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Abstract
Learning representations in an unsupervised or
self-supervised manner is a growing area of re-
search. Current approaches in representation learn-
ing seek to maximize the mutual information be-
tween the learned representation and original data.
One of the most popular ways to estimate mutual
information (MI) is based on Noise Contrastive
Estimation (NCE). This MI estimate exhibits low
variance, but it is upper-bounded by log(N), where
N is the number of samples.
In an ideal scenario, we would use the entire dataset
to get the most accurate estimate. However, using
such a large number of samples is computationally
prohibitive. Our proposed solution is to decouple
the upper-bound for the MI estimate from the sam-
ple size. Instead, we estimate the partition func-
tion of the NCE loss function for the entire dataset
using importance sampling (IS). In this paper, we
use locality-sensitive hashing (LSH) as an adaptive
sampler and propose an unbiased estimator that ac-
curately approximates the partition function in sub-
linear (near-constant) time. The samples are corre-
lated and non-normalized, but the derived estima-
tor is unbiased without any assumptions. We show
that our LSH sampling estimate provides a supe-
rior bias-variance trade-off when compared to other
state-of-the-art approaches.

1 Introduction
The goal of representation learning is to learn a high-level
representation from raw data that is useful for a variety of
downstream, supervised learning tasks. Instead of training a
separate network for each task, we will use the common high-
level representation for all tasks. This paradigm is very suc-
cessful for natural-language (NLP) tasks [Devlin et al., 2018].
State-of-the-art results are obtained from transformer models
that are pretrained on large text corpuses and then fine-tuned
on different supervised NLP tasks.

There is great interest in applying this self-supervised pre-
training paradigm to other domains [Oord et al., 2018a;
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Hjelm et al., 2018; Bachman et al., 2019]. Current ap-
proaches in representation learning seek to maximize the mu-
tual information between the learned representation and orig-
inal observations, inspired by the infoMax principle [Linsker,
1988; Bell and Sejnowski, 1995]. In this setting, the raw ob-
servations are viewed as samples from an underlying distribu-
tion, x ∼ p(x). The goal is to learn a probabilistic mapping
p(y|x) that retains information about the original data x.

One of the most effective approaches to maximize mu-
tual information (MI) uses the Noise Contrastive Estimation
(NCE) loss function. Essentially, the objective is to distin-
guish the single positive sample from the other negative sam-
ples. By minimizing the NCE loss function, we will maxi-
mize the mutual information between the representation and
data. The NCE estimate of the mutual information exhibits
low variance but is biased. Its estimate is upper-bounded by
log(N) where N is the number of negative samples. If the
true mutual information value is very high, then an extremely
large number of samples is necessary for an accurate estimate.

For NCE MI estimation, there are O(N2) evaluations for
each Monte-Carlo estimate. The diagonal of the matrix con-
tains the positive samples, while the remaining examples are
treated as the negative samples. The positive and negative
samples are summed together in the partition function.

In an ideal scenario, the remaining items in the entire
dataset would be the negative samples. However, using such a
large number of samples is computationally prohibitive. Our
proposed solution is to decouple the upper-bound of the MI
estimate from the batch size by estimating the partition func-
tion for the entire dataset using importance sampling (IS). For
our importance sampling (IS) estimate, the proposal distribu-
tion is locality-sensitive hashing (LSH).

Our Contributions. Our algorithm utilizes LSH tables for
fast, adaptive sampling. This work is an auspicious exam-
ple of the power of using an algorithmic data structure for
efficient and accurate statistical estimation. The samples, ob-
tained from the LSH tables, are correlated and unnormalized.
This unusual property is not a hurdle and that there exists
a simple, unbiased estimator of the partition function using
these samples. Fast LSH Sampling allows us to estimate the
partition function accurately in near-constant time. This al-
gorithm opens a new direction for sampling and unbiased es-
timation. We leverage the striking utility of two-decades of
LSH research for statistical estimation tasks.
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Our sampling scheme has several favorable theoretical
properties. In particular, the probability values associated
with every sample is monotonic in the probability density as-
signed by the log-linear distribution. Thus, the proposal has
same modes as the target distribution. This property makes
our proposal very informative for estimation.

We show that our LSH sampling estimate provides a su-
perior bias-variance trade-off when compared to other ap-
proaches such as Iα [Poole et al., 2019] that interpolates be-
tween INCE [Oord et al., 2018b] and INWJ [Nguyen et al.,
2010]. Our LSH sampling algorithm is more accurate at es-
timating the partition function than the Uniform IS method
while being equally fast.

