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Abstract

Maximum likelihood learning is a well-studied ap-
proach for fitting discrete Markov random fields
(MRFs) to data. However, general purpose max-
imum likelihood estimation for fitting MRFs with
continuous variables have only been studied in
much more limited settings. In this work, we
propose a generic MLE estimation procedure for
MRFs whose potential functions are modeled by
neural networks. To make learning effective in
practice, we show how to leverage a highly paral-
lelizable variational inference method that can eas-
ily fit into popular machining learning frameworks
like TensorFlow. We demonstrate experimentally
that our approach is capable of effectively model-
ing the data distributions of a variety of real data
sets and that it can compete effectively with other
common methods on multilabel classification and
generative modeling tasks.

1 Introduction
Maximum likelihood estimation (MLE) is a standard ap-
proach for fitting Markov random fields (MRFs) to data.
Much of the existing work on general MLE procedures
for MRFs has focused on either discrete models or models
with continuous but severely restricted potential functions,
e.g., Gaussian graphical models [Malioutov et al., 2006;
Weiss and Freeman, 2001; Moallemi and Van Roy, 2009;
Ruozzi and Tatikonda, 2013]. In these settings, MLE is of-
ten implemented as a double-loop procedure with an outer
loop that performs gradient ascent over the model parame-
ters while, in an inner loop, the gradients are estimated us-
ing a marginal inference procedure. As exact inference is, in
general, NP-hard, the gradient is often approximated by sam-
pling, message-passing algorithms such as belief propaga-
tion, or variational methods. For efficiency, these inner-loop
approximate inference schemes are often not run to conver-
gence, which can make the outer loop of the MLE procedure
noisy and slow to converge in practice. Despite this, these
approaches appear to perform well in practice Domke [2013].
Additionally, a variety of approaches that attempt to mitigate
these issues for discrete MRFs have been proposed [Gana-

pathi et al., 2008; Hazan and Urtasun, 2010; Domke, 2013;
Tang et al., 2016].

In this work, we are concerned with fitting parameterized
MRFs, via standard double-loop MLE, to data sets contain-
ing both continuous and discrete values. There are two dif-
ficulties that arise in the continuous case that are not present
in the discrete case. The first is a modeling problem: one
needs to find a family of parameterized potential functions
for continuous MRFs that is expressive enough to capture real
continuous data but is also simple enough to make (approx-
imate) learning feasible. The second issue is that inference
in the continuous case is significantly more complicated than
in the discrete case; standard methods such as belief propa-
gation (BP) require either particle or non-parametric approxi-
mations [Sudderth et al., 2003; Ihler and McAllester, 2009;
Lienart et al., 2015; Noorshams and Wainwright, 2013;
Song et al., 2011]. Particle message-passing algorithms can
be slow to converge and are often unstable, which can make
them impractical for the inner loop of MLE (especially in
large models). Additionally, for belief propagation based
methods there is no guarantee that the resulting marginals
arise from some global joint distribution. This limits the util-
ity of the learned beliefs, e.g., they cannot be used to generate
new samples, and a separate sampling method is required in
practice.

The primary contribution of this work is a generic
parameter-based learning framework for MLE in MRFs with
continuous variables. Our approach combines the flexibility
of neural networks as function approximators with probabilis-
tic models. Many different approaches that combine these
two frameworks have been proposed, e.g., joint training of a
Gaussian conditional random field (CRF) and a NN where the
conditional features are given by the output of the NN [Do
and Artieres, 2010], joint training of a CRF and a CNN by
embedding the CRF into a recurrent neural network [Zheng
et al., 2015; Chen et al., 2015], adding gate functions to emu-
late feature maps in discrete CRFs [Peng et al., 2009], among
others. In most applications of hybrid NN/CRF methods, the
CRF is limited to discrete or simple Gaussian graphical mod-
els, often with mean-field variational inference, as approxi-
mate inference and learning in generic CRFs with arbitrary
continuous potentials presents a more formidable challenge.

