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Abstract

Functional dependency can lead to discoveries of
new mechanisms not possible via symmetric asso-
ciation. Most asymmetric methods for causal direc-
tion inference are not driven by the function-versus-
independence question. A recent exact functional
test (EFT) was designed to detect functionally de-
pendent patterns model-free with an exact null dis-
tribution. However, the EFT lacked a theoreti-
cal justification, had not been compared with other
asymmetric methods, and was practically slow.
Here, we prove the functional optimality of the
EFT statistic, demonstrate its advantage in func-
tional inference accuracy over five other methods,
and develop a branch-and-bound algorithm with
dynamic and quadratic programming to run at or-
ders of magnitude faster than its previous imple-
mentation. Our results make it practical to answer
the exact functional dependency question arising
from discovery-driven artificial intelligence appli-
cations. Software that implements EFT is freely
available in the R package ‘FunChisq’ (>2.5.0) at
https://cran.r-project.org/package=FunChisq

1 Introduction

As artificial intelligence becomes ubiquitous to capture data
harboring dynamic, nonlinear, and non-monotonic relation-
ships, the ability to tell functionally dependent patterns apart
from independent patterns can enable one to contemplate on
causality—a task important for reasoning. One application
domain is biomarker discovery. For example, in aging re-
search, one goal is to detect how longevity is a function of
biomarker genes [Zhavoronkov and Mamoshina, 2019]. Nu-
merous statistics have been proposed for association stud-
ies [Bewick et al.,, 2003] and are still counting [Jiang and
Wu, 2018; Leung and Drton, 2018; Pardy et al., 2018]. These
statistics often have dual optimality. At one extreme, an in-
dependent pattern minimizes such a statistic; at the other ex-
treme, a perfect pattern maximizes the statistic. Here min-
imization and maximization can be switched. A statistic is
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characterized by the type of perfect pattern on which it opti-
mizes. If a perfect pattern must belong to a family of para-
metric equations, the statistic is model based; otherwise, the
statistic is model free. We focus on statistics derived from
contingency tables for pattern discovery, because they alle-
viate one from the requirement of parametric equations and
most of them are model free.

If a perfect pattern optimizing a statistic between X and Y
requires either Y being a function of X or X being a function
of Y, we call the statistic symmetrically functionally optimal.
Model-free symmetric functional optimality underlies statis-
tics of many well-known tests, including Pearson chi-squared
test [Pearson, 1922], G-test/mutual information [McDonald,
2014], and Fisher exact test [Fisher, 1922]. Although rarely
discussed, such a property is rudimentary to the success of
these long-lived tests of association. However, due to sym-
metry over X and Y, these tests cannot provide evidence for
the direction of functional dependency.

To assess functional dependency, one can design tests with
asymmetric functional optimality—the test statistic is opti-
mized if and only if Y is a function of X. Two methods
in the literature claim such a property: conditional entropy
[Cover and Thomas, 2006] and exact functional test (EFT)
[Zhong and Song, 2019]. Conditional entropy H (Y|X) is
minimized to zero if and only if Y is a function of X. How-
ever, no statistical test is associated with H(Y'|X'). One may
attempt to derive the exact p-value for conditional entropy.
However, it can be proven that the exact p-values of H (Y| X)
and H(X|Y') are always equal at fixed row and column sums,
making the corresponding exact test symmetrical. In contrast,
EFT is the only known exact test to detect asymmetric func-
tional dependency. The test calculates a p-value by an exact
distribution of its test statistic under the null hypothesis that
X and Y are independent. Although empirical evaluation
showed that EFT promotes functional patterns by demoting
non-functional patterns [Zhong and Song, 20191, a theoret-
ical explanation was not offered regarding the optimality of
EFT for inferring functional dependency. Other asymmet-
ric methods are founded on principles different from func-
tional optimality. The Kruskal-Wallis test [Kruskal and Wal-
lis, 1952], as the rank-based version of ANOVA, detects dif-
ferences in the conditional mean of Y given X. Methods for
causal inference from discrete data focus on telling the direc-
tion only (X — Y versus Y — X), such as digital regres-
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sion (DR) [Peters et al., 20101, causal inference via stochas-
tic complexity (CISC) [Budhathoki and Vreeken, 20171, and
hidden compact representation (HCR) [Cai et al., 2018].

