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Abstract
The ability to transfer knowledge to novel environ-
ments and tasks is a sensible desiderata for gen-
eral learning agents. Despite the apparent promises,
transfer in RL is still an open and little exploited
research area. In this paper, we take a brand-new
perspective about transfer: we suggest that the abil-
ity to assign credit unveils structural invariants in
the tasks that can be transferred to make RL more
sample efficient. Our main contribution is SECRET,
a novel approach to transfer learning for RL that
uses a backward-view credit assignment mechanism
based on a self-attentive architecture. Two aspects
are key to its generality: it learns to assign credit as
a separate offline supervised process and exclusively
modifies the reward function. Consequently, it can
be supplemented by transfer methods that do not
modify the reward function and it can be plugged
on top of any RL algorithm.

1 Introduction
To some, intelligence is measured as the capability of transfer-
ring knowledge to unprecedented situations. While the notion
of intellect itself is hard to define, the ability to reuse learned
information is a desirable trait for learning agents. The cof-
fee test [Goertzel et al., 2012], presented as a way to assess
general intelligence, suggests the task of making coffee in a
completely unfamiliar kitchen. It requires a combination of ad-
vanced features (planning, control and exploration) that would
make the task very difficult if not out of scope for the current
state-of-the-art Reinforcement Learning (RL) agents to learn.
On the other hand, it is solved trivially by humans, who ex-
ploit the universally invariant structure of coffee-making: one
needs to fetch a mug, find coffee, power the coffee machine,
add water and launch the brewing process by pushing the ade-
quate buttons. Thus, to solve the coffee test, transfer learning
appears necessary. Were we to possess a random kitchen sim-
ulator and a lot of compute, current transfer methods would
still fall short of consistently reusing structural information
about the task, hence also falling short of efficient adaptation.

Credit assignment, which in RL refers to measuring the
individual contribution of actions to future rewards, is by
definition about understanding the structure of the task. By

structure, we mean the relations between elements of the states,
actions and environment rewards. In this work, we investigate
what credit assignment can bring to transfer. Encouraged by
recent successes in transfer based on supervised methods, we
propose to learn to assign credit through a separate supervised
problem and transfer credit assignment capabilities to new
environments. By doing so, we aim at recycling structural
information about the underlying task.

To this end, we introduce SECRET (SElf-attentional CREdit
assignment for Transfer), a transferable credit assignment
mechanism consisting of a self-attentive sequence-to-sequence
model whose role is to reconstruct the sequence of rewards
from a trajectory of agent-environment interactions. It assigns
credit for future reward proportionally to the magnitude of
attention paid to past state-action pairs. SECRET incorporates
structural knowledge in the reward function without modifying
optimal behavior, as we show in generalization and transfer
scenarios that preserve the structure of the task.

Existing backward-view credit assignment meth-
ods [Arjona-Medina et al., 2019; Hung et al., 2018]
require auxiliary terms to the loss function used to train agents,
which can have detrimental effects to the learning process [de
Bruin et al., 2018], and rely on an external memory, which
hinder the generality of their approach. SECRET does neither.
Also, as we show in Sec. 3.1, the architecture we consider
for SECRET has interesting properties for credit assignment.
We elaborate about our novelty with respect to prior work
in Sec. 4. We insist on the fact that the focus of our work is
on transfer and that it is not our point to compete on credit
assignment capabilities.

We would like to emphasize several aspects about the gener-
ality of SECRET: 1) our method does not require any modifica-
tion to the RL algorithm used to solve the tasks considered, 2)
it does not require any modification to the agent architecture
either and 3) it does not alter the set of optimal policies we
wish to attain. Moreover, our method for credit assignment
is offline, and as a result, it can use interaction data collected
by any mean (expert demonstrations, replay memories [Lin,
1992], backup agent trajectories. . . ).

Background. We place ourselves in the classical Markov
Decision Process (MDP) formalism [Puterman, 1994]. An
MDP is a tuple (S,A, γ,R, P ) where S is a state space, A
is an action space, γ is a discount factor (γ ∈ [0, 1)), R :
S × A × S → R is a bounded reward function that maps
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state-action pairs to the expected reward for taking such an
action in such a state. Note that we include the resulting
state in the definition of the reward function over the typical
R : S ×A→ R. This is for consistency with objects defined
later on. Finally, P : S ×A→ ∆S is a Markovian transition
kernel that maps state-action pairs to a probability distribution
over resulting states, ∆S denoting the simplex over S.