Here, in contrast to existing work, we propose to embed
NNs directly into MRFs: We will model the potential func-
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tions of the MRF as NNs. We will show that a straightforward
variational approximation combined with quadrature meth-
ods (or sampling) and iteration averaging can be successfully
applied to fit such models to real data distributions. Our con-
tributions include (1) a generic MLE procedure for MRFs
with NN potential functions, (2) an averaging procedure that
reduces the variance of the approximate inference procedure,
which aids convergence and improves accuracy, and (3) a
scalable implementation of this approach that can take ad-
vantage of modern GPU hardware. We demonstrate that our
proposed approach performs competitively against standard
methods on a variety classification and modeling tasks over
continuous data sets.

2 Preliminaries
A Markov random field (MRF) over random vectors x ∈ Rn

is defined by a hypergraph G = (V,A) and a collection of
non-negative potential functions such that the joint distribu-
tion p factorizes over the graph G, that is,

p(x) =
1

Z
exp

(∑
c∈A

fc(xc)
)
, (1)

where for each c ∈ A, fc : R|c| → R is a function over xc,
the elements of x indexed by the hyperedge c, and Z , often
called the partition function, is the normalizing constant for
the distribution.

As we will be interested in fitting models of this type to
data, we will assume that the distribution p is parameterized
by a vector θ ∈ Rm. Given data points x(1), . . . ,x(M) ∈
Rn, we will attempt to find a setting of the parameters θ that
maximizes the average log-likelihood:

`(θ) ,
1

M

∑
m

[∑
c

fc(x
(m)
c |θ)− logZ(θ)

]
. (2)

To apply the standard double-loop MLE procedure, we
compute the gradient of the log-likelihood with respect to θ.

∇` , 1

M

∑
m

∑
c∈A

[
∇fc(x(m)

c |θ)− Epc
∇fc(·|θ)

]
, (3)

where pc is the marginal distribution over xc. As a result,
computing the gradient requires evaluating expectations with
respect to the marginal distributions pc(·|θ).

2.1 The Bethe Free Energy
Computing the marginal distributions of a given MRF re-
quires performing statistical inference, an intractable opera-
tion for general potential functions and graphs. As a result,
approximate inference or sampling methods are often used to
estimate the gradient of the log-likelihood in practice.

Many different algorithms have been proposed for approx-
imate inference in the continuous case: variational mean
field, expectation propagation [Minka, 2001; Heskes and
Zoeter, 2002; Heskes and Zoeter, 2005], nonparametric be-
lief propagation [Sudderth et al., 2003], particle belief propa-
gation [Ihler and McAllester, 2009], expectation particle be-
lief propagation [Lienart et al., 2015], kernel belief propaga-
tion [Song et al., 2011], stochastic orthogonal series message-
passing [Noorshams and Wainwright, 2013], among others.

Unfortunately, many of these methods are not efficient in
practice [Guo et al., 2019], and some of them place addi-
tional restrictions on the model, e.g., requiring each of the
potential functions to be normalizable. In addition, the be-
liefs produced by message-passing algorithms do not arise as
the marginals of a joint distribution, except for tree-structured
models. This means that, in practice, Gibbs sampling or a
similar method would need to be used to generate samples
from the learned model, which is undesirable as the approx-
imations made by Gibbs sampling do not align with those
made while learning.

Instead, we will adopt a variational approach, similar
to [Guo et al., 2019; Xiong et al., 2019; Gershman et al.,
2012], that approximates the marginals of p using Gaussian
mixtures. Specifically, we use the Bethe free energy (BFE)
approximation combined with Gaussian quadrature integral
approximations. The BFE corresponds to a variational infer-
ence scheme that is exact on tree-structured models and is
closely related to the belief propagation algorithm [Yedidia et
al., 2005]. For a pairwise MRF the BFE objective is given by

F(b) =−
∑
i∈V

Ebi [fi(xi|θ)]−
∑

(i,j)∈E

Ebij [fij(xi, xj |θ)]

+
∑
i∈V

Ebi [log bi] +
∑

(i,j)∈E

Ebij

[
log

bij
bibj

]
. (4)