2 Related Work
2.1 Classic Importance Sampling
The partition function can be approximated in an unbiased
fashion using Importance sampling (IS). It estimates the par-
tition function Zθ by drawing samples y from a tractable pro-
posal distribution y ∼ g(y), and then averaging the impor-
tance weights f(y)/g(y) across the samples. Therefore, an
unbiased estimate is returned by using the weight samples,
instead of all the items in the dataset.

The simplest proposal distribution is to select items from
the dataset uniformly. However, despite the speed of uniform
sampling, it requires a large number of samples to obtain an
accurate estimate. Also, the estimate often has a high vari-
ance when the proposal distribution is very different from the
target distribution.

2.2 Mutual Information Estimation
Informally, mutual information measures the information
about a random variable gained from observing another ran-
dom variable. is defined as:

I(X;Y ) = Ep(x,y)

[
log

p(x|y)
p(x)

]
= Ep(x,y)

[
log

p(y|x)
p(y)

]

Figure 1: The formal definition of Mutual Information between ran-
dom variables X and Y.

Recent approaches leverage neural network function ap-
proximators to estimate the mutual information between two
random variables. In this paper, we focus primarily on two
mutual information estimators - InfoNCE [Oord et al., 2018b]
and Interpolate Iα [Poole et al., 2019].

The goal of Noise Contrastive Estimation (NCE) is to dis-
tinguish the target class from samples from the noise distribu-
tion. For mutual information estimation, the positive sample
is drawn from the joint distribution p(x, y), while the negative
samples are drawn from the marginal distributions p(x)p(y).
The upper-bound for the InfoNCE estimate is determined by
the number of samples. Our solution is to estimate the par-
tition function with all the items in the dataset, which will
increase the upper-bound of the MI estimate without signifi-
cantly increasing the computational cost.

I(X;Y ) ≥ log(N) +Ep(x,y)

[
log

ef(xi,yi)∑N
j e

f(xj ,yi)

]

Figure 2: Noise Contrastive Estimation provides a biased estimate of
the mutual information between X and Y. This bias is upper-bound
by the number of samples N used for the estimate.

The Interpolate Iα estimator merges the InfoNCE and
INWJ estimators together. This approach achieves the best
of both estimators, since InfoNCE exhibits low variance but
high bias while INWJ has high variance and low bias. INWJ
[Nguyen et al., 2010] is an unnormalized tractable mutual
information estimator by Nguyen, Wainwright, and Jordan
(NWJ). For more information about mutual information esti-
mation, [Poole et al., 2019] provides a framework of different
mutual information estimators using variational bounds.

3 Locality Sensitive Hashing (LSH)
Locality-Sensitive Hashing (LSH) is a popular, sub-linear
time algorithm for approximate nearest-neighbor (ANN)
search [Andoni and Indyk, 2004; Gionis et al., 1999]. The
high-level idea is to place similar items into the same bucket
of a hash table with high probability. An LSH hash function
maps an input data vector to an integer key — h(x) : RD 7→
[0, 1, 2, . . . , N ]

A collision occurs when the hash values for two data vec-
tors are equal - h(x) = h(y). The collision probability of
LSH hash functions is generally aM monotonic function of
the similarity metric for the LSH family.

Pr[h(x) = h(y)] =M(sim(x, y))

Essentially, similar items are more likely to collide with each
other under the same hash fingerprint. In this paper, we focus
on the SimHash LSH family and the Cosine Similarity metric.

h
1

2

3

Likely Unlikely

Unlikely 
Event

Figure 3: Locality Sensitive Hashing. The LSH hash function
distributes items based on their similarity. Similar items collide in
the same bucket with high probability. However, sometimes items
are occasionally placed in a bucket with dissimilar items, which is
an unlikely event.
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The algorithm uses two parameters - (K,L). We construct
L independent hash tables from the collection C. Each hash
table has a meta-hash function H that is formed by concate-
nating K random independent hash functions from F . Given
a query, we collect one bucket from each hash table and re-
turn the union of L buckets. Intuitively, the meta-hash func-
tion makes the buckets sparse (less crowded) and reduces the
amount of false positives because only valid nearest-neighbor
items are likely to match all K hash values for a given query.
The union of the L buckets decreases the number of false
negatives by increasing the number of potential buckets that
could hold valid nearest-neighbor items.

4 Key Observation: LSH is an Efficient,
Informative Sampler in Disguise

The traditional LSH algorithm retrieves a subset of poten-
tial candidates for a given query in sub-linear time. For
each neighbor in this candidate subset, we compute its ac-
tual distance to the query and then report the closest nearest-
neighbor. A close observation reveals that an item returned
as candidate from a (K,L)-parameterized LSH algorithm is
sampled with probability 1− (1− pK)L where p is the colli-
sion probability of LSH function [Leskovec et al., 2014]. The
precise form of p is defined by the LSH family used to build
the hash tables. We can construct a MIPS hashing scheme
such that p = M(q · x) = M(θy · x) whereM is a mono-
tonically increasing function.

