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Abstract

In the few-shot learning scenario, the data-
distribution discrepancy between training data and
test data in a task usually exists due to the lim-
ited data. However, most existing meta-learning
approaches seldom consider this intra-task discrep-
ancy in the meta-training phase which might deteri-
orate the performance. To overcome this limitation,
we develop a new consistent meta-regularization
method to reduce the intra-task data-distribution
discrepancy. Moreover, the proposed meta-
regularization method could be readily inserted into
existing optimization-based meta-learning models
to learn better meta-knowledge. Particularly, we
provide the theoretical analysis to prove that using
the proposed meta-regularization, the conventional
gradient-based meta-learning method can reach the
lower regret bound. The extensive experiments also
demonstrate the effectiveness of our method, which
indeed improves the performances of the state-of-
the-art gradient-based meta-learning models in the
few-shot classification task.

1 Introduction

Learning quickly is a kind of ability of human intelligence,
e.g., children can recognize objects only from a few exam-
ples. However, this poses a great challenge to the existing
deep learning models, which require large-scale training data
to achieve promising performance. To tackle this problem, in
recent years, meta-learning (i.e., learning to learn) has drawn
increasing interest in the machine learning community [Finn
etal., 2017; Rajeswaran et al., 2019]. The goal of these meth-
ods is to learn the meta-knowledge across tasks, which can
help model learn fast or adapt quickly in new tasks.

For meta-learning approaches, the core issue is — How fo
learn effective meta-knowledge. Regarding that the training
data is usually limited in few-shot learning, these few data
cannot describe the real data distribution, which results in
the intra-task data-distribution discrepancy between training
data and test data in each task. However, most existing meta-
learning approaches usually ignore this discrepancy during
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the meta-knowledge learning phase. In this case, the learned
inferior meta-knowledge might have a disadvantage to the fi-
nal performance.

To this end, we propose a new Consistent Meta-
regularization (CM) method, which could alleviate the intra-
task discrepancy in the meta-training course. The motivation
of our method is illustrated in Fig. 1. Although the across-
task meta-knowledge can help the base-learner trained by the
training data fit well on the test data, the base-learner indeed
cannot work well on the test data because of the discrep-
ancy. Therefore, we put forward the Consistent MetaReg to
alleviate the intra-task discrepancy to help base-learner work
well on the test data in each task for learning better meta-
knowledge. Moreover, the proposed meta-regularization
method can be easily integrated into existing gradient-based
meta-learning models. Concretely, we obtain the base-learner
for training data as the traditional meta-learning approaches.
In particular, these traditional methods only utilize test data
to update the meta-learner. Differently, our method considers
that using test data to update both the meta-learner and base-
learner, i.e., we reversely use the test data as training data and
acquire a new base-learner model for test data. To migrate
the data distribution discrepancy between training data and
test data in each task, we expect that two base-learner models
trained on training data and test data to be consistent. There-
fore, we develop Consistent Meta-regularization to achieve
this goal.

In this paper, we demonstrate the efficacy of the Con-
sistent Meta-regularization from the theoretical and experi-
mental perspectives, respectively. On the theoretical aspect,
we prove that using the proposed method, the conventional
gradient-based meta-learning models can indeed achieve
lower regret bound than before. In addition, we also vali-
date CM on three benchmark datasets, i.e., minilmageNet,
tiered-ImageNet and office31. The experimental results show
that our regularization method could learn more useful meta-
knowledge by migrating the intra-task discrepancy. Inte-
grated with our Consistent Meta-regularization, three existing
state-of-the-art optimization-based meta-learning approaches
perform better on all datasets.

In sum, our contributions in this paper are listed as follows:

e To the best of our knowledge, our method is the first
one to consider the intra-task discrepancy problem in the
typical meta-learning models, which is seldom touched
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Figure 1: Concept. We utilize the 2-way few-shot classification task
as an example.

in previous works.

o We develop Consistent Meta-regularization to reduce the
intra-task discrepancy, which can be easily introduced
into the existing gradient-based meta-learning models.

e We demonstrate the meta-learning methods with the pro-
posed CM can have lower regret bound in theory, and ex-
tensive experiments also highlight that adding CM into
the conventional meta-learning frameworks can indeed
achieve better performance.