An RL agent interacts with an MDP at a timestep t by
choosing an action at ∈ A and receiving a resulting state
st+1 ∼ P (·|st, at) and a reward rt = R(st, at, st+1). A tra-
jectory τ = (si, ai, ri)i=1,...,T is a set of state-action pairs
and resulting rewards accumulated in an episode. A subtra-
jectory is a portion of trajectory that starts at the beginning
of the episode. The performance of an agent is evaluated by
its expected discounted cumulative reward E

[∑∞
t=0 γ

trt
]
. In

a partially observable MDP (POMDP), the agent receives at
each timestep t an observation ot ∼ O(·|st) that contains
partial or noisy information about the underlying state of the
environment.

2 SECRET: Self-Attentional Credit
Assignment For Transfer

SECRET uses previously collected trajectories from environ-
ments in a source distribution. A self-attentive sequence model
is trained to predict the final reward in subtrajectories from
the sequence of observation-action pairs. The distribution of
attention weights from correctly predicted nonzero rewards
is viewed as credit assignment. In target environments, the
model gets applied to a small set of trajectories. We use the
credit assigned to build a denser and more informative reward
function that reflects the structure of the (PO)MDP. The case
where the target distribution is identical to the source distribu-
tion (in which we use held-out environments to assess transfer)
will be referred to as generalization or in-domain transfer, as
opposed to out-of-domain transfer where the source and the
target distributions differ.

2.1 Self-Attentional Credit Assignment
Credit assignment as offline reward prediction. We learn
to assign credit through an offline reward prediction task, based
on saved trajectories of agent-environment interactions. We
create a sequence-to-sequence (seq2seq) model [Sutskever
et al., 2014] that takes as input the sequence of observation-
action pairs and has to reconstruct the corresponding sequence
of environment rewards. Being offline, the reward prediction
task is learned separately from the RL task, and the reward
prediction model does not share representations with the agent.
This way, the representations learned for credit assignment do
not affect or get mixed with the representations learned for
control. Operating offline brings several advantages: one can
directly interact with the replay memory of agents and even
use expert demonstrations or arbitrary saved transitions as a
source of supervision, which could be useful in settings where
on-policy interactions are costly, such as robotics. We equip
our seq2seq model with an attention mechanism [Bahdanau
et al., 2015] and view the attention weights of the reward
reconstruction task as our primary source of assigned credit.
The motivation to do so is that the seq2seq model looks into

the past to find predictive signal in order to reconstruct the
reward, so observation-action pairs it attends to should be
those which reduce its uncertainty about the future, in other
words those that explain future reward and should be credited.

On the use of observations. In MDPs, environment states
follow the Markov property: they summarize the history of
previous interactions and are sufficient to predict the future.
As such, predictive models are highly biased towards focusing
on the current sequence element, which hinders credit assign-
ment. Under that consideration, when dealing with MDPs,
we turn states into observations by applying transformations
that hide a certain amount of information from states and
break the Markov assumption. For instance, in gridworlds
with visual states, we crop the image and get a player-centered
image with a given window size. Doing so encourages the
model to look into the past to find predictive signal, and allow
us to track the relative importance given to each element to
reconstruct the credit assigned. In POMDPs, this might be
unnecessary depending on the amount of information shared
between observations and true states.

Self-attention for credit assignment. Unlike other
seq2seq architectures, self-attentive models like Trans-
formers [Vaswani et al., 2017] have direct computational
paths between pairs of sequence elements, due to their
representations that depend on projections of all sequence
elements. This feature is key to long-term credit assignment.
As an illustration, consider an RL task where the terminal
reward depends only on the first observation, which is
drawn randomly. Predicting the reward correctly requires
to remember the first observation, which would be very
challenging for a recurrent architecture whose memory
goes through O(n) transformations, n being the size of the
sequence. On the other hand, a self-attentive model directly
accesses the value of the initial observation, which makes
credit assignment easier.