This state-of-the-art of discrete functional inference needs
either theoretical justification, clarification on the context of
accuracy, or improvement in efficiency. To fill these gaps, we
prove the asymmetric functional optimality of EFT to clarify
the foundation of functional dependency. We further evalu-
ated the accuracy of EFT in differentiating functional from
independent patterns, and it outperformed five other asym-
metric methods on simulated patterns with and without noise.
Most importantly, EFT is robust to the column (Y') marginal
distribution of contingency tables, while three other meth-
ods are heavily influenced by the deviation of the Y marginal
from a uniform distribution.

Although the previous EFT implementation used a branch-
and-bound strategy with quadratic programming to trim down
enumerations [Zhong and Song, 20191, it is still not as prac-
tical as other exact tests such as Fisher exact test, which is
implemented using dynamic programming to avoid recalcu-
lating bounds for sub-tables with identical row and column
sums [Mehta and Patel, 1983]. Marrying quadratic and dy-
namic programming, we develop an algorithm to run faster
than the previous EFT implementation by several orders of
magnitude, comparable to Fisher exact test.

Therefore, we offer the only exact test known to us that
is theoretically optimal, empirically accurate, and practically
fast to detect functional (f : X — Y’) versus independent
(X L Y) patterns on discrete data.

2 The Optimality

Let O be a contingency table with 7 rows and s columns. Let
X and Y be the row and column variables, respectively. Let
O;; be a non-negative integer representing the count in the
cell at row ¢ and column j. The sum of row ¢ is denoted by
R;, and the sum of column j is denoted by C;. Let N be the
sum of counts in all cells of the table.

The asymmetric test statistic of EFT is computed from the
observed table O [Zhong and Song, 2019] by

RS ® Cj—NS2
ZZ /$) Z( /$)

1
Pt R/s N/s M

=1

Under the null hypothesis that X and Y are statistically in-
dependent, it was shown earlier that the test statistic asymp-
totically follows a chi-squared distribution [Zhang and Song,
2013], hence the symbol 2. This null distribution is inexact.

Let S be the set of all feasible r x s contingency tables with
the same row sums and column sums as O:

S = {A : Al = Ri andA.j = CJ}
where A;. is the sum of row 7 and A.; is the sum of column j
in a contingency table A. Given row and column sums, under
the null hypothesis of X L Y, the probability of observing
A € § is multivariate hypergeometric [Freeman and Halton,
19511, constituting the exact null distribution:

H;:l Ry!- Hj‘:1 Cj!

Pr(A) =
r4) Nl'H::lH;:lAij!

@

The exact statistical significance, or p-value, associated
with table O is the sum of probabilities of all tables having
a test statistic no less than X? (0):

p-value = Z Pr(A

A test statistic 7" on the joint observations of random vari-
ables X and Y is called asymmetrically functionally optimal
if T" is maximized if and only if Y is a function of X. We
show that the functional chi-squared statistic X?v (O) is asym-
metrically functionally optimal at fixed marginal sums.

), where 4 € 8, x3(4) > x}(0) ()

Lemma 1. Given anr X s contingency table O of a total of N

counts with fixed row and column sums {R;} (i € {1,...,r})

and {C;} (j € {1,...,s}), the functional chi-squared test

statistic xfc(O) is asymmetrically functionally optimal with

S 2

the maximum value of N — ) <+ <
j=1

Proof. We establish the upper bound of Xfc (O):

P 0 ¢
ng(O) = ZZ R 2N 4)
i=1 j=1 j=1
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The bound is reached if and only if each row has only one
non-empty cell or equivalently Y is a function of X. O

Theorem 1. The p-value of EFT is minimized when Y is
functionally dependent on X, provided that such a functional
dependency is feasible with observed row and column sums.

