate η̃ is ∆η-imperfect if |η̃ − η| ≤ δ,
where both η̃ ∈ (0, 1] and η ∈ (0, 1].

The following two worst-case scenarios are of interest: (i) a
teacher who overestimates the learning rate with η̃ = min{η+
δ, 1} and (ii) a teacher who underestimates the learning rate
with η̃ = max{η − δ, 0}. The following theorem quantifies
the challenges in teaching successfully in this setting.

Theorem 2. Fix ε ≥ 0 and δ > 0. Consider a teacher with
knowledge (Q0, η̃,Z, h∗, φ,H) where η̃ is ∆η-imperfect w.r.t.
true η for ∆η = (δ). Then, for any ∆η-imperfect η̃, there
exists a problem setting such that the teacher is unsuccessful
w.r.t. measures M.1 and M.2:

1. For any fixed ε and ∆η , there exist problem settings where
ERR(ÕPTε,∆η ) ≥ 1

2 .

2. For any fixed ε and ∆η, and any ε̂ arbitrarily close to 0,
there exist problem settings where |ÕPTε,∆η

| ≥ |OPTε̂|.
The proof, provided in the longer version [Devidze et al.,

2020], is given by creating two problem settings: (i) a set-
ting for the teacher who overestimates η that leads to the first
statement about the learner’s error, and (ii) a setting for the
teacher who underestimates η that leads to the second state-
ment about the size of the teaching set. Comparing Theorem 1
and Theorem 2, these results suggest that noise in the teacher’s
assumption about the learning rate is a lot more hazardous com-
pared to noise about the learner’s initial distribution. While we
derived these results by focusing on a very specific task and
learner model, similar observations were made in the context
of a different type of teaching setting when teaching a gradient
learner [Yeo et al., 2019].

Theorem 2 only provides a pessimistic view that the teacher
can fail badly. On closer inspection, the negative results arise
from two separate issues: (i) teacher computing wrong utility
of examples in (6), and (ii) teacher having a wrong estimate
of stopping criteria in (6) which in turn depends on learner’s
progress. Empirically, we found that the second reason seems
to be the dominant one for the teacher’s failure. One practical
way to fix this issue is to develop an interactive teaching strat-
egy where the teacher’s stopping criteria is determined by the
learner’s true progress measured in an online fashion instead
of the progress as estimated by the teacher using its offline
model (also, see discussions in Section 1.2).

4 Imperfect Knowledge about Representation
In this section, we explore the effect of teaching when the
teacher has imperfect knowledge of the task specification, in
particular, limited ground truth data and noisy representation
of the task used by the learner.

4.1 Limited Ground Truth Labels
Here, we consider the setting where the teacher has ground
truth labels for only a subset of examples Z̃ ⊆ Z . The typical
process followed when applying machine teaching algorithms
is to first sample a small set of instances X̃ ⊆ X and then get
expert annotations to obtain Z̃ ⊆ Z (e.g., see [Singla et al.,
2014; Mac Aodha et al., 2018]. Then, the teacher selects a
hypothesis h̃∗ as the one with minimal empirical error given
by h̃∗ ∈ arg minh∈H ẽrr(h). For this setting, we represent the
knowledge of the teacher as (Q0, η, Z̃, h̃∗, φ,H).

As long as the set Z̃ is constructed i.i.d., the teacher can
construct teaching sets to ensure that the learner’s error would
be low (i.e., teaching is successful w.r.t. measure M.1). This
argument follows from the standard concentration inequalities
which ensures that with high probability, the teacher has a good
estimate of ẽrr(·), i.e., ∀ h ∈ H, |ẽrr(h)− err(h)| is small (see
Theorem 3). However, regarding the teacher’s performance
on measure M.2, without any additional assumptions about
data distribution, it is easy to construct a pessimistic scenario
where the data distribution is skewed and the teaching set
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Figure 1: (a) shows a problem setting with a few extreme points that are important for teaching—assuming η = 1 and ε = 0 for simplicity
of arguments, the optimal teaching set consists of only two examples lying close to coordinates (3, 0). However, if these two examples are
not present in Z̃ , the teaching set can be arbitrarily large (i.e., of size 6 in the illustration). (b) shows another problem setting with skewed
data distribution where a small perturbation of data could lead to big changes in the prediction of hypotheses. (c) shows a real-world problem
setting to distinguish animal species. As can be seen, the data distribution here is more “well-behaved" and does not suffer from issues present
in the other two problem settings. Note that only a few hypotheses are shown in the illustration, see Section 5 for more details.

ÕPTε,∆ constructed by a teacher with imperfect knowledge
is arbitrarily large w.r.t. the optimal teaching set OPTε (see
Figure 1).

Building on insights from the problem settings discussed in
Figure 1, we consider additional structural assumptions on the
problem setting as discussed below. First, we introduce the
notion of δ-perturbed set of examples.

Definition 5 (δ-perturbed). Consider a set of labeled examples
S ⊆ Z . We call S′ a δ-perturbed version of S, if there
exists a bijective map S 7→ S′, (x, y) 7→ (x′, y) such that
‖φ(x)− φ(x′)‖2 ≤ δ.