Reward prediction architecture. We use a Transformer de-
coder with a single self-attention layer [Lin et al., 2017] and
a single attention head. The model input is a sequence of
observation-action couples (ot, at)t=0,...,T . Each observation
goes through a series of convolutional layers (for visual in-
puts) followed by a series of feed-forward layers. Each action
representation, a one-hot vector in the discrete action case, is
concatenated to the learned observation embedding. Those
representations of dimensionality di are combined with po-
sitional encoding (PE), fed to a self-attention layer and then
to a position-wise feedforward layer that outputs logits for
reward prediction classes. PE encodes the relative positions of
sequence elements, see [Vaswani et al., 2017] for details.

Self-attention is an attention mechanism with parameteri-
zation (Wk,Wq,Wv), each matrix belonging to Rdi×dk , that
puts sequence elements in relation by computing non-linear
similarity scores for all pairs of elements in the sequence. To
do so, each sequence element is mapped to a query vector that
is matched against keys and values obtained from the previous
elements. To be consistent with the goal of assigning credit,
the model should not be able to peek into the future. Thus, we
restrict the computational window of each sequence element
to the information stored in representations of the previous
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elements in the sequence and its own by applying a causal
mask Mc to the result of the pairwise similarity computations,
assigning a value of 0 to masked elements after the softmax.

Let X = (xt)t=0,...,T ∈ RT×di denote the input sequence
in a matrix form, xt being the result of internal computations
of the model on its tth input. In the same fashion, we note
Z = (zt)t=0,...,T ∈ RT×dk the sequence resulting from the
application of self-attention. We then have

Z = softmax

(
Mc � (QKT )− C(1−Mc)√

dk

)
V,

where Q = XWq ∈ RT×dk stores queries, K = XWk ∈
RT×dk keys, and V = XWv ∈ RT×dk values as linear pro-
jections of the input; dk stands for the dimension of the key
vectors, Mc ∈ {0, 1}T×T is a binary matrix that acts as a
causal mask (a lower triangular matrix), � is the Hadamard
product and C is a large constant (109 in practice).

Notably, the resulting observation-action representation can
be viewed as a linear combination of the values of previous el-
ements: zt =

∑t
i=0 αi←tvi where α·←t = (αi←t)i=1,...,t ∝

exp(〈qt, ki〉/
√
dk). The vector αt contains the normalized

attention weights for the prediction at timestep t and sums to
1. Since observations contain only a portion of their initial
information, the fact that the model succeeds in the prediction
task indicates that it reconstructed the missing information
from its past. Therefore, attention weights themselves can be
viewed as a form of credit assignment, and will be used as
such in what follows.

While performing regression on the rewards could also be
an option, our experiments found that regression tends to con-
verge to poor local optima. Consequently, we predict the sign
of the experienced rewards: q(r) = sign(r) with sign(0) = 0.
We chose the sign as the classification target for its invariance
to the scale of the rewards. We use a weighted sequential
cross-entropy as the loss function over the class-wise model
predictions fθ,c, writing τ(o, a) the subtrajectory of τ ending
with the observation-action couple (o, a) to translate the effect
of the binary mask:

Lθ(τ) = −
∑

c∈{−1,0,1}

w(c)

|τ |
∑

(o,a,r)∈τ

I{q(r) = c} log
(
fθ,c(τ(o, a))

)
.

We have found class weighting w(c) to be very important
in this imbalanced prediction task. It reduces the variance of
predictive performance across datasets of sampled trajectories
for a given model and hyperparameters.

Generating trajectories. To train SECRET, we generate a
dataset of trajectories that contains a certain proportion of suc-
cessful trajectories. If source environments are simple enough
so that the task has sufficient chance to be solved by acting
randomly, we use a random policy to generate trajectories.
For more complex distributions of environments, we use an
RL agent (either trained or in the learning phase) to generate
trajectories. We think purely exploratory methods [Ecoffet et
al., 2019] could have advantages over using an RL agent and
leave the study of their use for future work.

2.2 Leveraging Credit Via Reward Shaping
In this subsection, we explain how we use credit assignment
to make learning more sample-efficient.

