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Abstract

Stochastic variance-reduced gradient (SVRG) is an
optimization method originally designed for tack-
ling machine learning problems with a finite sum
structure. SVRG was later shown to work for policy
evaluation, a problem in reinforcement learning in
which one aims to estimate the value function of
a given policy. SVRG makes use of gradient esti-
mates at two scales. At the slower scale, SVRG
computes a full gradient over the whole dataset,
which could lead to prohibitive computation costs.
In this work, we show that two variants of SVRG
for policy evaluation could significantly diminish
the number of gradient calculations while preserv-
ing a linear convergence speed. More importantly,
our theoretical result implies that one does not need
to use the entire dataset in every epoch of SVRG
when it is applied to policy evaluation with linear
function approximation. Our experiments demon-
strate large computational savings provided by the
proposed methods.

1 Introduction

Policy evaluation is an important problem in reinforcement
learning (RL) whose goal is to estimate the value function,
a function which measures the long-term expected return at
any given state. Theoretically well-studied linear methods
for policy evaluation fall into two categories: least square
approaches [Bradtke and Barto, 1996; Boyan, 2002] and gra-
dient based approaches [Baird, 1995; Sutton et al., 2008;
Sutton et al., 2009; Liu et al., 2015]. In large data settings,
least square approaches are not efficient because they compute
matrix inverses, and gradient based approaches are preferable.

One of objective functions used by gradient-based methods
for policy evaluation is Mean Squared Projected Bellman Error
(MSPBE). Existing methods such as TD [Sutton, 1988], GTD2
and TDC [Sutton et al., 2009] have sublinear convergence
rates when solving this objective as shown in [Bhandari ez al.,
2018; Touati et al., 2018; Dalal et al., 2019]. Du et al. [2017]
applied SVRG [Johnson and Zhang, 2013] to solve MSPBE,
leading to a linear convergent method. An important and

*Equal contribution. T Work done while at Facebook Al research.

2697

computationally heavy step of SVRG is to compute a full
gradient at the beginning of every epoch.

In this paper, we address the computational bottleneck
of SVRG for policy evaluation, by extending batching
SVRG [Harikandeh et al., 2015] and SCSG [Lei and Jor-
dan, 2017] to solve MSPBE. Both methods were originally
designed for convex minimization problems. These are signif-
icantly different from our objective, a convex-concave saddle-
point problem without strong convexity in the primal vari-
able!. The convergence analysis in [Harikandeh et al., 2015;
Lei and Jordan, 2017] does not apply in our settings and we es-
tablish new convergence results of batching SVRG and SCSG
for solving MSPBE. In this work, we make the following key
contributions:

1. We show that both batching SVRG and SCSG achieve lin-
ear convergence rates for policy evaluation while yielding
considerable savings in the number of gradient computa-
tions. To the best of our knowledge, this is the first result
for batching SVRG and SCSG in the saddle-point setting.

2. While our analysis of SCSG builds on the ideas of [Lei
and Jordan, 2017], our proofs end up quite different and
also a lot simpler because we exploit the structure of our
problem.

3. Our experimental results demonstrate that batching SVRG
and SCSG are efficient in large data settings.

2 Background

In RL, a Markov Decision Process (MDP) is typically used to
model the interaction between an agent and its environment.
An MDP is defined by a tuple (S, A, P, r,~), where S is the
set of possible states, A is the set of actions,the transition
probability function P : § x A — (S — [0, 1]) maps state-
action pairs to distributions over next states. r denotes the
reward function: (S,.A) — R, which returns the immediate
reward that an agent will receive after performing an action a
at state s and y € (0, 1) is the discount factor used to discount
rewards received farther in the future. For simplicity, we will
assume S and A are finite.