2 Related Work

The topic of meta-learning (or learning to learn) was intro-
duced and studied several decades ago [Schmidhuber, 1987;
Bengio et al., 1992; Thrun and Pratt, 1998]. Early work
mostly focused on learning how to dynamically adjust the in-
ductive bias [Utgoff, 1986] or hypothesis space for a learning
algorithm [Vilalta and Drissi, 2002]. In recent years, two-
level framework is popular in the present meta-learning ap-
proaches. The motivation of this framework is that meta-
level (meta-learner) is used to learn meta-knowledge, which
can help base-level (task-specific model or base-learner) learn
fast or adapt quickly in a new task. The two-level framework
can be broadly divided into three categories.

e Metric-based method. In these methods, a non-
parametric similarity function is used as base-learner to
evaluate the similarity between examples. The meta-
learner is trained to learn useful meta-knowledge in
the predefined metric space, e.g., Euclidean distance
based prototypical networks [Snell et al., 20171, co-
sine similarity based recurrence with attention mecha-
nisms [Vinyals et al., 2016].

e Model-based method. The meta-learner is usually de-
signed as a parameterized predictor to generate base-
learner parameters. For example, Ravi et al. [Ravi
and Larochelle, 2017] used recurrent neural network
as meta-learner to direct the updating for base-learner.
Munkhdalai et al. [Munkhdalai and Yu, 2017] designed
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a meta-learner, which uses loss gradients from base-
learner to predict parameters for base-learner.

¢ Gradient-based method. Finn et al. [Finn et al., 2017]
proposed model-agnostic meta learning (MAML) for
deep models. MAML is similar to the initialization
of deep networks. The meta-learner aims to learn a
good initialization for all tasks, and the base-learner
merely requires a few gradient steps from this initial-
ization to achieve great performance. However, there
are still many limitations for MAML. Some works [Li
et al., 2017; Rajeswaran et al., 2019; Na et al., 2019]
were developed to further improve it. Besides MAML,
some gradient-based methods [Bertinetto et al., 2019;
Lee et al., 2019] leveraged bilevel framework to opti-
mize meta-learning algorithms.

Our work is the most related to gradient-based methods.
Compared with metric-based methods, gradient-based meth-
ods can be broadly applied in many areas, such as reinforce-
ment learning [Rakelly et al., 2019] and NLP [Xie et al.,
2019]. Moreover, the gradient-based methods do not intro-
duce additional parameters or require a particular learner ar-
chitecture. These factors result in that gradient-based meth-
ods become a promising and hot research topic in meta-
learning recently. However, the previous gradient-based
methods ignore the intra-task discrepancy, which hinders
meta-learning models to effectively learn meta-knowledge.
The proposed Consistent Meta-regularization method aims
to overcome this limitation, which can be integrated into
MAML or bilevel gradient-based methods and enhance their
performance.

3 Gradient-based Meta-learning Method

In this section, we firstly introduce the problem formula-
tion for meta-learning in the context of supervised learning.
Then, two important kinds of gradient-based meta-learning
approaches are enumerated.

3.1 Meta-Learning Problem Formulation

The problem formulation of meta-learning follows [Amit and
Meir, 2018]. We assume that all tasks share the sample space
Z, hypothesis space H and loss function £ : H x Z — [0, 1].
N different tasks are sampled from an unknown task distri-
bution 7 as meta-training set {T%,--- ,T,,}. And each task
T; has an observed dataset S}". The goal of the meta-learner
is to extract meta-knowledge from the meta-training set so
that learning a new task only needs few training data. We
denote that the meta-knowledge P comes in the form of a
distribution over hypotheses. During learning a new task, the
base-learner uses the task-specific observed dataset S™ and
the meta-knowledge P to learn a base-learner Q (P, S™) over
‘H. The quality of meta-knowledge P is measured by the ex-
pected loss for learning new tasks, as defined by

GT(P, T) = ETNTES"NTEhNQ(P,S"r)]EZNT’g(hﬂ Z) (1)

If we assume the meta-knowledge P is sampled from the
hyper-posterior Q(P), we can ideally obtain the best meta-
knowledge P* via minimizing the following formula as

er(Q,7) :=Ep.o(P,T). (2)