Following [Guo et al., 2019], we approximate the log-
partition function, logZ , the univariate marginals, and the
pairwise marginals by attempting to minimize the Bethe free
energy over beliefs that are represented as fully factorized
Gaussian mixtures, i.e., for all i ∈ V

∀i ∈ V, bi(xi) ,
∑
k

αkb
k
i (xi|µk

i , σ
k
i )

and for all (i, j) ∈ E,

bij(xi, xj) ,
∑
k

αkb
k
i (xi|µk

i , σ
k
i )bkj (xj |µk

j , σ
k
j ),

where each bki is a normal distribution with mean µk
i and var-

ianace σk
i and αk ∈ [0, 1] are the mixture weights.

With the above definitions, each belief bi is a marginal dis-
tribution of the joint mixture

∑
k αk

∏
i∈V b

k
i (xi). The exis-

tence of such a joint distribution is in contrast to belief prop-
agation based methods, which can produce beliefs that are
not the marginals of any joint distribution. We will exploit
the existence of this joint distribution as part of an averaging
scheme to reduce the randomness inherent to the approximate
inference process. Further, this distribution can be used as a
surrogate for the learned model.

3 Neural Network MRFs
We propose to model the MRF potential functions using NNs.
The advantage of this representation is that such potential
functions can be made arbitrarily expressive, and we can con-
trol the expressivity of the representation by changing the
structure, depth, and activation functions of the chosen NNs.
One drawback of this approach is that variational methods,
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Figure 1: Example structures of neural networks for node and edge
potential functions.

or indeed most of the above mentioned message-passing al-
gorithms will need to sample from or compute expectations
of functions described by general NNs. Many of the above
inference methods cannot be applied in this setting without
modification, e.g., if the method requires the potential func-
tions to be normalizable.

Each node and edge potential of the MRF will be param-
eterized by the weights and biases of the corresponding NN.
We will refer to these parameters as the model parameters or
model weights θ. Specifically, each node potential is a sin-
gle input neural network f(xn) and each edge potential is a
double input neural network f(x1, x2). All the networks are
dense (fully connected) and have only one output value. See
Figure 1. These small dense neural networks may not need
to be very deep: NNs with only a few layers seem to to work
well in practice. The small size helps to reduce the computa-
tional overhead, which makes the approach practical even for
relatively large models, and can help combat overfitting.

Unlike exponential family models, the log-likelihood of
our model is not convex in the model parameters, θ, as the
individual NNs are non-convex functions of their weights.
Nevertheless, we can still efficiently approximate the gradient
of the log-likelihood with respect to θ and use gradient-based
optimization to obtain a local optimum, hoping that such a lo-
cal optimum will perform well in practice. In our implemen-
tation of the BFE minimization problem, we use well-studied
Gaussian quadrature methods to approximate the expecta-
tions, which approximate the integrals as a weighted sum of a
finite number of terms determined by a collection of quadra-
ture points [Golub and Welsch, 1969], but sampling based
methods, which could be used as part of a stochastic gradient
descent procedure, also appear to perform well in practice.
The inference procedure performs gradient descent by tak-
ing derivatives of (4) using the Gaussian quadrature method
to approximate the expectations, with a time complexity of
O(NLK2), where N is the total number of nodes and edges,
L is the number of mixture components and K is the number
of quadrature points. Once the inference task is complete, we
obtain the gradient of the potential functions with respect to θ
by back-propagation and then again apply Gaussian quadra-
ture methods for the expectations in (3) to obtain the gradient
of the log-likelihood.

As discussed in the introduction, double-loop MLE meth-
ods can become unstable when approximate inference is used
in the inner loop. An explanation for why this might occur
in our setting is that the BFE may have many different lo-
cal optima, especially when the model is highly multimodal.