Proof. By definition, the p-value of EFT is minimized if
X?(O) is largest. That means O is the most extreme table,
and the p-value in that case is the hypergeometric probability
Pr(O). If feasible, X?(O) is largest if Y is a function of X
(Lemma 1). If such a function is infeasible for given row or
column sums, the most extreme table deviates the most from
the null (independent) table, given row and column sums. [

Being asymmetrically functionally optimal, EFT indicates
whether Y is more likely functionally dependent on X
against X and Y being independent. This is the basis
for functional inference. The Pearson’s chi-squared statis-
tic [Pearson, 1922] achieves symmetric functional optimality.
Its upper bound N (min(s, r) — 1) [Cramér, 1999] is attained
if and only if Y is a function of X or X is a function of
Y. The Fisher exact test statistic 1/ Pr(O) is also symmetri-
cally functionally optimal. However, symmetric statistics do
not promote functions from X to Y over those from Y to X,
blind to the direction.

3 The Accuracy

A previous study [Zhong and Song, 2019] showed that EFT
promotes functional patterns more than the symmetric Fisher
exact test, while desirably demoting independent patterns
equally with the Fisher exact test. However, no other asym-
metric methods were evaluated. Thus, we compare EFT and
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Figure 1: The exact functional test exhibited outstanding robustness
to column marginal non-uniformity in contrast to five other methods.
EFT maintained good performance in detecting functional from in-
dependent patterns, but conditional entropy deteriorated as the col-
umn marginal deviated from the uniform distribution. (a) AUROC
and (b) AUPR as a function of noise level at six levels of column
marginal non-uniformity from O (uniform) to 5 (most non-uniform).

five other asymmetric methods, including the Kruskal-Wallis
test [Kruskal and Wallis, 19521, conditional entropy [Cover
and Thomas, 2006], DR [Peters et al., 2010], CISC [Bud-
hathoki and Vreeken, 20171, and HCR [Cai et al., 2018].

The non-parametric Kruskal-Wallis test evaluates whether
two or more groups are equal in mean rank. DR deter-
mines that X causes Y, if there is an additive noise model
Y'=f(X)+e, but not vice versa, where € is the noise variable.
CISC tells apart the cause and effect by identifying the direc-
tion with the lowest approximated Kolmogorov complexity.
HCR uses a two-stage process to obtain a compact descrip-
tion of the causal mechanism involved, including mapping
the cause variable to a hidden representation, and generating
the effect variable from the hidden representation.

We generated various contingency tables by a pattern sim-
ulator [Sharma er al., 2017]. In a functional pattern, Y func-
tionally depends on X but Y is not a constant function of
X; in an independent pattern, X and Y are statistically in-
dependent with column (YY) marginal distributions varying
from being uniform to non-uniform. We randomly generated
12,000 3x3 functional tables of sample size 100 with uni-
form row (X)) marginal distributions. Then we also generated
12,000 independent tables of sample size 100 at six column
marginal extremeness levels (7=0,1,2,3,4,5). The extreme-
ness is controlled by the column sum ratio, set as 17:27:37
for 3x3 tables. Column marginals are uniform at 7=0, and
become most non-uniform when 7 is 5. We evaluate the ac-
curacy of EFT and the five other methods on distinguishing
the two pattern types at four noise levels 0, 0.3, 0.6 and 1
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Figure 2: The exact functional test outperforms five other methods in
telling apart functional from independent patterns. (a) ROC and (b)
PR curves on data of highly non-uniform column marginals (7 = 5).