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

However, Eq. 2 is not computable. Recent meta-learning
algorithms use the idea from [Vinyals et al., 2016]: “make
the test and train conditions much match”. The observed data
SIF in each task T is viewed as training dataset. Besides SY', a
test dataset ST° is also sampled from 7;. Then the algorithms
learn good meta-knowledge by minimizing the empirical risk

1 n
r(Q T, . Tn) :==Epng— > ér(Q(P,SY), 57). ()
i=1

3.2 MAML

Model-agnostic meta-learning (MAML) is a pretty significant
gradient-based meta-learning method, which has been widely
applied to many fields [Al-Shedivat er al., 2018; Javed and
White, 2019]. The initialization of model is regarded as meta-
knowledge in MAML. Thus, the goal of MAML is to meta-
learn the initial model parameter 6 to generalize over the task
distribution 7. The empirical loss function in MAML is

1 n
: 7}: 09— 9: St). St 4
Hgn n 2 E( OZVOL( 7Sz )a Sz )7 ( )

where « is the stepsize. When encountering a new task 77, the
task-specific predictor 6; can be easily obtained in a single
(or a few) gradient step from the inital 6.

3.3 Bilevel Method

Recently, the bilevel gradient-based method has also attracted
many attentions, which achieves the state-of-the-art perfor-
mance in many computer vision tasks [Lee et al., 2019;
Tian er al., 2019]. Bilevel meta-learning framework is pro-
posed in [Franceschi et al., 2018], and its formulation is as

min{f(X) : A € A}, )
where function f : A — R is defined at A € A as
f(A) = inf{E(wx, A) : wy € arg m}R% La(u)}. (6)
ue

InEq. , £ : R? — R is the outer objective. For every A € A,
Ly : R? — R is the inner objective. The two-level meta-
learning algorithm can be easily formulated as a bilevel prob-
lem. We can use the outer objective to learn meta-knowledge,
and the inner objective is utilized to learn base-learner. Then
the empirical loss Eq. 3 can be rewritten as

1 n
min— L£(6,Alg(0, 5); SP),
o' ; )
where Alg(0, S}") = min Lyse(w; 0, S).

In Eq. 7, @ and w are the meta-parameter and the base-learner
parameter, respectively. £ and Ly,s denote the meta-loss and
task-specific loss, respectively. And Alg is a base-learner al-
gorithm, which computes task-specific parameter based on
meta-parameter 0. In fact, MAML can be regarded a special
case of bilevel gradient-based meta-learning method, which
is analyzed in [Rajeswaran et al., 2019].

Moreover, since both MAML and bilevel gradient-based
method can be optimized by gradient descent, it means these
approaches can be easily implemented in existing deep learn-
ing frameworks (e.g., Pytorch and Tensorflow).
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4 Our Method

4.1 Consistent Meta-regularization

As mentioned above, how to learn good meta-knowledge,
which can generalize well over the task distribution 7, is very
important for meta-learning algorithm. Although MAML or
bilevel based methods can indeed learn meta-knowledge by
minimizing Eq. 4 and Eq. 7, respectively, all of them ignore
the intra-task discrepancy in the meta-training set (i.e., the
data-distribution discrepancy between training data and test
data in each task because few samples in the few-shot setting
cannot describe the real data-distribution of a dataset), which
is not conducive to learn good meta-knowledge.

Our proposed Consistent Meta-regularization (CM)
method aims to mitigate the impact of the intra-task discrep-
ancy on gradient-based meta-learning models. Specially,
we firstly train the base-learner for the training data S in
the task 7;.Then we reversely exploit the test data S* from
the task 7T; as training data, and train a new base-learner for
the test data. For simplicity, two base-learners for training
data S} and SY° in task T; are denoted as M" and M}, re-
spectively. Finally, we minimize the difference between M}
and MY as a regularization which can be inserted into the
traditional meta-loss to alleviate the intra-task discrepancy.
Differently, the test data S}° is just used to minimize the
meta-loss in traditional gradient-based meta-learning.