We will also need the following smoothness notion for prov-
ing robustness guarantees (for bounding the size in Theorem 3
and for bounding both the error/size in Theorem 4).

Definition 6 (λ-smoothness). Let δ ≥ 0, λ ≥ 0. Consider
any set S ⊆ Z , and let S′ be any δ-perturbed version of S.
Then, we call the problem setting λ-smooth when the following
holds: for any h ∈ H, the mismatch in labels assigned by h to
examples S and S′ is upper-bounded by λ · δ.

Definition 7 below quantifies the imperfection in teacher’s
knowledge arising from the sampling process coupled with
additional structural conditions.

Definition 7 (∆Z -imperfect). Let ∆Z = (δ1, δ2, δ3) for
δ1, δ2, δ3 ≥ 0. We say that a teacher’s knowledge is ∆Z -
imperfect if the following statements hold with probability at
least (1− δ1):

• ∀ h, |ẽrr(h)− err(h)| ≤ δ2,

• for any set of labeled examples S ⊆ Z with |S| ≤ |Z̃|, there
exists a δ3-perturbed version of S in Z̃ .

Note that in the above definition, the bound on error is satis-
fied from the i.i.d. sampling process and doesn’t require any
further structural assumption. The second condition implicitly
adds regularity conditions on the underlying data distribution

ensuring that it does not have characteristics as seen in Fig-
ure 1a and Figure 1b. The following theorem quantifies the
effectiveness of a ∆Z -imperfect teacher.

Theorem 3. Fix ε ≥ 0 and ∆Z = (δ1, δ2, δ3) with
δ1, δ2, δ3 ≥ 0. Consider a ∆Z -imperfect teacher with knowl-
edge (Q0, η, Z̃, h̃∗, φ,H). Assume the problem setting is λ-
smooth for some λ ≥ 0, η < 1, and |Z̃| is sufficiently large.
Then, for any sample Z̃ and selection of h̃∗, with probability
at least (1− δ1), the teacher is successful with the following
bounds:

1. The learner’s error is O(ε) and is bounded as
ERR(ÕPTε,∆Z ) ≤ (ε·Qmax+δ2)

Q(h∗) .

2. The size of the teaching set is bounded as |ÕPTε,∆Z | ≤
|OPTε̂| where ε̂ = (ε·Qmin−δ2)·(1−η)λ·δ3

Q(h∗)

where Qmax = maxhQ0(h) and Qmin = minhQ0(h).

The proof of the theorem is provided in the longer version
of the paper [Devidze et al., 2020]. Note that the bound is only
valid for η < 1. When η approaches 1, and for the extreme
case of η = 1, the learner reduces to a noise-free version space
learner who eliminates all inconsistent hypothesis immediately.
For this setting, bounding the teaching set size requires more
combinatorial assumptions on the dataset (e.g., based on the
separability of data from the hyperplanes)—however, for prac-
tical applications, η bounded away from 1 is a more natural
setting as analyzed in this theorem.

4.2 Noise in Feature Embedding
Here, we consider imperfect knowledge in terms of noisy
feature map φ̃. This is a challenging setting as noise in φ
means error in the predictions of hypotheses h ∈ H which
in turn leads to noise in error of hypotheses err(.) and in the
likelihood function J . As noted earlier, the teacher will select
a hypothesis h̃∗ as the one with minimal error given by h̃∗ ∈
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(c) Learner’s error: Z̃
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(d) Learner’s error: φ̃
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ÕPT
OPT

Rnd:1
2

Rnd:1

Rnd:3
2

(e) Teaching set size: Q̃0
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(f) Teaching set size: η̃ = η − δ
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(g) Teaching set size: Z̃
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(h) Teaching set size: φ̃

Figure 2: Experimental results for the problem in Figure 1c. (a, e): robustness of teaching for ∆Q0 -imperfect teacher. (b, f): for ∆η-imperfect
teacher, the learner’s error could be high when the teacher overestimates η or the teaching set size could be arbitrary large when the teacher
underestimates η. (c, g): robustness of teaching for ∆Z -imperfect teacher. (d, h): robustness of teaching for ∆φ-imperfect teacher.

arg minh∈H ẽrr(h). The following definition quantifies the
imperfection in the teacher’s knowledge (Q0, η,Z, h̃∗, φ̃,H).

Definition 8 (∆φ-imperfect). Let ∆φ = (δ1, δ2) for δ1, δ2 ≥
0. We say that a teacher’s knowledge is ∆φ-imperfect if the
following holds:

• ∀ x ∈ X , ||φ(x)− φ̃(x)||2 ≤ δ1,

• ∀ h, |ẽrr(h)− err(h)| ≤ δ2.

The following theorem quantifies the effectiveness of teach-
ing of a ∆φ-imperfect teacher.