Reward shaping. In RL, agents often deal with sparse re-
wards that make the learning process slow. Reward shap-
ing [Ng et al., 1999] is a technique that often aims at densify-
ing the reward so as to improve sample efficiency. It defines
a class of reward functions that can be added to the original
environment rewards without modifying the set of optimal
policies. For a given MDP M = (S,A, γ,R, P ), we define
a new MDP M ′ = (S,A, γ,R′, P ) where R′ = R + F is
the shaped reward and F the shaping. The reward shaping
theorem states that if there exists a potential function φ such
that F : (s, s′) → γφ(s′) − φ(s), then M and M ′ admit the
same set of optimal policies. With domain knowledge, one
can use reward shaping to design more informative reward
functions without encouraging unwanted behavior. Neverthe-
less, shaping rewards requires good priors for the task and the
potential function must often be engineered manually.

Since SECRET weighs the contribution of observation-action
pairs to future reward, we use it to derive a shaped reward that
corresponds to the sum of future reward reachable from the
underlying state, weighted by the attention calculated by the
model. We explain the process in the following.

Computing the potential function. We define the redis-
tributed return R←τ of a trajectory τ as:

R←τ (s, a) =

T∑
t=1

I{st = s, at = a}
T∑
i=t

αt←ir(si, ai), (1)

where αi←j is the attention weight on (oi, ai) when predicting
the reward rj and si are environment states. Indeed, SECRET
uses observations but we keep the states they are constructed
from to compute the potential. In POMDPs, we recover an
approximate state from the observation, either manually or
through inference. In this work, we use a state constructed
manually, see Sec. 3, paragraph Implementation details.

To compute the potential function, we generate a set D of
trajectories like described in Sec. 2.1. Since we operate on
trajectories, the same state-action pair can appear twice in
a sequence and benefit from a different amount of attention,
which is why we must include the first summation. In the
reward shaping formalism, the potential function φ depends
only on the state. To stay within its bounds, we define φ as the
forwarded redistributed return. It is computed as the following
estimate:

φ̂(s) =
1

|D|
∑
τ∈D

T∑
t=1

I{s(τ)t = s}R←τ (s
(τ)
t−1, a

(τ)
t−1). (2)

Note that in practice we only redistribute individual rewards
that were successfully predicted. Also, some states are gen-
erally missing from the data distribution induced by the set
of trajectories used. For those states, we set to potential to 0,
which results in a −φ̂(s) additional reward when transitioning
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to those from the state s. As a result, it gives agents incen-
tive to stay on the support of the data distribution unless they
encounter high-reward states.

Because it relies on reward shaping, SECRET conserves
optimal policies. We empirically find that agents learn faster
with the resulting augmented reward function. A way to look
at it is that we densify the learning signal and bias the agent
towards behaviors that encourage future rewards.

2.3 Transferring Credit Assignment
We start by conveying intuition as to why SECRET should
transfer to new environments. In fields other than RL, seq2seq
models similar to that of SECRET have shown outstanding
transfer capabilities [Devlin et al., 2019], even in low-resource
settings [Zoph et al., 2016]. In transfer scenarios that preserve
the structure of the MDP, the optimal finegrained control se-
quence can vary drastically from one environment to another.
This is why credit assignment is an interesting alternative to
the transfer of weights: given an underlying environment state
and a specific action, their contribution to future rewards is
not fundamentally altered. Such scenarios include specific
changes in the state (or observation) distribution and changes
to the reward function that preserve the optimal policies. These
also include changes in the dynamics of the environment, and
though it affects credit assignment, we show later on that SE-
CRET adapts surprisingly well to such scenarios. Another
point that motivates the use of our method for transfer is the
fact that we keep the representations learned for credit as-
signment separate from the control representations learned by
agents. Indeed, recent work showed that RL representations
were not optimal for transfer [de Bruin et al., 2018].

Transfer setting. We argue that transfer should be consid-
ered effective when agents learn to solve target tasks efficiently
because efficiency gains in the target domain compound while
the cost of training in the source is fixed. Hence, we use the
Total Target Time Scenario metric [Taylor and Stone, 2009]
to assess transfer. Nevertheless, collecting trajectories in the
source domain can be costly. We report the number of trajec-
tories used to train SECRET in each scenario.

As before, SECRET is trained on episodes of interaction sam-
pled from the source distribution. In each target environment,
we sample multiple trajectories (see the following section for
details about the policies used to generate the trajectories). We
then compute the attentional potential function by calculating
an estimate of the expected redistributed reward, as described
in Sec. 2.2.