In this paper, we directly use F-norm of the difference be-
tween parameters of M| and M to measure the gap be-
tween the two models. And we can easily integrate the
proposed regularization into existing gradient-based meta-
learning models (i.e., MAML and bilevel method). For ex-
ample, we can define the Consistent Meta-regularization loss
for bilevel method as

1 n
o Mtr ry. Qts er _ Mts
ménn;'c(a’ i (0"5’1 )7Sz)+5|| i i ||F> 3

where § is the regularization parameter. If we consider that
the base-learner is a deep model [Finn et al., 20171, which
contains K layers, the Consistent Meta-regularization loss
can be rewritten as

n K
1 l _ . Qtry. Qts A \fts
m;nn;ae aVeL(0; ) S) +6 Y [(L)F = (L;) e,

j=1

€))
where L; is the j-th layer in base-learner. The Consistent
Meta-regularization gradient-based meta-learning algorithm
is summarized in Alg. 1.

Remark. The traditional gradient-based meta-learning ap-
proaches (GBML) can be considered as a bilevel problem.
The meta-learner object is used to learn meta-knowledge, and
the base learner utilizes the meta knowledge to learn a base
model in the task-specific space. In the meta-training phase,
these GBML approaches firstly optimize the base-learner,
then utilize test dataset S{° in each task T; to minimize meta-
loss to learn cross-task meta-knowledge. However, if the
base-learner learned by training data in task-specific space
cannot generalize well on test data, the meta-loss computed
by test data will contain two errors (i.e., true meta-knowledge
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Algorithm 1 The proposed CM for meta supervised learning

Require: 7: distribution over tasks, regularization parameter
0, meta-learner step size 7, gradient-based meta-learning al-
gorithm: GBML.
Output: Meta-parameter 6
1: Randomly initialize 6.
2: while not converged do
Sample mini-batch of tasks {T;}2 | ~ 7.
for each task T; do
Sample N datapoints Si = {z™, y™} from T;.
Train a base-learner M} for Si" by GBML.
Sample K datapoints S¥ = {z*, y*} from T}.
Train a base-learner M for ST° by GBML.
end for
Update meta-parameter with gradient descent:
0 0 —ng; 357, Vo(L(SE) + 0| MfT = MP||p).
11: end while

w

YR Nk

error and model discrepancy error). Thus, it is difficult to ob-
tain good meta-knowledge. Particularly, this problem will be
worse when the training data and test data in each task have a
large domain discrepancy. Our proposed regularization elim-
inates the intra-task discrepancy by pulling M and M (i.e.,
the models for training data and test data) closer in the task-
specific space. Therefore, based on our method, the meta-
loss is merely from the true meta-knowledge error, which can
guide the meta-learner to extract better meta-knowledge.

4.2 Regret Bound for Consistent MetaReg
To further explain the efficacy of our method, a theoreti-
cal analysis is given in this part. Specifically, we prove
our method can achieve a lower regret bound when com-
pared with the method without using Consistent Meta-
regularization in the online convex optimization framework.
We use the same notation with Sec. 3.1, and the
S in each task 7; contains m; samples, ie., S =
{(@i5,Yij)s » (Ti,mys Yim, )} In addition, we assume that
the learner incurs the loss 4; ; := £(9; ;, s ;), when a sample
(%45, i) is revealed.
Definition 1. The prediction error of a task T; is

J A
= — E Ei,j. (10)
m; <
Jj=1

The average error (empirical risk) of a meta-learning algo-
rithm after N tasks is

m;

72 Za] (11)

Given meta-knowledge P, we already know the best predictor
h; for task T;. The regret of a task T; is

1 m; R mq

i(P)=—)> L, f U(his yi,g

Ri(P) mi; = el o ;( vij)

12)

1 my R my
= — E - * .. .
m; Z i (R, yig)
Jj=1 Jj=1
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Then, we introduce the definition of online convex pro-
gramming problem, following [Zinkevich, 2003].

Definition 2. An online convex programming problem con-
sists of a feasible set ' C R™ and a infinite sequence
{f1, fa,- - }, where each f; : F — R is a convex function.
At each time step t, an online player selects a vector x; €
F. After the vector is selected, it receives the cost function f;.