As a result, even with θ fixed, repeated runs of gradient de-
scent on (4) can yield very different beliefs. To combat the
potential high variance of repeated inference, we propose a
belief averaging procedure. Specifically, we use a belief pool
to store the marginal beliefs produced during the inference
procedure during the last T outer loop iterations. Instead
of only using current round of bt in the gradient compu-
tation of the log-likelihood, we use an average distribution
b̄T (x) , 1

T

∑
t bt(x), which is a uniform mixture of all mix-

ture models in the pool. Note that this is only possible be-
cause the variational inference process applied here returns a
joint model: if we had used one of the message-passing al-
gorithms instead, a different averaging operation would need
to be considered. Note that averaging procedures have been
shown to greatly reduce the noisiness of gradient methods,
e.g., for averaging in the Frank-Wolfe algorithm see [Lacoste-
Julien et al., 2013]. We observe similar results experimentally
here. The entire MLE process is summarized in Algorithm 1.
For a high level visualization of the learning procedure, see
Figure 2.

One technical note: regardless of how the potential func-
tions are chosen, we must ensure that the resulting distribu-
tion is normalizable, i.e., Z exists and is finite. For example,
if the output activation is tanh, which is a bounded function,
this can be achieved by augmenting the univariate potential
functions to be of the form exp(fi(xi|θ)− cx2) where c > 0
is a small positive number. This idea can be extended to a
variety of different NN architectures.
Proposition 1. If all of the potential functions are defined in
terms of ReLU neural networks, augmenting the univariate
potential functions as above, i.e., exp(fi(xi|θ) − cx2), en-
sures that the resulting distribution is normalizable.

Proof. (Sketch) A fixed ReLU neural network defines a piece-
wise linear function. The expectation of any log-linear func-
tion w.r.t. a Gaussian distribution exists and is finite. As a
result, the expectation of any piecewise log-linear function
(with finite pieces) w.r.t. a Guassian distribution exists and is
finite.

Finally, in order to make our implementation particularly
efficient, we vectorize the inner most loop of Algorithm 1
into a single tensor operation by viewing quadrature points
as broadcasted “data” on each clique, so that the gradients of
the potential functions with respect to θ can all be evaluated
in one batch using back-propagation. The marginal inference
procedure outlined above is also embarrassingly paralleliz-
able. As a result, the entire training process can be imple-
mented quite efficiently on modern GPU accelerators.

4 Experimental Results
In this section we will illustrate the practical performance of
our method. In particular, we will be interested in answering
the following questions.
• How well does the learned model approximate the true

data generating distribution?
• How accurate is the learned model for classification?
• Does the learned model generalize well to unseen data?
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Algorithm 1: MLE with NN potentials
1 Randomly initialize weights θ for NN potential functions f ;
2 Initialize marginal belief parameters for each mixture

component k, (αk, µ
k
i∈V , σ

k
i∈V );

3 t = 0, η = 1;
4 Initialize belief queue QT of size T with bt;
5 foreach epoch do
6 Shuffle training dataset;
7 foreach batch data of data, B do
8 Compute bt via gradient descent on (4);
9 PUSH bt into QT , POP the oldest out;

10 b̄t =
1
T

∑
t bt for each bt in QT ;

11 foreach training example m in B do
12 ∇θmt =∑

c∈A

[
∇fc(x(m)

c |θ)− Eb̄t
∇fc(·|θ)

]
13 end
14 θt+1 = θt + η · 1

|B|
∑

m∈B ∇θmt;
15 t = t+ 1;
16 η = η · decay rate;
17 end
18 end

bt+1

b1, b2, …, bT
batch 
data

Equation (3)

Marginal InferenceFitting MRF

𝜃𝜃𝑡𝑡+1

quadrature 
points 

Equation (4)

�𝑏𝑏𝑡𝑡 =
1
𝑇𝑇
�
𝑡𝑡

𝑏𝑏𝑡𝑡

Figure 2: Data flow model for Algorithm 1. The gray nodes repre-
sent computations carried out in TensorFlow. The quadrature points
are selected by the Gaussian quadrature method for the expectations
in the marginal inference procedure and in the gradient computation.

As our aim is to demonstrate that this is a generic, widely ap-
plicable tool, we compare against standard methods for clas-
sification and model fitting: SVMs, logistic regression, deci-
sion trees, Gaussian naı̈ve Bayes, etc.