using the house noise model [Zhang et al., 2015]. Figure 1
shows the area under the ROC curve (AUROC) and the area
under the PR curve (AUPR) as a function of increasing noise
levels for each method. As the column marginal distribution
deviates from being uniform, we observe decreased AUROC
and AUPR of conditional entropy, HCR, and CISC. Mean-
while, EFT, Kruskal-Wallis test, and DR performed well re-
gardless of marginal distributions. At zero noise, however,
DR performed poorly with 0 AUROC and 0.25 AUPR in dis-
tinguishing functional from independent patterns. Figure 2
shows ROC and PR curves under the most non-uniform col-
umn marginal distribution (with 7 = 5) at three noise lev-
els. EFT performed the best at all noise levels in telling apart
functional from independent patterns, while conditional en-
tropy and recent causal inference methods CISC and HCR
performed poorly. Our findings indicate that column marginal
non-uniformity could give rise to spurious patterns to which
not all methods are robust. Thus direction-only inference
alone may be inadequate to prioritize directional from ran-
dom patterns. Non-uniform marginals do manifest in the real
world: single-cell genomics measurements are often skewed
to zero due to low RNA capture efficiency [Chen et al., 2019].
As such, robustness to marginal non-uniformity is a strength
of EFT for an increased accuracy in functional inference.
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4 The Efficiency

Branch-and-bound is often used in exact tests, where the
problem of identifying extreme tables for p-value calculation
is equivalent to finding extreme paths in a directed acyclic
graph. The number of feasible tables in the EFT grows
exponentially in sample size [N and polynomially in table
size r X s. Zhong and Song [2019] designed a branch-and-
bound algorithm for EFT. It uses quadratic programming to
compute upper and lower bounds of the test statistic to de-
cide whether it is necessary to continue enumerating a ta-
ble. However, it is still slow for practical use because bounds
are inexact and re-computed many times for sub-tables with
identical marginal sums. On the other hand, dynamic pro-
gramming was used with branch-and-bound for Fisher ex-
act test [Mehta and Patel, 1983; Mehta and Patel, 1986;
Clarkson et al., 1993] to compute tight bounds regardless of
the observed test statistic, potentially incurring unnecessary
work for many branches.

To alleviate this hurdle, we develop Algorithm 1 EFT-DQP
to combine dynamic and quadratic programming in branch-
and-bound. With three steps, it uses quadratic programming
to prune the feasible-table network and dynamic program-
ming to generate tight bounds for network traversal, leading
to massively reduced search space and improved efficiency.

4.1 A Network Encoding all Feasible Tables

We transform the feasible table set S into a directed acyclic
graph of sub-tables. Each table in the reference set is mapped
to a unique path from the only source node to the only sink
node in the network. The network consists of r + 1 layers of
nodes. Each node encodes a set of sub-tables with required
partial column sums. The number of columns in a sub-table
is always s. Each edge encodes values of a row in a table,
equal to differences between partial column sums of the two
nodes connected by the edge. Traversing an edge from one
layer to the next is equivalent to enumerating a row in a table.

Figure 3 illustrates a network encoding all 3x3 tables
feasible for row sums {4, 2,3} and column sums {2,3,4}.
Layers in the network from top to bottom are numbered
k =nr,r—1,...,0. An edge from layer k£ to £ — 1 corre-
sponds to row £ of a table. A node in layer £ is represented
by (k, Cik, .. .,Csk), where Cig, . . ., Cyy, are partial column
sums of k X s sub-tables mapping to rows 1 to k in a full ta-
ble. The source node is (r, Cyy,...,Cs) = (r,Cy, ..., Cs).
The sink node is (0,0, ..., 0). The full network is defined re-

cursively by specifying all nodes (k—1,C4 k—1,...,Cs k—1)
pointed to by outgoing edges of node (k, C, ..., Csg). The
range of C 1 given C1 y—1, ..., Cj_1 x—118
j—1
max (0, Cjk — Ry + Z(Clk — Cl,k—l))
=1
(6)

k-1 j—1
< Cjk—1 < min (Cjka SR> Cl,k1>
=1 =1

4.2 Lengths and Weights of Edges and Paths

Let A be a feasible table corresponding to a path 7 from
source to sink. We define the length and weight of path

Algorithm 1 EFT-DQP(Observed table O)

// Step 1. Build & prune network by quadratic bounds:

Initialize the SourceNode

for each layer k from layer r (top) to layer 1

for each node n in layer k
if QLB(n) + min, {PATHWEIGHT(7)} < T'(O)
if QUB(n) + max,{PATHWEIGHT(7)} > T'(O)