Lemma 1. [Hazan et al,, 2007] If we use gradient de-
scent to select vector at each step, i.e., x; = ITp(x¢—1 —

1V fi_1(x¢—1)). Here, IIr denotes the projection onto
nearest point in F', n, > 0 is the step size.

T
RT:th(Xt)_ inf th <**10gT
t=1

where |V f|| < G and V?f = ol. G and o are positive
constants.

Next, we use Lemma 1 to prove Theorem 1.

Theorem 1. If we use parameter 0 in a convex set © to learn
meta-knowledge, and ¢ : © — R is a convex function. 0 is
optimized by gradient descent. And the within-task algorithm
has a regret bound R;(0) < B(0,m;) for any 0, then

LR SR oV NPNELE QI YT
N L a7 SH26 N Ly £Vt Vi
=1 7j=1 =1 j=1
N
1 1G?log N
LS pomy 160
=1
Proof.
N m; N
1 1 <A 1 -
EDIES S
N = M4 N i=1
N
1 A 1G?log N
< il -
7328(]\[;@) 5 N (Lemma. 1)
1oL 1 & 1G%log N
=gy 2 L)+ 5y
i=1 """ j=1

N
1 ) 1
§mlnﬁi§:1:(ﬂ(0,mi)+ inf 777 &-,]-)

6cO h,€Q(P,S) M 1
lgzlogN
2 N
1 N 1 my 1 N
1G’210gN
20 N

O

Theorem 1 shows that the regret bound of average error is
related with h]. As mentioned in Sec. 3.1, the traditional
meta-learning algorithm uses S to train the task-specific
model M for task T;. However, the intra-task discrepancy
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causes that the model trained by S} is far from A}. Since
h} denotes the best predictor for SY° in the test set, our pro-
posed Consistent Meta-regularization supposes that M* (i.e.,
the model trained by the test set St*) is close to h}. Thus, our
method aims to pull the M]" closer to M, which can reduce
the gap between M." and h} to achieve lower regret bound.

S Experiments

In this part, we first describe the implementation details.
Then, we present results on three benchmark datasets for
the few-shot classification task, including two derivatives
of ImageNet [Russakovsky et al., 2015] (i.e., minilma-
geNet [Vinyals ef al., 2016], tieredlmageNet [Ren et al.,
2018]) and office31 [Saenko et al., 2010]. Particularly, office-
31 involves the larger intra-task data-distribution discrepancy
when compared with minilmageNet and tieredImageNet. Fi-
nally, we analyze the impact of our method on learning speed,
and the parameter sensitivity of regularization parameter J.

5.1 Implement Details

We use the same architecture as the embedding model used
in [Vinyals et al., 2016], which has 4 modules with a 3 x 3
convolutions and 64 filters, followed by batch normalization,
a ReLU nonlinearity, and 2 x 2 max-pooling in all experi-
ments. And all the images are resized to 84 x 84. Adam with
learning rate 0.001 is used as optimizer. During the meta-
training process, we sample 5 training (support) samples and
5 test (query) samples as Si and S in each task T}, respec-
tively. The number of test example for each task is set as 10
during the meta-testing phase. All methods are trained on a
single NVIDIA 1080 Ti.

We insert the proposed CM method into three state-of-the-
art gradient-based meta-learning approaches, i.e., MAML,
R2-D2 [Bertinetto et al., 2019] and MetaOptNet-SVM [Lee
et al., 2019] to validate its effectiveness. Particularly, all
tricks in R2-D2 and MetaOptNet-SVM aiming to improve the
performance are not used in our experiments, such as learn-
able scale parameter to adjust the prediction score'.

5.2 Experiments on ImageNet Derivatives

MinilmageNet is a standard benchmark for few-shot im-
age classification, consisting of 100 randomly chosen classes
from ILSVRC-2012 [Russakovsky et al., 2015]. These
classes are randomly split into 64, 16 and 20 classes for
meta-training, meta-validation, and meta-testing respectively.
Each class contains 600 images. The tieredImageNet bench-
mark is a larger subset of ILSVRC-2012, composed of 608
classes grouped into 34 high-level categories. These are di-
vided into 20 categories for meta-training, 6 categories for
meta-validation, and 8 categories for meta-testing. This cor-
responds to 351, 97 and 160 classes for meta-training, meta-
validation, and meta-testing respectively.