Theorem 4. Fix ε ≥ 0 and ∆φ = (δ1, δ2) with δ1, δ2 ≥
0. Consider a ∆φ-imperfect teacher with knowledge
(Q0, η,Z, h̃∗, φ̃,H). Assume the problem setting is λ-smooth
for some λ ≥ 0, that η < 1, and assume that the error
ẽrr(h̃∗) = 0. Then, in the worst-case for any observed φ̃ and
selection of h̃∗, the teacher is successful with the following
bounds:

1. The learner’s error is O(ε) and is bounded as
ERR(ÕPTε,∆φ

) ≤ (ε·Qmax+δ2)
Q(h∗)·(1−η)λ·δ1

.

2. The size of the teaching set is bounded as |ÕPTε,∆φ
| ≤

|OPTε̂| where ε̂ = (ε·Qmin−δ2)·(1−η)λ·δ1

Q(h∗) .

The proof is provided in the longer version of the paper [De-
vidze et al., 2020]. In comparison to the error bound in Theo-
rem 3, the error bound here with noise in φ is much worse—
this is a lot more challenging setting given that hypotheses
predictions on examples can be wrong in this setting. Here, for

simplicity of the proof and presentation of results, we assumed
that there exists some h̃∗ for which error in teacher’s repre-
sentation is 0, i.e., ẽrr(h̃∗) = 0, see discussion in Footnote 1.
The theorem suggests that when considering additional struc-
tural/smoothness assumptions on the problem, the teaching
with imperfect knowledge about representations is robust w.r.t.
both M.1 and M.2 success criteria. As we shall see in exper-
iments, these robustness guarantees indeed hold in practice
given that the real-world problem settings often respect these
regularity assumptions.

5 Experimental Evaluation
In this section, we perform empirical studies to validate the
guarantees provided by our theorems, and to showcase that the
data regularity assumptions we made in the previous section
are satisfied in real-world problem settings.

Teaching task. We consider a binary image classification
task for identifying animal species. This specific task has
been studied extensively in the machine teaching literature
(see [Singla et al., 2014; Chen et al., 2018a; Mac Aodha et al.,
2018; Yeo et al., 2019]). First, we state the problem setup from
the viewpoint of a teacher with full knowledge represented as
(Q0, η,Z, h∗, φ,H). Our problem setup is based on the task
and dataset that is used in the works of [Singla et al., 2014;
Yeo et al., 2019]. The task is to distinguish “moths" (− labeled
class) from “butterflies" (+ labeled class). We have a total of
|Z| = 160 labeled images, and the embedding of instances is
shown in Figure 1c. We have |H| = 67 hypotheses, and a sub-
set of these hypotheses along with h∗ are shown in Figure 1c.
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We consider Q0 to be uniform distribution over H, η = 0.5,
and have desired ε = 0.001.

Metrics and baselines. All the results corresponding to four
different notions of imperfect teacher are shown in Figure 2,
averaged over 10 runs. For performance metrics, we plot the
eventual error of the learner and the size of the teaching set.
In addition to OPTε (simply denoted as OPT in plots) and
ÕPTε,∆ (simply denoted as ÕPT in plots), we also have three
more baselines denoted as Rnd: 1

2 , Rnd:1, and Rnd: 3
2 . These

three baselines correspond to teachers who select examples
randomly, with set sizes being 1

2 , 1, and 3
2 times that of |OPT|.

Empirical results. We consider ∆Q0-imperfect teacher
with ∆Q0 = (δ, δ) (i.e., δ1 = δ2 = δ) with δ ∈ [0, 0.8];
results are shown in Figures 2a,2e. For ∆η-imperfect teacher,
we vary δ ∈ [0, 0.4] considering a teacher who overestimates
or underestimates the learning rate; results are shown in Fig-
ures 2b,2f. For ∆Z -imperfect teacher, we vary the fraction
of instances X from 1 to 0.5 that we sample to construct Z̃ ,
and sampling is done i.i.d.; the performance of this teacher is
shown in Figures 2c,2g. For ∆φ-imperfect teacher, we com-
puted noisy representation φ̃ by adding a random vector in
R2 of norm δ as noise to φ(x) ∀x ∈ X ; results are shown
in Figures 2d,2h. Note that in Figures 2d,2h, the norm δ is
shown as a relative % shift w.r.t. data radius, where the radius
is maxx∈X ||φ(x)||2 (see Figure 1c).

The results in these plots validate the performance guar-
antees that we proved in previous sections. It is important
to note that for ∆Z -imperfect and ∆φ-imperfect teacher, any
additional structural assumptions as were needed by Defini-
tions 7,8 and Theorems 3,4 are naturally satisfied in real-world
problem settings, as is evident in the performance plots.

6 Conclusions
We studied the problem of machine teaching when the
teacher’s knowledge is imperfect. We focused on understand-
ing the robustness of a teacher who constructs teaching sets
based on its imperfect knowledge. When having imperfect
knowledge about the learner model, our results suggest that
having a good estimate of the learning rate is a lot more im-
portant than the learner’s prior knowledge. In terms of im-
perfect knowledge about the task specification, we introduced
some regularity assumptions under which the teacher is ro-
bust. Our empirical experiments on a real-world teaching
problem further validate our theoretical results. Our findings
have important implications in designing teaching algorithms
for real-world applications in education.
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