'A general convex-concave saddle-point problem can be solved
with a linear convergence rate [Balamurugan and Bach, 2016], but
the method requires strong convexity in the primal variable and the
access to a proximal operator.
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A policy 7 : § — (A — [0,1]) is a mapping from states
to distributions over actions. The value function for policy
m, denoted V™ : § — R, represents the expected sum of
discounted rewards along the trajectories induced by the policy
in the MDP: V™ (s) = E[Y_.;2 7'r¢ | so = s, 7. V™ can be
obtained as the fixed point of the Bellman operator over the
action-value function 7"V = r™ + vP™V where r” is the
expected immediate reward and P is defined as P™ (s'|s) £
Y acam(a|s)P(s" | s, a).

In this paper, we are concerned with the policy evaluation
problem [Sutton and Barto, 1998] i.e. estimation of V™ for
a given policy 7. In order to obtain generalization between
different states, V™ should be represented in a functional form.
In this paper, we focus on linear function approximation of
the form: V(s) £ 0T ¢(s) where § € R? is a weight vector
and ¢ : S — R is a feature map from states to a given
d-dimensional feature space.

3 Objective Functions

We assume that the Markov chain induced by the policy 7 is
ergodic and admits a unique stationary distribution, denoted
by d™, over states. We write D™ for the diagonal matrix whose
diagonal entries are (d"(s))ses-

If & = (¢(s))ses € RISIX9 denotes the matrix obtained
by stacking the state feature vectors row by row, then it is
known [Bertsekas, 2011] that ®8* is the fixed point of the
projected Bellman operator :

0" =T T™(90*) | )

where IT" = ®(® " D™®)~1® " D™ is the orthogonal projec-
tion onto the space S = {®0 | § € R4} with respect to the
weighted Euclidean norm ||.||p~. Rather than computing a
sequence of iterates given by the projected Bellman operator,
another approach for finding 6* is to directly minimize [Sut-
ton et al., 2009; Liu et al., 2015] the Mean Squared Projected
Bellman Error (MSPBE):
MSPBE(4) = %HH”T”((I)H) —®0|%. . Q)
By substituting the definition of II™ into (2), we can
write MSPBE as a standard weighted least-squares problem
(See [Sutton er al., 2009] for a complete derivation):

MSPBE () =

1
5 140 = bllgs 3

where A, b and C are defined as follows:

A =E[$(s:)((5:) —7¢(5041))"] = @ DT(I —P™)®
b=E[p(s;)ri] =D D™r"
C =E[¢(st)p(s1)"] = D" P

where the expectations are taken with respect to the stationary
distribution.

Empirical MSPBE: We focus here on the batch
setting where we collect a dataset of n transitions
{(s¢,a4,7¢,5t41) }ee[n) generated by the policy 7. We
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replace the quantities A, b and C in (3) by their empirical
estimates:

PO L R
A:fEA b=
nt:l

where for all t €

th, C= th )
[n], for a given transition (s;, as, ¢, S¢41)

Ay 2 ¢(s0) (1) — Yb(5041)) T2 by 2 146(51),
Ci £ @(s0)o(se) | 5)

Therefore we consider the empirical MSPBE defined as fol-
lows:

10 - 12
EM-MSPBE(0) = HAG - bHCH ©6)
Finite sum structure: We aim at using stochastic variance-
reduction techniques to our problem. These methods are de-
signed for problem with finite sum structure as follows:

Zfl (7)

Unfortunately, even by replacing quantities A, b and C' by
their finite-sample estimates, the obtained empirical objective
in (6) could not be written in such form (7). However, Du et
al. [2017] convert the empirical MSPBE minimization in (6)
into a convex-concave saddle point problem which presents
a finite sum structure. To this end, Du et al. [2017] use the
convex-conjugate trick, and the empirical MSPBE minimiza-
tion is shown to be equivalent to:

mln f

: s 1.
min max <f(9,w)<bA9,w>2||w||é) (8)
The obtained objective, we denote by f(6,w), in (8) could
be written as f(,w) = + > 7" | fi(6,w) where f;(f,w) =
(e — Aud) — Lkl

4 Existing Optimization Algorithms

Before presenting our new methods, we first review briefly
existing algorithms that solve the saddle-point problem (8).
Let’s define the vector F'(6,w) obtained by stacking the primal
and negative dual gradients:

Fo,w) (—VVGL{}?’@%) = (Ao _%Tféw) ®

We have F(0,w) = 13" F,(0,w) where Vt € [n] :

—Alw
F(0,w) = ( & ¢
t( 7(4]) (At _bt+th>

Gradient temporal difference: GTD2 algorithm [Sutton et
al., 2009], when applied to the batch setting, consists of the
following update: for a uniformly sampled ¢ € [n]:

<z> - <z> - (000 aow> Fi(0,w) (10)

where oy and o, are step sizes on 6 and w. GTD2 has a low
computation cost per iteration but only a sublinear conver-
gence rate [Touati et al., 2018].
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SVRG for policy evaluation: Du et al. [2017] applied
SVRG to solve the saddle-point problem (8). The idea is
to alternate between full and stochastic gradient updates in
two layers of loops. In the outer loop, a snapshot (6, ©) of the
current variables is saved together with its full gradients vector
F(6,%). Between snapshots, the variables are updated with a
gradient estimate corrected using the stochastic gradient:

UtéFt(eaw)+F(é7@)_Ft(éaa)) (11)

where ¢ € [n] is uniformly sampled. Du et al. [2017] showed
that the algorithm has a linear convergence rate although the
objective (8) is not strongly convex in the primal variable 6.
However, the algorithm remains inefficient in term of compu-
tations as it requires to compute a full gradient using the entire
dataset in the outer loop. In the rest of the paper, "an epoch"
means an iteration of the outer loop. In the sequel, we intro-
duce two variants of SVRG for policy evaluation that alleviate
the computational bottleneck in SVRG while preserving the
linear convergence rate.

5 Batching SVRG and SCSG for Policy
Evaluation

Both batching SVRG [Harikandeh er al., 2015] and SCSG [Lei
and Jordan, 2017] were initially introduced for convex mini-
mization. Here, we apply them to our convex-concave saddle-
point objective function. Algorithm 1 shows the pseudo-code
of our methods.

Batching SVRG for policy evaluation estimates full primal
and dual gradients in each epoch m using only a subset B (a
mini-batch) of size |B| = B, of training examples: ., =

5= e, Fi(6,0). In each iteration j of the inner loop, it
uses Um,j o update ¢ and w. vy, ; is the usual SVRG update,
except that the full gradients is replaced with the mini-batch
gradients Hm- Umj = th (G'm,jaw’rn,j) - th (9,&)) + Hm
where t; is sampled uniformly in [n].

SCSG for policy evaluation implements the gradient com-
putation on a subset B of training examples at each epoch.
Unlike batching SVRG, the mini-batch size is fixed in advance
and not varying. Moreover, instead of being fixed, the number
of iteration for the inner loop in SCSG is sampled from a ge-
ometrically distributed random variable: K, ~ Geom(

for each epoch m.

71

6 Convergence Analysis

6.1 Notations and Preliminary

In order to characterize the convergence rates of proposed
algorithms, we need to introduce some new notations and state
new assumptions.

We denote by || A = SUp||; =1 |[Az|| the spectral norm of

the matrix A and by x(A) = || A||||A~}| its condition number.
If the eigenvalues of a matrix A are real, we use A\pax(A) and
Amin(A) to denote respectively the largest and the smallest
eigenvalue.

If we set o, = Boy for a positive constant 3, it is possible
to write the inner loop update (line 11) as an update for the

Algorithm 1 Batching SVRG and SCSG for policy evaluation.
Line 3 and 6 are steps only in batching SVRG. Line 4 and 7
are steps only in SCSG.
Batching SVRG’s input: initial point (6, w), og, 0y, M, K
SCSG’s input: initial point (0, w), o9, 0,, M, K and B
Output' (0, w)
: for m=0to M-1do
2. Set (6,@) and (0.0, Wim.0) to (6, w).
3:  Batching SVRG’s step: choose a mini-batch size B,,.
Sample a set B with B,,, elements uniformly from [n]
4:  SCSG’s step: sample a set 3 with B elements uniformly
from [n]
Compute (i, =

5 |B\ ZteB Ftw d))

6:  Batching SVRG’s step: K. BK

7. SCSG’s step: K., ~ Geom(537)

8: forj=0to K,, —1do

9: Sample ¢; uniformly randomly from [n]

0 _th(97w)+um
1

Um,j = Fi;(Om,j,wm,;)

9m,j+1 “ mej N g9 0 Vi
Wm,j+1 Wm,j 0 ow !