3 Experiments
In this section, we aim to answer the following questions:
can SECRET improve the sample efficiency of learning for
RL agents? Does it generalize and/or transfer? How does
it compare to transfer baselines? Is the credit assigned by
SECRET interpretable?

The Triggers environment. We introduce Triggers, an in-
terpretable and customizable environment that we use to assess
the quality of the credit inferred with our method. In Triggers,
the agent is located in a two-dimensional bounded grid. Its

Figure 1: Left: Example of a Triggers environment. Right: Observa-
tions from DMLab are first person views.

actions consist solely of moving of one cell in one of the car-
dinal directions. Any action that would lead the agent outside
the boundaries of the environment (as indicated by the walls in
the figure) is ignored but still counted as an action taken by the
agent. The goal of the agent (represented as a yellow square)
is to activate all the switches (red squares) and then collect
all the prizes (pink squares). Prizes are the only source of
reward and give a −1 penalty unless all switches are activated,
in which case they give a +1 bonus. Both prizes and switches
disappear once collected. The main feature of Triggers is that
every positive reward is conditional to the presence of a known
subset of states in the agent history, and thus credit assignment
can be assessed in a rigorous way. Some instances of Triggers
can prove challenging to solve optimally for traditional RL
methods since agents have to activate every Triggers before
experiencing rewards. Triggers environments being MDPs,
we turn their states into observations by cropping the view
around the agent. We use 3x3 windows in all our experiments.
Trajectories are generated with random policies.

DMLab keys doors. We use the keys doors puzzle
3D environment from DMLab [Beattie et al., 2016] in which
the agent must locate keys whose colors indicate the doors they
open. It can only possess one key, therefore picking the wrong
key prevents it from reaching further rewards. The agent
receives as input what would correspond to a first person view
of what is in its line of sight. It can move forward, backward
and rotate. Each key picked up grants a +1 bonus, equally to
each door opened. Independently, a cake rewards the agent by
a +50 increase in score when collected. Unlike in Triggers and
because the environments are partially observable, we do not
apply any transformation to the observations the agent takes
as input. In that setup, agents benefit from understanding the
link between keys and doors. We hypothesized that SECRET
might exploit this relation and reward the agent for picking up
keys. To assert this, we modified the setting so that picking
up keys does not provide rewards. Additionally, the visual
input is richer than the one from Triggers environments and
the average number of steps per episode is extended. Finally,
agents move and rotate across the room. Since picking up a
key does not require to look at the key, it can be hard to know
if a key was taken and predict further door opening rewards.
Trajectories used to train SECRET are generated with a trained
agent.

Implementation details. We use Q-learning [Watkins and
Dayan, 1992] (tabular, with a learning rate of 0.1 and ε = 0.1)
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for experiments in Triggers except for out-of-domain trans-
fer to environments with modified dynamics where we use
DQN [Mnih et al., 2015]. We use PPO [Schulman et al., 2017]
for in-domain experiments in DMLab, with identical hyper-
parameters as in Episodic Curiosity [Savinov et al., 2019],
whose code is open-source. Note that we use SECRET with
various RL agents, without any change to the algorithm.

For the reward prediction model, we use the same set of
hyperparameters in all experiments with little variation. In
Triggers experiments, we use 128 units per dense layer, 32
convolutional filters and a single convolutional layer to process
partial states. We use a dropout rate of 0.1 after dense layers,
a dropout rate of 0.2 in the self-attention mechanism and in
the normalization blocks of the Transformer. Class weights in
the loss function are set to w(1) = w(−1) = 0.499, w(0) =
0.002. In DMLab experiments, we use 16 convolutional filters
and two convolutional layers to process partial states, and
otherwise identical hyperparameters.

In Triggers, 40000 trajectories are sampled from random
policies to train reward prediction models. In DMLab, 10000
trajectories are sampled from a pretrained agent, since random
policies cannot be used for transfer: they yield very few if no
high-reward trajectories. Still in DMLab, we use a constructed
state to compute the potential function in Equation (1) and (2):
it is the concatenation of the discretized position and the iden-
tifier of the key possessed. Relying on a manually constructed
state limits the generality of our approach in POMDPs, but we
are confident that this limitation can be addressed by using an
estimate of the true state, which we leave for future work.