Our algorithm was implemented in Python using the Ten-
sorFlow 2 framework to take advantage of fast GPU train-
ing and inference. For the competing methods, we used the
implementations available in scikit-learn. All code and data
used as part of these experiments will be made available on
GitHub.1

4.1 MRF Learning on Synthetic Data
We begin with a synthetic experiment in which we train a
model using data sampled from a known distribution and
compare the learned distribution with the true distribution.
The true distribution is chosen to be a mixture of two tri-
variate Gaussian distributions, and the means and covariance
matrices Σ were randomly generated for each of the 10 runs.
Our aim is to learn a pairwise MRF with NN potential func-

1https://github.com/motionlife/nnmrf
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Figure 3: KLD between the learned distribution with kmixture com-
ponents and pool size T and the true distribution for the synthetic
Gaussian mixture model experiment.

tions that factorizes over the 3-cycle to data generated from
this mixture model.

In each run of this experiment, we sampled 2000 data
points from the mixture and applied the learning procedure in
Algorithm 1. Both node and edge potentials are neural nets
with 4 hidden layers and the hidden nodes for each layer are
[ 3, 5, 5, 3 ] for each node potential, [ 5, 7, 7, 5 ] for each edge
potential respectively, with all hidden layer’s activation func-
tion set to be SeLUs (scaled exponential linear units) [Klam-
bauer et al., 2017] and the output layer activation is TanH.

To assess model fit, we compute the KL-divergence (KLD)
between the learned model p̃ and the ground truth model p:
the KLD is always non-negative, and smaller KLD corre-
sponds to a better model fit. Figure 3 shows KLD versus it-
eration number for varying numbers of mixture components,
k, and different sizes for the averaging set, T . As expected,
KLD decreases as k increases: if the number of mixture com-
ponents is too small, the approximate inference procedure is
likely to become stuck in poor local optima, which results in
a poor approximation of the marginals for the gradient up-
date. Note that while the approximate marginals are mixtures
of Gaussian distributions with diagonal covariance matrices,
the true distribution has a full covariance matrix. As a result,
multiple mixture components in the fully factorized case are
needed to approximate a single component of p.

In addition, we find that increasing the pool size T for the
averaging technique significantly stabilizes the training pro-
cess and also appears to encourage the learning to converge
to a better distribution. The first observation here is not so
surprising as averaging reduces variance. For the latter obser-
vation, our intuition is that as T increases, the average model,
which is a mixture of all of the local optima found during the
inference procedure, is likely to contain an increasing number
of the possible local optima. As a result, even if the inference
procedure fails to find the globally optimal mixture on any
single iteration, it will likely find different pieces of this mix-
ture. These different pieces tend to correspond to peaks of
the true distribution. And, as a result, the average model is
likely to be a mixture of all of the most likely peaks of the
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data generating distribution.
Though the underlying model was quite simple, this exper-

iment provides some evidence that it is possible for the NN-
MRFs produced using Algorithm 1 to result in a reasonable
model fit in a multimodal setting.

4.2 Discriminative Task: Classification
In a second experiment, we evaluated the training and test ac-
curacy of our method (NN-MRF) on eight data sets from the
UCI repository and compare the results with a variety of stan-
dard classifiers: Support Vector Machines (SVMs), Gaussian
Naive Bayes (GNB), logistic regression (LR) , decision trees
(DTs), random forrests (RFs), k-nearest neighbor (KNN), and
multi-layer perceptrons (MLP). The number of features in
these data sets ranged from 4 to 60 and are all treated as con-
tinuous values. The data set sizes range from 150 to 10,000.

For simplicity, we chose the complete graph with pairwise
potential functions for the MRF representation. To use our
model as a classifier for label y, we simply train a differ-
ent MRF for each conditional distribution p(x|y) for each
y simultaneously. The joint distribution is then given by
p(y)p(x|y), and classification is performed for an unseen x
by maximizing p(y|x) ∝ p(y)p(x|y) over all possible values
of the class label y. Note that p(y) is also estimated via MLE.