Generate child nodes using Equation (6)
Compute quadratic bounds for the child nodes

// Step 2. Find tight bounds by dynamic programming:

10 for each node n in layer 1

11 LB(n) = UB(n) = EDGEWEIGHT(n, SinkNode)

12 for each layer k from layer 2 to layer r

O 001NN K~ W —

13 for each node n in layer k

14 // m is a child node of n

15 LB(n) = min,,{LB(m) + EDGEWEIGHT(n, m)}
16 UB(n) = max,,{UB(m) + EDGEWEIGHT(n, m)}

17  // Step 3. Traverse the network using tight bounds:
18 p-value=0
19 for each layer k from layer r (top) to layer 1

20 for each node n in layer k

21 for each path 7 to node n

22 if PATHWEIGHT(7) + UB(n) < T(0)

23 Abandon all branches below node n

24 elseif PATHWEIGHT () + LB(n) > T(0)

25 p-value += PATHLENGTH(7r) - LENGTHTOSINK (1)
26 else // extending path 7 to each child node

27 for each child node m

28 7' = addNodeToPath(r, m)

29 PATHWEIGHT(7') = PATHWEIGHT(m)+
30 EDGEWEIGHT(n, m)

31 PATHLENGTH(7') = PATHLENGTH(7)-
32 EDGELENGTH(n, m)

33 return p-value

7 by the null probability and test statistic of table A, re-
spectively. Row k of A maps to an edge from node n =
(k, Ciky.nns Csk) to node m = (/ﬂ -1, Cl’kfl, ceey Csykfl)
onpath m: Ag; = Cj, — Cjp—1 (j = 1,...,s). We define
this edge’s length by EDGELENGTH(n, m):

R TLICo - Con)) = By T[4 @)

Proportional to null probability Pr(A4) (Eq. (2)), we define
the path length as the product of edge lengths along path 7:

_ H::1 R;!
1= [T, Ayt

Test statistic x?-(A) in Eq. (1) can be written as
r s A? s CQ

A =s( 2D 2w ©)
R; = N

Since s, R;,C;, and N are fixed and only relative test statis-

i=1j=1
tics are needed for p-value calculation in Eq. (3), we de-
fine the first term inside the parentheses as the test statistic

T(A) = é?l ; A

PATHLENGTH(7) 3

R” . We define the weight of the edge from
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Figure 3: The branch-and-bound network. A directed acyclic graph where paths from the source node to the sink node represent all possible
tables with row sums {4,2,3} and column sums {2,3,4}. Each edge maps to a row in a table, but the edges along a path are in the reverse row
order. The highlighted path corresponds to table A on the right, with the 1st, 2nd, and 3rd edges along the path encoding row three (1,1,1),

row two (1,0,1), and row one (0,2,2) of A, respectively.

node n = (k, Cip, ..., Csp) tom = (k — 1, Cy j—1, - ..,
Cs.x—1) by EDGEWEIGHT(n, m):
> (Cir = Cjn1)*/Re =Y A}/ Ri (10)
j=1 j=1
We define the weight of a path as the sum of edge weights
along the path. So the weight of path 7 for table A is exactly
T(A). The p-value associated with x7(O) is equal to

p = Pr(A), where A € Sand T(A) > T(0)

Equivalently, the p-value is the sum of lengths of all paths
whose weights are no less than 7'(0).

4.3 Network Pruning via Quadratic Programming

To avoid traversing the full network, equivalent to enumer-
ating every feasible table, Step 1 of the EFT-DQP algo-
rithm creates a pruned network using quadratic programming
bounds. When a branch leads to a subset of tables that are all
more or all less extreme than the observed table, any further
branches are pruned from the network.
Adapting the quadratic bounds in [Zhong and Song, 20191,
we use a quadratic upper bound
k s A*»Q
UB(k, Cig,...,Csx) = — 11
QUB(k, Cui ) ; ; 7 (11)
where Aj; = min{U;, R;} for j=1 or min{U;, R; —
SYL Az} for j>1 and {U;} is decreasingly sorted

{CT:, . .2, Csk }- A quadratic lower bound is
k s A>}<fk2
— ij
QLB(k,Clk,...,CSk)_;;Ti (12)

where Aff=min{L;, R;/s} for j=1 or min{L;, (R; —
an_:ll A /(s —j+ 1)} for j7>1 and {L;} is increasingly
sorted {C1g, ..., Csk }. As a trade-off between tightness and
efficiency, both bounds are correct but not always tight.