3.1 Credit Assignment
We provide an analysis of the credit inferred by SECRET. The
analysis is qualitative and quantitative, since we rely on both
visual assessment and binary detection metrics.

The process of evaluating credit assignment in Triggers goes
as follows: we first generate trajectories and train the model.
We then compare the credit assigned by SECRET on trajectories
sampled from held-out environments to a ground truth credit
assignment. We build that ground truth by exploiting the exact
knowledge of where triggers are. It is a vector that is 0 almost
everywhere and 1 on state-action couples that precede the
activation of a Triggers. By doing so, we explicitly target the
state-action couples whose resulting state is causally linked to
the reward experienced later.

We find the redistribution to be near optimal in simple in-
stances of Triggers (see Fig. 2-left): attention concentrates
quasi exclusively on state-action pairs that enable the collec-
tion of future reward. This is confirmed by precision-recall
analysis: we compare binarized attention vectors (values above
α are set to 1) to ground truth attention vectors (their values
are 1 for timesteps that correspond to trigger activations and
0 otherwise). Over the distribution of scenarios considered
and for α = 0.2, it yields an average precision of 0.96 for an
average recall of 0.94.

In keys doors puzzle, we adopt the same set of ex-
periments. Since the agent can move backward and spin, in
some scenarios it takes a key that is not in its line of sight.
In addition, the granularity of the state space is such that
off-by-one prediction errors are common but do not hinder

Figure 2: Left: the distribution of attention weights around triggers
for correct positive reward predictions in a 8x8 Triggers maze with
3 triggers and 1 reward. The x-axis denotes the number of steps
between the state-action couple receiving attention and the closest
moment the agent activated a switch. Right: the distribution of
attention weights around keys for correct reward predictions for door
traversals in DMLab.

Figure 3: Left: in-domain transfer results on a 8x8 Triggers with 3
triggers and 1 reward. Right: results in DMLab.

the credit mechanism: attributing credit to the state-action
couple preceding the collection of a key or the previous one
leads to imperceptible changes in the resulting shaped rewards.
Fig. 2-right shows similar results as for Triggers.

3.2 Transfer
We then study how we can leverage the inferred credit and
transfer representations that are helpful in new scenarios. We
show that agents train faster when using shaped rewards from
SECRET. As before, the reward model is trained on episodes of
interaction in environments sampled from the source distribu-
tion. In transfer environments, we sample multiple trajectories,
each using the same maze configuration. We then compute
the attentional potential function by calculating an estimate of
the expected redistributed reward, as described in Sec. 2.2. To
evaluate its effect, we compare agents trained from environ-
ment rewards to agents that use the resulting shaped reward.

In-domain transfer. For in-domain transfer, we transfer the
representations for credit assignment to held-out instances of
the same distribution over MDPs. For the Triggers environ-
ment, the RL agents are tabular Q-learners. For the DMLab
environment, we use PPO agents [Schulman et al., 2017] and
modify the original task: we do not reward the agent for col-
lecting keys but only to open doors so that the attention can
focus on the key positions. Note that it makes the task harder.

As we display in Fig. 3 agents learn visibly faster to solve
tasks when benefitting from SECRET in both environments.

Out-of-domain transfer. For out-of-domain transfer we use
the Triggers environment and consider two scenarios that are
hard for standard agents: transfer to bigger environments and
transfer to environments with inverted dynamics (see Fig. 4).
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Figure 4: Left: we study transfer to bigger mazes where the struc-
ture of the original task is conserved (number of triggers, number
of prizes). Environments drawn are 12x12 grids with 1 trigger and
1 prize for the top figure versus 2 prizes for the bottom one. Envi-
ronments from the training distribution are 8x8 grids. Right: the
controls of the out-of-domain distribution are inverted (up becomes
down, right becomes left). Environments are 8x8 grids with 1 trigger
and 1 prize (top figure) or 2 prizes (bottom figure). The effect of the
shaping is exclusively beneficial, while transferring weights from the
source task can be detrimental to the learning process.