In this experiment, the node potential functions are fully
connected SELU NNs with 4 hidden layers [ 3, 4, 4, 3 ] and
the edge potentials are also fully connected SELU NNs with
4 hidden layers [ 4, 5, 5, 4 ]. The output layer activation is
tanh. We used a belief pool size of T = 20, and we ran 100 it-
erations in each marginal inference procedure during learning
with the ADAM optimizer. For the MLP classifier, we used 3
hidden layers with each layer’s node number based on the cor-
responding dataset’s feature number n, i.e., [ 3n, 5n, 3n ] and
increased the maximum number of iterations to 500. SVMs
were applied using Gaussian kernels with penalty parameter
2. We also increased the number of trees for the Random For-
rest to 150 and the number of neighbors used by KNN to 10
with its leaf size set to 50. All other parameters were kept at
the Python scikit-learn package defaults.

Table 1 shows the average test accuracy of all methods over
30 randomly chosen 80/20, train/test splits. From the table,
we can see that NN-MRF and MLP are consistently among
the top performers on each data set. Particularly we find that
NN-MRF can always fit the training data very well, which
suggests that the model is very expressive, and its similar
performance on testing data suggests that the model is not
severely overfit to the training data. Note that overfitting can
easily occur when using MLE on continuous data.

4.3 Comparing Generative Models
In addition to performance on the classification task described
in the last section, the quality of a generative model can
also be evaluated based on how well the learned distribu-
tion matches the data distribution. Here we assess the per-
formance of NN-MRFs for the model fitting task.

Test Set Log-Likelihood
One way to assess the quality of a model fit is to look at
the probability of generating the test data under the model.

Figure 4: Sample images generated by GNB (top), MVN (middle),
and NN-MRF (bottom).

Among all the classifiers fit in the last subsection only NN-
MRF and GNB yield models of the data generating distribu-
tion. Here, we compare these two models with a third ap-
proach, dubbed multivariate normal (MVN), in which we fit
a separate Gaussian distribution for each class label.

Table 2 shows the average test set log-likelihood for the
models fit to both the UCI datasets from the previous section
as well as the MNIST image classification data set [LeCun
et al., 1998] using the above three methods. In terms of test
set log-likelihood, NN-MRF is much better than GNB nearly
every data set, even in cases when the error of these models
as classifiers is comparable. This is not entirely surprising as
GNB only fits a single, fully factorized Gaussian dsitribution
for each class label while NN-MRFs fit an entire MRF with
NN potentials per class label. The same is true for the com-
parison between NN-MRF and MVN: NN-MRF produces a
better test set log-likelihood on all data sets except for one,
the UCI Leaf data set. Given that NN-MRF achieved its worst
training performance on this data set, and that the fit is better
with a unimodal distribution, it suggests that more mixture
components are likely needed in order for the NN-MRF to
better capture the variance data generating distribution.

On MNIST, NN-MRF achieves 96.02% test accuracy with
a grid MRF for each class label and four mixture components,
while GNB’s performance is only about 84.6%. Although it
has the same µ vector as GNB, MVN has a test accuracy of
95.42%. Both NN-MRF and MVN both outperform GNB in
terms of test log-likelihood. As MNIST is an image data set
we can visualize the performance of the methods. Figure 4
shows samples generated by each of the methods.Although
NN-MRF narrowly outperforms MVN in terms of model fit
and test accuracy, the samples suggest that the models are
quite different practically.

While > 96% is a reasonable score on this classification
task, convolutional neural networks (CNNs) can achieve ac-
curacy > 99%. To achieve this level of performance with our
approach it is likely that we may need to change the poten-
tial functions, e.g., to CNNs, or the MRF. Additionally, latent
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Train Test
Dataset NN-MRF NN-MRF SVM GNB LR DT RF KNN MLP

Iris 0.9902 0.9667 0.9633 0.9500 0.9767 0.9166 0.9600 0.9533 0.9833
Seeds 0.9735 0.9778 0.9048 0.8881 0.9238 0.9119 0.9142 0.9071 0.9381
Sonar 0.9945 0.7789 0.6889 0.6711 0.7333 0.6977 0.7844 0.7778 0.7822