12:  end for
13: (9,0&)) - (em,Kmvwmme)
14: end for

15: return (6,w)

0 .
vector Zm,j £ (1237] ) as follows :
VB

m,j

where:

Zm,j+1 = Zm,j — 09 (thzm,j + (Gm - th)zm,() - gm)
—VBA/] )

o (A E0) »2(A)
t = \/BAt ﬂé't gt = \/Bbt

and their corresponding averages over the mini-batch B,,,:

G |B\ZG“ gm = >oa

teBm teEBm

Wml

Let’s now define the matrix G (the vector g) as the average of
matrices G (vectors g;) over the entire dataset:

o+ (0 ) ot ()

To simplify notations, we overload the notation A, =
Amin(G). Another important quantity that characterizes
smoothness of our problem is L2, defined below as:

1 n
-3 Gl G,
n

t=1

The matrix G will play a key role in the convergence analysis
of both batching SVRG and SCSG. Du et al. [2017] have
already studied the spectral properties of G as it was critical
for the convergence of SVRG for policy evaluation. The

12)
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following lemma, restated from [Du er al., 20171, shows the
condition /3 should satisfy so that G is diagonalizable with all
its eigenvalues real and positive.

Assumption 1. A nonsingular and Cis definite positive. This
implies that the saddle-point problem admits a unique solution

* ok — (A—17 * D ok 1, %
(0*,w*) = (A71),0) and we define z* = (0 73w ).

Lemma 1. [Duetal,, 2017] Suppose assumption 1 holds and
if we choose § = %o — Bmax(ATCT1A)
oo Amin (C)

diagonalizable with all its eigenvalues real and positive.

, then the matrix G is

If assumptions of lemma 1 hold, we can write G as G =
QAQ~! where A is a diagonal matrix whose diagonal entries
are the eigenvalues of GG, and () consists of it eigenvectors as
column. We define the residual vector A,,, = z,, — 2*. To
study the behaviour of our algorithms, we use the potential

. _ 2 2 — 2 2
function [|Q ' A, [|". As Q)7 [[Q 7 AL|T > (Al
2. .
|6 — 6*|]%, the convergence of |@ ' A, ||” implies the con-
vergence of |6 — 6*|°.

6.2 Convergence of Batching SVRG for Policy
Evaluation

In order to study the behavior of batching SVRG for policy

evaluation, we defined e, as the error occurred at epoch m.

This error comes from computing the gradients over a mini-

batch 15,,, instead of the entire dataset.

em = (Gzm — 9) — (Gmzm — gm) (13)
The stochastic update of the inner loop could be written as
follows:

(th Zm,j + (G - th)zm —9— em)
(14)
Theorem 1. Suppose assumption 1 holds and if we choose

— _Amin _ — Bmax(ATCTNA) _
g9 GK(Q)Qch: /B — Arllix)(é) y,Ow — ,60'9 and

= 12“&??%20, then E HQ‘lAm_Hﬂz is upper

Zm,j+1 = Zm,j — 00

K= 2

06 Amin

bounded by:

g

2B Q1A + 2t = g gt

\ / min

linear convergence term

2
al

s)

additional error term

Full proof of theorem 1 is in [Peng er al., 2019].

Note that if B,,, =n Vm, the error is zero and we recover
the convergence rate of SVRG in theorem 1. Moreover, we
could still maintain the linear convergence rate if the error
term vanishes at an appropriate rate. In particular, the corollary
below provides a possible batching strategy to control the error
term.