In the bigger setting, direct weight transfer cannot be used
since the visual input has bigger spatial dimensions. On the
other hand, SECRET can be used since the transformation we
apply to turn states into observations conserves the visual in-
put dimensions. In the inverted dynamics setting, the effect of
the agent’s actions are inverted, which makes the task hard for
transfer methods. In that setting, we compare the transferabil-
ity of our mechanism to that of the representations learned by
an agent equipped with deep function approximation. To this
end we use DQN agents and either train them from scratch in
the target environments or start from the set of weights learned
in the source environments (WT in Fig. 4-right).

In both settings, shaping the rewards assists the agent in
learning to solve the task. We display some results in Fig. 4.
When transferring to bigger environments, the agent benefits
very early on from the shaped reward, while also reaching
better asymptotical performance.

4 Related Work
Transfer in RL. While a lot of approaches exist in the trans-
fer literature, to the best of our knowledge none explicitly
transfer credit assignment capabilities. Previous work aimed at
making the training of an agent in the same task more sample-
efficient by using a pretrained model as a teacher [Rusu et al.,
2016a]. We learn to assign credit as a parallel task that does
not modify the representations of the RL agent. Others learn
auxiliary reward functions in the hope that they will enable
transfer by imposing consistency in the reward [Houthooft
et al., 2019]. Although we also learn additional reward sig-
nal, it is based on a redistribution of rewards from the en-
vironment, which ensures consistency with the original re-
ward function. Transfer is also viewed as learning tasks
in a sequential way [Rusu et al., 2016b; Kirkpatrick et al.,

2017] and this suggests to introduce inductive bias to the
neural architectures of agents to reduce catastrophic forget-
ting. Our method does not require to alter the agent’s ar-
chitecture. Other explicitly address the problem of transfer
through the lens of multitask learning [Parisotto et al., 2016;
Teh et al., 2017] while we stick to learning from an initial
distribution of environments. Meta-learning approaches aim
to train agents on a distribution of tasks or environments so
that their learned skills and representations work across the
underlying continuum, and allow for fast adaptation of the
agents [Duan et al., 2017; Wang et al., 2016; Finn et al., 2017;
Mishra et al., 2018]. In contrast to meta-learning methods, we
do not modify the RL algorithm used to train the agent and
SECRET is compatible with any core algorithm for RL.

Credit assignment. Previous works investigated the role of
attention mechanisms for credit assignment. SAB [Ke et al.,
2018] is a sparse attention mechanism used to derive a mod-
ified backpropagation algorithm. We draw inspiration from
SAB but operate in the RL context without sparsity assump-
tions about the attention weights. RUDDER [Arjona-Medina
et al., 2019] is an online method for credit assignment based
on return decomposition. The focus of RUDDER is on on-
line credit assignment while ours is on transfer. Also, our
method operates offline and decomposes individual rewards
while theirs require a specific exploration scheme, an addi-
tional episodic replay buffer, a compute-heavy contribution
analysis method and the addition of several auxiliary losses to
the objective the RL agent optimizes. In comparison, SECRET
is a lightweight method that does not deal with exploration.
TVT [Hung et al., 2018] provide an agent with an external
memory and the unsupervised task of reconstructing its inputs
(both states and rewards). The agent uses memory reads as a
way to identify related elements in sequences, and uses those
to transfer the value of states providing delayed rewards to
the bootstrapping target of contributing elements. In contrast,
SECRET makes use of a non-autoregressive architecture, does
not reconstruct states, makes use of reward shaping instead of
modifying the update function and most importantly does not
rely on an external memory. Recall Traces [Goyal et al., 2019]
use a generative model that goes backward from high-reward
states and samples state-action pairs that could have led to that
state. SECRET also works backward from high-reward states
but creates links to previous states from existing trajectories
instead of sampling them.

5 Conclusion
In this work, we investigated the role credit assignment could
play in transfer learning and came up with SECRET, a novel
transfer learning method that takes advantage of the relational
properties of self-attention and transfers credit assignment
instead of policy weights. We showed that SECRET led to
improved sample efficiency in generalization and transfer sce-
narios in non-trivial gridworlds and a more complex 3D navi-
gational task. To the best of our knowledge, this is the first line
of work in the exciting direction of credit assignment for trans-
fer. We think it would be worth exploring how SECRET could
be incorporated into online reinforcement learning methods
and leave this for future work.
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