We perform the pre-processing for the two datasets follow-
ing [Lee et al., 2019]. Because of the slow convergence rate
of MAML, we trained MAML 60,000 iterations on minilma-
geNet and tieredImagNet. The other methods are trained by

'Source code: https://github.com/P1nzhuo/Consistent-MetaReg
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30,000 and 50,000 iterations on minilmageNet and tieredIm-
ageNet, respectively. The meta batch-size is set as 4 and 8 for
MAML and the other methods. The parameter 0 is set as 1
for MAML and 5 for MetaOptNet-SVM and R2-D2.

Results. Tab. 1 reports the results on the 5-way minilm-
ageNet and tieredImageNet. All reported results are aver-
age performances with 95% confidence interval over 2000
tasks randomly sampled from meta-testing split. OptNet
denotes metaOptNet-SVM, ProNet is the Prototypical Net-
works. And MAML-CM, etc. represent the methods inte-
grated with our Consistent Meta-regularization. The methods
are separated into two groups: optimization-based (O) and
metric-based (M). As seen, by mitigating the intra-task dis-
crepancy, our proposed CM can improve the average perfor-
mance of MAML, OptNet and R2D2, 0.30% (0.33%), 1.10%
(1.90%) and 2.66% (2.59%) on minilmageNet (tieredIma-
geNet), respectively. Particularly, ProNet achieves the best
performance, which is not very surprised due to the supe-
riority of metric-based methods for few-shot image classifi-
cation on ImageNet derivatives [Chen er al., 2019]. How-
ever, metric-based meta-learning approach is not convenient
to be extended to other fields, e.g., NLP, semantic segmenta-
tion and object detection, because it is very difficult to design
an appropriate metric method.

5.3 Experiments on Office31

Office-31 is a standard benchmark for visual domain adap-
tation, consisting of 4,652 images in 31 classes collected
from three domains: Amazon (A), which contains images
downloaded from amazon.com, Webcam (W) and DSLR (D),
which contain images taken by a web camera and a digital
SLR camera, respectively, in an office environment. And we
randomly divide office31 into three splits which contain 20,
5 and 6 classes as meta-training, meta-validation, and meta-
testing, respectively. For each task T;, we sample training
dataset SI from two domains, which are randomly sampled
from A, W and D, and test dataset S;S is sampled from the
rest of domain. MAML is trained in the same setting with
Sec. 5.2. And the other models are trained by 30,000 tasks.
The meta batch-size is set as 4 for all the methods. As for
regularization parameter, we use the same set with Sec. 5.2.

Results. The results on office31 are shown in Tab. 2.
All reported results are average performances with 95% con-
fidence interval over 1000 tasks randomly sampled from
meta-testing split. Because the training data S and test
data S{® in each task T; are from different domains. There
is a large intra-task data-distribution discrepancy on this
dataset. Our CM method can boost the average performance
of MAML, OptNet, and R2D2 by 3.14%, 3.37% and 2.72%
on office31. Moreover, our R2D2-CM model achieves the
best performance. Compared with the results on ImageNet
derivatives, ProNet cannot handle this situation of a large
data-distribution discrepancy due to its limitation. As for
optimization-based methods, the data-distribution discrep-
ancy impact greatly on MAML, and we can find similar re-
sults in [Finn and Levine, 2018]. The proposed regularization
can better promote optimization-based methods in this case,
i.e., there is a large intra-task difference.
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minilmageNet 5-way