Corollary 1. Suppose that assumptions of theorem 1 hold. If
the sample variance of the norms of the vectors Fy is bounded
- 2 2
2% g i 1Ge = gel” — 1G24

n=?
Z2+nap™

a>0andp <2/3thenE ||Q71AM||2 is upper bounded by:

(2)" (slo-tau? + S0 c 2wl -1y2)

by a constant

=2

= Vzand we set B, = < n for some constants

We conclude that an exponentially-increasing schedule of
mini-batch sizes achieves linear convergence rate for batching
SVRG. This batching strategy saves many gradient compu-
tations in early stages of the algorithm comparing to vanilla
SVRG.

6.3 Convergence of SCSG for Policy Evaluation

Before stating the convergence result, we introduce the com-
plexity measure defined as follows:

1 « .
H:EZHGtZ — gl
t=1

This quantity is equivalent to the complexity measure that is
introduced by [Lei and Jordan, 2017] to analyze SCSG for
convex minimization problems, and is defined as H(f) =
infm*earg min f(z) % Zi:l ”Vfl (SU*) HQ

Theorem 2. Suppose assumption 1 holds.

(16)

Set o9 <

2r2
:5JgandB2%.

min

min{ 205/}53"223; ) 2813,5\,,mm b ow

The E ||0nr—1 — 0*||? is upper bounded by:

(14 0.709 BAaz ) k(Q)? 605(@)2HI(B <n)
(1+ 0.809BAmin)M B)?

min

E [|Aoll* +
a7

Full proof of theorem 2 is in [Peng e al., 2019].

Proof sketch: We first take the squared two norms and
expectations on SCSG’s update, then use the property of geo-
metric random variables. We have:

_ _ _ 2

2UGBE <AQ 1Am,+1, Q 1A7n+1> + E ||Q 1Am-‘,—l H

_ 2 _ -
<E|Q'An|" +206BE(Q "em, Q" Apya)

+ 230’3/‘6(@)211%; (E ||6271Am-|-1H2 +E HQ71A7”||2>

+2Bo3 B|AQ A |* + 2B0 |Q ten|F (18
Since assumption 1 holds, we can derive two in-
equalities by applying lemma 1: ]EHQ‘lAmHH2

Amm]EATHQ TAQ ' Amy1 and E ||AQ™ lAerlH

Amax E(AQ7 Api1, Q7 A1) where Ay and )\max are
the smallest and largest eigenvalues of A. Moreover, using the
technical lemma B.1 in [Lei and Jordan, 20171, we show that

E ||Q*16mH2 is upper bounded by:

B Qriz e an? +

Plugging theses bounds to (18), we arrive at:

21(B < n)|| Q"I
5 H

c1 (EHQ_lAm+1H2+C2EAT+1Q TAQ™ 1Am+1)

S E||Q71ATVLH2 +C2 ATQiTAQilAm
I(B <n 420‘9 1
IB =m0 g
where ¢; = (1 + 0.809BAnin) and ¢o = 0.709 B. Values
of ¢; and ¢, come from our settings of og and B. We prove

the theorem after enrolling the above inequality from m = 0
to M — 1 and doing some algebraic manipulations.

(19)
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Corollary 2. Suppose assumption 1 holds. Set oy =
Bog and B =

5

; Amin
min { 20r(Q)2L% ’ 28BAmax

272 2
min {max { 70'3{2@ Lg 12(3\“2@) H} ,n}.

min min

y Ow =

Let ¢ > 0, the

computational cost in expectations that SCSG required to
obtain E ||0y_1 — 0*||° < e is:

0] <<min { K(Q*H n

Table 1 lists computational costs of our methods and other
related methods. GTD2 is the cheapest computationally but
it has a sublinear convergence rate. Both SVRG and SCSG
achieve linear convergence rates. When the dataset size n is
small, SVRG and SCSG have an equivalent computational
cost. However, when n is large and the required accuracy ¢
is low, SCSG saves unnecessary computations and is able to
achieve the target accuracy with potentially less than a single
pass through the dataset.