However, the traditional LSH algorithm does not represent
a valid probability distribution

∑N
i=1 Pr(yi) 6= 1. Also, due

to the nature of LSH, the sampled candidates are likely to be
very correlated. It turns out that there is a simple, unbiased
estimator for the partition function using the samples from the
LSH algorithm. Please see Appendix A for more information
on LSH Sampling and other related applications. We take
a detour to define a general class of sampling and partition
function estimators where the LSH sampling is a special case.

5 Locality-Sensitive Sampling (LSS) and
Unbiased Partition Function Estimator

Here is the description of the sampling process: Assume there
is a set of states Y = [y1 . . . yN ]. We associate a probability
value pi with each state yi. We flip a Bernoulli coin mi with
probability pi for each state yi. The sample set S contains all
of the states accepted by the Bernoulli sampling process.

mi ∼ P (mi = 1|pi) yi ∈ S ⇐⇒ mi = 1

Note, the probabilities are not required to sum to 1, and that
the sampling process is correlated. LSH sampling is a special
class of this idealized process with sampling probability:

pi = 1− (1−M(θyi · x)K)L

Given the sample set S, we have an unbiased estimator for
the partition function Zθ.

Theorem 5.1. Assume that every state yi has a weight given
by f(yi) with partition function Zθ =

∑
yi∈Y f(yi). Then

we have the following as an unbiased estimator of Zθ:

Est =
∑
yi∈S

f(yi)

pi
=

N∑
i=1

1[yi∈S] ·
f(yi)

pi
(1)

E[Est] =
N∑
i=1

f(yi) = Zθ (2)

Theorem 5.2. The variance of the partition function estima-
tor is:

V ar[Est] =
N∑
i=1

f(yi)

pi

2

−
N∑
i=1

f(yi)
2 (3)

+
∑
i6=j

f(yi)f(yj)

pipj
Cov(1[yi∈S] · 1[yj∈S]) (4)

If the states are selected independently, then we can write the
variance as:

V ar[Est] =
N∑
i=1

f(yi)

pi

2

−
N∑
i=1

f(yi)
2 (5)

Note 1. In general, this sampling process is inefficient. We
need to flip coins for every state in order to generate the sam-
ple set S. For log-linear models with feature vector x and
function f(yi) = eθyi ·x, we show a particular form of proba-
bility pi = 1 − (1 −M(θyi · x)k)L for which this sampling
scheme is very efficient. In particular, we can efficiently sam-
ple for a sequence of queries x in amortized near-constant
time.

Note 2. In our case, where the probabilities pi are generated
from LSH or Asymmetric LSH for Maximum Inner Product
Search (MIPS), the term∑

i6=j

f(yi)f(yj)

pipj
Cov(1[yi∈S] · 1[yj∈S])

contains very large negative terms. For each dissimilar pair
yi, yj , the term Cov(1[yi∈S] · 1[yj∈S]) is negative. When
1[yi∈S] = 1 and 1[yj∈S] = 1, it implies that yi and yj are
both similar to the query. Therefore, they are similar to each
other due to triangle inequality [Charikar, 2002]. Thus, for
random pairs yi, yj , the covariance will be negative. If yi is
sampled, then yj has less chance of being sampled and vice
versa. Hence, we can expect the overall variance with LSH-
based sampling to be significantly lower than uncorrelated
sampling. The exact analysis is significantly challenging and
data dependent.

5.1 Why is MIPS the correct LSH function?

The term
∑N
i=1

f(yi)
pi

2
in the variance is similar in nature to

the χ2(f ||p) term in the variance of Importance Sampling
(IS) [Liu et al., 2015]. The variance of the IS estimate is high
when the target f and the proposal p distributions are peaked
differently. In other words, they give high mass to different
parts of the sample space or have different modes. There-
fore, for similar reasons as importance sampling, our scheme
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is likely to have low variance when f and pi are aligned. It
should be noted that there are very specific forms of proba-
bility pi for which sampling is efficient. We show that with
the MIPS LSH function, the probabilities pi and the function
f(yi) = eθyi ·x align well.

We have the following relationship between the probabil-
ity of each state pi and the unnormalized target distribution
P (y|x, θ).
Theorem 5.3. For any two states y1 and y2:

P (y1|x; θ) ≥ P (y2|x; θ) ⇐⇒ p1 ≥ p2
where pi = 1− (1−M(θyi · x)K)L and P (y|x, θ) ∝ eθy·x

Corollary 5.3.1. The modes of both the sample and the target
distributions are identical.