The current node n = (k,Ciy,...,Csk) will not be ex-

panded when one of two conditions is satisfied:
QLB(n) + milr_ll{PATHWEIGHT(ﬂ')} >T(0) (13)
(S

QUB(n) + mealgl({PATHWEIGHT(ﬂ)} <T(0) (14)
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where II represents all sub-paths from source to n. If the
condition in Eq. (13) is satisfied, each and every child node
of n contributes to tables heavier than O. If the condition in
Eq. (14) is satisfied, each and every child node of n belongs
to tables lighter than O. In either case, the branches beyond
the current node n are pruned.

4.4 Network Traversal via Dynamic Programming

Step 2 in the EFT-DQP algorithm computes tight bounds by
dynamic programming on the pruned network. We define
LB(node), the exact lower bound for the weight of a sub-
path, as the smallest weight among all the sub-paths from
this node to sink node. Similarly, we define the exact up-
per bound UB(node) as the greatest weight among all the
sub-paths from this node to the sink node. For each node
in bottom layer 1, the initial bounds are UB(1, C11,...,Cs1)
= LB(1,Ci1,...,Cs1) = (C3, + -+ C%)/R;. For any
node n = (k,Cig,...,Cg) in layer k& > 1, the recurrence
equations for lower and upper bounds are

LB(n) = min{LB(m) + EDGEWEIGHT(n,m)}  (15)
UB(n) = max{UB(m) + EDGEWEIGHT(n,m)} (16)

where m = (k — 1,C1 j—1, . ..
and belongs to layer k — 1.

The recurrence is evidently correct as the definitions are
exhaustive. Encouragingly, as a sub-table of required row and
column sums can show up in many paths, the two bounds
need only computed once. Reusing of bounds for the same
sub-table in many paths leads to massive saving in time.

Although dynamic programming can store the bounds in a
multidimensional array, it will be inefficient as most entries
in the array can be empty due to network pruning. We thus
create a hash table with sub-table column marginal sums as
key and bounds as value to improve space efficiency.

In Step 3, we use upper bounds to stop enumeration of a
partial table that is no longer possible to be more extreme than
the observed table O, or use lower bounds to keep all tables
that contain the partially enumerated one which guarantees
no less extreme than 0. We enumerate one row at a time.
This step starts from the source node (r,Cy,,...,Cs.). Let
the current node be n = (k, C1g, . .., Csi). The accumulated
length and weight of a sub-path 7 from source to the current

, Cs.x—1) is a child node of n
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node n are PATHLENGTH(7):

T

R;!
17
N e ay ™

and PATHWEIGHT (7):

L (O Cria)? 4+ (G — Coin)?
Z (Cy Li—1)" 4 ( ie1) (18)
. R;
i=k-+1
We abandon the branch beyond the current node n if
PATHWEIGHT(7) + UB(n) < T'(O) (19)
We keep all sub-paths from current node n to sink if
PATHWEIGHT(7) + LB(n) > T(O) (20)

The sum of lengths of all such sub-paths from n =

(k,Cik, ..., Csk) to sink equals

(Ri+ -+ Ry)!
Cig! - Cs!

If condition (20) holds, the extended length of the current path
7 will be updated as PATHLENGTH(7r)- LENGTHTOSINK(n).