We compare the computational costs of batching SVRG
and SVRG. In epoch m, batching SVRG’s computational cost
is O(B,,, + K,,,), where B, is the batch size and K, is the
number of inner loop iteration. According to theorem 1, K,
K(/C\JZ}QLZ’G )

is set as O( for all m. If we use an exponentially

min

increasing sequence of batch sizes that we considered in corol-

lary 1, B, is strictly less than n, for all m. Since batching

SVRG converges linearly, it takes O(In(1/¢)) epochs to reach

an e-optimal solution. The overall computational cost of batch-
272

ing SVRG is O ((n’ + K(%)i%) d x ln(l/e)) as shown in

table 1, where n’ < n, so batching SVRG is computationally
more efficient than the vanilla SVRG.

7 Related Works

GTD2 [Sutton et al., 2009] converges to the TD fixed point
with linear function approximation. Although derived using
MSPBE, GTD?2 actually performs stochastic gradient updates
on the saddle point formulation of MSPBE [Liu et al., 2015].
Finite sample analysis [Wang et al., 2017; Touati et al., 2018]
and accelerations [Liu ef al., 2015; Du et al., 2017] on GTD2
becomes possible by using the saddle point formulation of
MSPBE. Du et al. [2017] applied SVRG [Johnson and Zhang,
2013] and SAGA [Defazio er al., 2014] to policy evaluation.

Algorithm Computational Cost

K(Q)2Hd
GTD2 O (=2

- 272

SAGA O ((n+2QEe) d x (1/e)
SVRG O((n+ '@i d x In(1/e)
Batching SVRG O ((n/ + (‘j#) d x In(1/e)
SCSG O (S22 nn+ “FEE) d x In(1/e))

Table 1: Computational costs of different gradient based policy
evaluation algorithms. We report the computational cost of GTD2
from [Touati et al., 2018] and computational costs of SVRG and
SAGA from [Du et al., 2017]. We use quantities in our result to
represent their computational costs.
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Tasks SVRG | Batching SVRG
Random MDP 100 71
Mountain Car 40 31

Cart Pole 100 71
Acrobot 100 71

Table 2: Computational costs of batching SVRG and SVRG. This
table shows the number of passes through the dataset for SVRG and
batching SVRG when generating results given in Figure 1.

Both methods can be inefficient when the size of the data set is
large. We proposed two variants of SVRG with computational
costs independent of the size of the data set, while preserving
a linear convergence rate.

In control settings, [Papini et al., 2018] and [Xu et al., 2019]
adapted SVRG to policy gradient. Their objectives are non-
convex while our objective is a convex-concave. Our methods
are policy evaluation algorithms, but they can be applied in
control settings by combining with LSTDQ [Lagoudakis and
Parr, 2003].

Variance reduction techniques have been applied to tempo-
ral difference learning [Korda and L.A., 2015; Xu et al., 2020].
They considered an online setting where the value function is
updated as data arrives. We consider a batch setting, where
we use the policy to collect a batch of data and then learn the
value function.

8 Experiments

Our proposed methods, batching SVRG and SCSG?, are eval-
uated with LSTD, SVRG, SAGA and GTD?2 on 4 tasks: Ran-
dom MDP [Dann et al., 2014], MountainCar-v0, CartPole-v1
and Acrobot-v1 [Brockman ef al., 2016]. Detailed experiment
setups are in [Peng et al., 2019].

8.1 Comparing Batching SVRG and SVRG

We show empirically that batching SVRG converges as fast
as SVRG while using less amount of data. Figure 1 shows
policy evaluation results of SVRG and batching SVRG in
different environments, and table 2 shows computational costs
of SVRG and batching SVRG. Given same number of epochs,
batching SVRG achieves same level of performances with
SVRG while taking fewer passes through the dataset. The
empirical performance of batching SVRG is expected because
our theoretical result suggests that having an approximation
error of the full gradient will not affect the overall convergence
speed if the error decreases properly.