Banknote 0.9969 1.000 1.000 0.8423 0.9905 0.9819 0.9914 0.9967 1.000
Leaf 0.852 0.7935 0.6382 0.5985 0.6044 0.6926 0.7661 0.7058 0.8074
Glass 0.9511 0.7895 0.7429 0.6057 0.6657 0.7142 0.8085 0.7628 0.7429

Electricity 0.9994 1.000 0.8921 0.9748 0.8831 0.9993 0.9993 0.7734 0.9731
Protein 0.9871 0.9837 0.9793 0.7345 0.9431 0.9379 0.9568 0.9689 0.9586

Table 1: Classification accuracy of different methods on various UCI data sets. The best average performance appears in bold.

Dataset NN-MRF GNB MVN
Iris 4.235 −2.353 -1.102

Seeds 5.632 −1.859 5.160
Sonar 188.037 61.911 124.132

Banknote −4.357 −10.891 -9.159
Leaf 21.019 15.240 27.175
Glass 8.941 0.190 6.801

Electricity −3.783 −11.042 -4.169
Protein 14.587 6.424 12.907
MNIST 281.195 −1451.464 260.884

Table 2: Comparison of the average test set log-likelihood for NN-
MRFs, GNB, and MVN over various UCI data sets.

variables could capture the same kind of convolution struc-
ture that seems to work well on image classification tasks with
deep NNs. We leave these extensions for future work.

To better understand the rate of convergence of the learn-
ing process for NN-MRFs, we plot the test set log-likelihood
per iteration in Figure 5. While convergence rate greatly de-
pends on the model parameters’ learning rate and the number
of mixture components used by the model, the overall trend is
that after a few thousand iterations, the test set log-likelihood
is relatively stable.

Visual Inspection
To provide further evidence of the quality of models fit by
NN-MRFs, we use the t-distributed stochastic neighbor em-
bedding (t-SNE) technique to visualize our multidimensional
data. t-SNE is a nonlinear dimensionality reduction technique
that projects high dimensional data instances into a 2-D or 3-
D space such that points that are more similar in the high di-
mensional space are likely to be closer in the projected space.

We sampled data from our trained probabilistic model
p̃(x|y) =

∑
k αk

∏
i b

k
i (xi) and projected it along with the

original data set using t-SNE. Figure 6 visualizes the UCI
seeds data set, with 7 features and 3 class labels (Kama, Rosa
and Canadian), in two dimensions with the perplexity set to
30 under Euclidean distance. The sampled data set size was
chosen to be the same as the original data set size. As we
can see, the sampled data from our model matches quite well
with the original data set, which provides further evidence
that NN-MRFs produce reasonably good approximations to
the data generating distribution.
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Figure 5: Average test set log-likelihood versus iteration for NN-
MRF on various UCI data sets.

5 Discussion

Fitting expressive MRF models to continuous data is a highly
non-trivial problem that requires both an efficient inference
algorithm and an appropriate parametric family for the po-
tential functions. For example, this work was motivated in
part by an initial investigation into fitting MRFs with log-
polynomial potential functions as, theoretically, the Gaussian
quadrature integral approximation methods can accurately
compute the expectations in the BFE in this case with a small
number of quadrature points. Experimentally, however, we
found that it was extremely difficult to achieve convergence
of the learning procedure for these models, and when it did
converge, the resulting model was often worse than GNB.

We presented a general methodology for parametric MLE
for MRFs over continuous variables that can be implemented
efficiently using modern GPUs. We showed experimentally
that the learning procedure results in accurate models of the
data generating distribution as well as an accurate and effi-
cient classification procedure. These results suggest that this
method is a good candidate for inclusion into the standard
toolbox of widely applicable machine learning methods. In
addition, the method can easily handle hybrid MRFs, i.e.,
graphical models with both discrete and continuous random
variables, by allowing the mixture components to be fully fac-
torized products of arbitrary univariate distributions.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2774



Figure 6: t-SNE visualization for seeds data and samples generated
by the learned NN-MRF model. Best viewed in color.
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