LENGTHTOSINK(n) = 20

4.5 Empirical Evaluation of the EFT Speedup

To compare EFT-DQP and the previous EFT quadratic
programming (EFT-QP) implementation [Zhong and Song,
2019], we measured their runtime on contingency tables at in-
creasing dimensions and sample sizes (Figure 4). At the table
size of 3x3, both methods ran fast, because quadratic pro-
gramming has lower overhead than dynamic programming.
Remarkably, as the table size increases, the runtime benefit
of EFT-DQP becomes overwhelming. In 5x5 tables of sam-
ple size 40 (Figure 4), the speedup of EFT-DQP over EFT-QP
can be three orders of magnitude or higher.

3x3 tables

4x4 tables 5x5 tables

Time (in seconds)
1e-03 1e+00 1e+03
Time (in seconds)
1e—0‘3 1e+OQ 1e+0§
Time (in seconds)
1e-03 1e+00 1e+03

40 80 120 160 20 40 60 80 100 20 25 30 35 40
Sample size Sample size Sample size

EFT-DQP @ EFT-QP @ functional A independent

Figure 4: EFT-DQP runs remarkably faster than the previous EFT-
QP approach. On functional tables, both algorithms are fast and
comparable in runtime. On independent tables, the runtime is more
substantial. As the table size and sample size increase, the benefit

of EFT-DQP becomes evident on 4 x4 tables and extraordinary on
5x5 tables: it is 1500-fold faster than EFT-QP at sample size 40.

5 Discussion

We focus on the question whether one quantity is a function
of another (f: X —Y") against them being independent (X L
Y'). Other recent causal inference methods answer a different
question whether the direction is from X to Y or Y to X.
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Measuring the information content of Y conditioned on
X, conditional entropy H (Y| X) is both asymmetric and un-
conditionally functionally optimal. However, it subjects to
false positives arising from independent patterns represented
by tables with a column (Y’) marginal distribution deviat-
ing from being uniform. In contrast to conditional entropy,
EFT’s asymmetric functional optimality is conditioned on the
Y marginal distribution. Such conditional optimality, or “im-
perfectness,” is also shared by Fisher exact test (though it
is symmetric). Surprisingly, this “imperfectness” counter-
intuitively frees EFT from the influence of non-uniform Y
marginal distributions. Our simulation study suggests that
EFT showed substantial statistical robustness to variations in
Y marginal distribution. We illustrate this fundamental dif-
ference between EFT and conditional entropy on two tables:

1 2 15
2 30 4
60 8 4

The first table is an independent table with a highly non-
uniform Y marginal distribution. The second table is a strong
functional table with a more uniform Y marginal. Condi-
tional entropy computed on both tables takes the same value
of 0.5566, failing to distinguish them. In contrast, EFT re-
turns the p-values of 1 and 2.05x 1072 respectively for the
two tables, correctly recognizing a perfect independent pat-
tern (1st table) and promoting a functional pattern (2nd table).

In practice, one could argue to add a preprocessing step
to filter out patterns of extreme Y marginal distributions
before applying a direction-only method. However, as the
performance of three such methods degrades continuously
as Y marginal non-uniformity increases (Figure 1), it can
be tricky to decide a threshold to use for filtering. Mean-
while, EFT, balancing between functional dependency and
marginals, does not need such a preprocessing step.

It remains an open question whether a test can be effective
in detecting both functional (against independent) and direc-
tional relationships. Such a test would be convenient to dis-
cover directional patterns not spuriously arising from noise.

—
=N =
0 > N
DW=
O Ot
—

6 Conclusions

We have established the EFT as an effective method for de-
tecting functional patterns based on its theoretical asymmetric
functional optimality, favorable empirical performance over
alternative methods, and a practically fast algorithm. We
have also argued that functional optimality is the underlying
principle of widely used association tests, including Pearson
chi-squared test, Fisher exact test, G-test/mutual information,
and conditional entropy. Such a principle was not explicitly
stated in the past. EFT is the only asymmetric exact test based
on this principle. Recent causal inference methods are not
suitable for testing functional versus independent patterns.
Therefore, our work contributes a practical statistical infer-
ence method to assess evidence for functional dependency
increasingly important in artificial intelligence.
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