8.2 Control Performances

We run gradient based methods and LSTD for policy eval-
uation and apply the learned policy on control tasks. This
lets us test the practicality of our methods. We also intend to
test our proposed methods’ performances in large datasets. In
Mountain Car (large data), Cart Pole (large data) and Acrobot
(large data), the dataset contains 1 million data samples and
each method is only allowed to use the dataset once. We run

Code of our experiments can be found at: https://github.com/
zilunpeng/svrg_for_policy_evaluation_with_fewer_gradients
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Figure 1: Policy evaluation performances of batching SVRG and SVRG in different environments. Note that batching SVRG and SVRG were
run for same number of epochs, and batching SVRG achives same level of performances with SVRG while taking fewer passes through the

dataset (shown in table 2).

Task GTD2 SVRG SAGA Batching SVRG SCSG LSTD
Mountain Car 348 + 181 186 £ 149 | 166 + 125 170 £+ 135 276 £ 178 292 4+ 187
Cart Pole —163+95 | —280+88 | —246 £ 75 —283 + 82 —217+100 | —183+80
Acrobot 431 £ 128 96 + 6 101 +6 97+ 6 126 £ 78 176 £ 157
Mountain Car (large data) 197 £ 12 200+ 0 200+ 0 2004+ 0 199+ 7 116 =6
Cart Pole (large data) —155 + 84 —-94+0 —-940 —297 4+ 100 —258 £ 111 | —290 + 26
Acrobot (large data) 445 4+ 96 500 =0 500 +£0 113 + 26 97+ 6 91+4

Table 3: All methods’ performances in control. All values in the table are number of steps each learned policy takes to reach the terminal state.
Small values mean good performances in control. In Cart Pole setting, large values indicate good performances, so we reported negative values.

all methods with small datasets as well. In Mountain Car, Cart
Pole and Acrobot, the dataset contains 20000 data samples. In
all control experiments, we first use a random policy to gener-
ate data, then apply policy evaluation algorithms to learn the
value function, and finally use the learned policy to control.

Table 3 shows control performances of all methods. We
observe that gradient based methods outperform LSTD in
experiments when the dataset is small. In large-data experi-
ments, LSTD’s performances improve. We run gradient based
methods for a single pass through the dataset in large-data
experiments. Since SVRG and SAGA need to compute full
gradients at the beginning, they cannot solve the control tasks.
GTD2, batching SVRG and SCSG do not rely on full gradi-
ents, so they make progress instantly. In particular, batching
SVRG and SCSG achieve the same level of performance with
LSTD in Cart Pole (large data) and Acrobot (large data). Our
proposed methods and LSTD both use the dataset once and
solve the control tasks, while other gradient based methods
need more than one pass of the data set. More importantly,
unlike LSTD, our methods are first order methods and do not
need to invert matrices, which makes our methods practical
when both the size of the dataset and the number of state’s
features are large.

8.3 Policy Evaluation in Large Data Settings

To test our methods’ performances on a very large dataset, we
generate 10 million data samples from a policy that performs
random actions in Random MDP. Figure 2 shows policy eval-
uation performances of all gradient based methods in Random
MDP. We run all methods for a single pass through the dataset.
SVRG and SAGA do not make progress because they need to
compute full gradients. We observe that batching SVRG and
SCSG converge much faster than GTD2, because batching
SVRG and SCSG have linear convergence rates, while GTD2
has a sublinear convergence rate. This experiment shows again
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Figure 2: Policy evaluation performances in Random MDP environ-
ment within a single pass through the data set.

that our proposed methods have good performances in large
data settings.

9 Conclusion

We show that batching SVRG and SCSG converge linearly
when solving the saddle-point formulation of MSPBE. This
problem is convex-concave and is not strongly convex in the
primal variable, so it is very different from the original ob-
jective function that batching SVRG and SCSG attempt to
solve. Our algorithms are very practical because they require
much fewer gradient evaluations than the vanilla SVRG for
policy evaluation. There is a lot of room for applying more
efficient optimization algorithms to problems in reinforcement
learning, in order to obtain better theoretical guarantees and
to improve sample and computational efficiency. We think the
present work is a valuable contribution in that direction.
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