tieredlmageNet 5-way

Models 1-shot 5-shot 10-shot Mean \ 1-shot 5-shot 10-shot Mean
M‘ ProNet 46.66 £ 0.46 69.44+0.39 7448 £0.37 63.53 +£0.41 ‘ 4899 +£0.51 70.74 £044 7451 +£041 64.75+0.45
MAML 47.38 +0.46 61.25+0.44 6531 +040 5798 £043 | 4628050 62.75+046 67.12+0.43 58.72+0.46
MAML-CM 4694 +0.48 61.84 +0.42 66.06 == 0.41 58.28 +0.44 | 47.31 +0.49 62.78 +0.46 67.06 £0.43 59.05 + 0.46
(0] OptNet 4293 +£045 58.60+041 62.83+041 54794042 | 43.40+0.49 59.14+045 63.40+044 55314+0.46
OptNet-CM  44.70 - 0.45 59.28 + 043 63.66 + 0.42 55.88 +0.43 | 45.86 = 0.51 60.84 + 045 64.92 +£ 045 57.21 +0.47
R2D2 42.80+044 5639+041 6022+040 53.144+042 | 44.65+0.49 59.61 £044 6320044 55.82+0.46
R2D2-CM 4492 +0.45 60.68 +0.41 61.81 +0.41 5580+0.42 | 47.59+0.49 6249 +0.44 6516+ 0.44 58.41+ 0.46
Table 1: Classification results on minilmageNet and tieredlmageNet.
office-31 5-way office31 5-way, 5-shot
Models 1-shot 5-shot 10-shot Mean
64 == Performance of R2D2-CM
M‘ ProNet 37.62+097 55894136 59.87+1.54 51.13+1.29 o
MAML 30.77 £0.78 4450 £1.02 4925+ 1.19 41.51 £1.00 g 604
MAML-CM 3241 +0.85 47.94 +1.13 53.59 +1.37 44.65 +1.12 g
O| OptNet  3457+£092 4839+ 121 5225+ 141 4507+ 1.18 g%
OptNet-CM 3742 +£0.97 5219+ 133 5570 £ 1.51 48.44+ 1.27 < 56
R2D2 3745 +1.04 55954148 59.80+1.67 51.07+1.40 54
R2D2-CM 3998 + 1.01 5895+ 1.46 6245+ 1.64 53.79+ 1.37

Table 2: Classification results on office-31.
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Figure 2: Accuracy of R2D2 and R2D2-CM (ours) in different
epochs on the meta-testing sets of minilmageNet and office31.

5.4 Learning Efficiency Analysis

In this section, we reveal that with our proposed meta-
regularization, the traditional gradient-based meta-learning
approach can converge faster and achieve better performance.
We report the results of R2D2 and R2D2-CM on meta-
testing split of minilmageNet and office31 at different train-
ing epochs, respectively, as shown in Fig. 2. Shaded region
denotes 95% confidence interval. When conducting the com-
parison between R2D2 and R2D2-CM (ours) on 5-way, 5-
shot classification task on two datasets, we can observe that
our method outperforms the R2D2 at the beginning of train-
ing (about 6th epoch), and maintain higher performance until
convergence. In general, our method can help model con-
verge faster and achieve better performance. Because of-
fice31 is smaller than minilmageNet (the number of images is
just 7.7% of minilmageNet), with training epoch increasing,
meta-overfitting happens in both two models.

5.5 Parameter Sensitivity Analysis

In order to evaluate the influence of meta-regularization pa-
rameter on our method, we train our R2D2-CM with differ-
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0.0 2.5 5.0 7.5 10.0 12,5 15.0
Value of regularization parameter

Figure 3: The performance of R2D2-CM with different regulariza-
tion parameter on the meta-testing set of office31.

ent values of regularization parameter ¢ on office31. And the
performance of these models on meta-testing split is in Fig. 3.
Shaded region denotes 95% confidence interval.

Our method outperforms the traditional R2D2 approach
(regularization parameter = 0) with different values of reg-
ularization parameter. And the performance of our method
doesn’t change much from § = 6 to § = 10. It can confirm
that our model has a lager robust interval on 9.

6 Conclusion

In this paper, we consider the intra-task discrepancy issue
in the traditional meta-learning models, which is usually ig-
nored in previous works. To handle this issue, we introduce
Consistent Meta-regularization to alleviate the discrepancy
for gradient-based meta-learning approaches. Moreover, we
prove that with our proposed meta-regularization, the tradi-
tional meta-learning approach can achieve lower regret bound
in the convex setting. Furthermore, extensive experiments on
three datasets reveal the superiority of our method in the non-
convex setting. Particularly, in this paper, we follow recent
meta-learning approaches, which use deep models as meta-
learner in the non-convex setting. In the future work, we will
further give the theoretical analysis in the non-convex setting.
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