6 Methodology
The combination of these observations is a fast, scalable ap-
proach for estimating the partition function. The pseudo-code
for this process is shown in Algorithms 1 and 2.
Here is an overview of our LSH sampling process:

1. Preprocesing: During the preprocessing phase, we use
randomized hash functions to build hash tables from the
weight vectors θy for each state y ∈ Y .

2. Estimation: For each partition function estimate, we re-
trieve the weight vectors from the hash tables with prob-
ability p = 1− (1−M(θyi ·x)K)L, which is monotonic
w.r.t. the unnormalized density of the weight vector for
the state and the feature vector, i.e., monotonic in eθy·x.

3. For each weight vector θy in the retrieved set S, we cal-
culate this p = 1− (1−M(θyi · x)K)L, the probability
of retrieving the element given the query feature vector.

4. The partition function estimate for the feature vector x is
the sum of each unnormalized density eθy·x in the sam-
ple set S weighted by the inverse retrieval probability.

Ẑθ =
∑N
i=1 1[yi∈S] ·

f(yi)
pi

Running Time. The total running time includes the K ×L
hash computations, followed by evaluating the formula over
the samples returned from the LSH hash tables, which has
complexity O(|S|). The first thing to observe is that the pa-
rameters K and L control the sample size S. By increasing
K linearly, there is an exponential drop in the sample size.
We can fix K, the number of bits in the hash fingerprint, such
that the expected number of samples in each table is a small
constant. LSH theory [Indyk and Motwani, 1998] states that
we can ensure a constant number of samples from each hash
table when K = log n. Thus, with K = log n and a small
number of hash tables L, we can easily obtain a constant sam-
ple size, independent of the total number of states n. The total
computational cost is on the order of log n.

On the contrary, the same LSH needs K = log n and a
significant number of hash tables L = nρ to ensure that an
approximate near-neighbor is chosen with high probability.
In practice, ρ < 1 can still be very large and close to 1. We do
not require any such near-neighbor guarantee and can work
well with a small, constant-sized number of hash tables L.

Algorithm 1 LSS - Preprocessing

HT = Create(k, L)
for each y ∈ Y do

Insert(HT, θy)
end for
Return: HT

k - Number of Bits per Hash Fingerprint
L - Number of Hash Tables
HT - LSH Hash Tables
[θy]y∈Y weight vectors

Algorithm 2 LSS - Partition Estimate

total = 0
union = Query(HT, x)
for each y ∈ union do
p =M(x, θy)
weight = 1− (1− pk)L
logit = eθy·x

total += logit
weight

end for
Return: Ẑθ = total

p - LSH Collision Probability
x feature vector
Ẑθ Partition Function Estimate

7 Wasteful Nearest-Neighbor Approaches
Recent approaches to approximate the partition function Zθ
rely on retrieving the heavy elements using a near-neighbor
query. Those approaches leverage a reasonable assumption
that the states Y follow a power law distribution. The main
idea [Mussmann et al., 2017] is to retrieve the heavy entries in
the partition function exactly and to get a random sample es-
timate for the leftover tail. We argue that these near-neighbor
based approaches are inherently wasteful for partition func-
tion estimation.

First, any efficient MIPS subroutine generates a larger can-
didate set C. Then, the candidate set is filtered to find the top-
k elements. The filtering step requires computing θi · x for all
of the elements in C, sorting their values, and then reporting
the top-k elements. Therefore, we are throwing away can-
didates after computing its contribution to the partition func-
tion, which is clearly sub-optimal. In addition, we have to
use random sampling on the leftover states to get an unbiased
estimator.

Another thing to note is that near-neighbor search is only
efficient when the query is very close to neighbors. See
related literature on hardness of near-neighbors [He et al.,
2012]. Thus, finding a large number of neighbors is either
very expensive or very inaccurate with approximate near-
neighbors algorithms. [Mussmann et al., 2017] requires
around top O(

√
n) neighbors, but such a high number of

neighbors cannot be efficiently computed.
The LSH sampler removes all of the disadvantages shown

above. It uses all of the candidates retrieved from the data
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structure, which our theory suggests is also required for ac-
curate estimation. Furthermore, it utilizes the existing ran-
domness in the LSH algorithm itself to guarantee an unbi-
ased estimator, so there is no need for any additional random
sampling. Our experiments clearly show that the speed of the
LSH sampler is competitive with uniform sampling in prac-
tice yet has significantly higher accuracy. Also, the statistical
guarantees on bias and variance are independent of the qual-
ity of the retrieved candidates. Therefore, we are not forced
to rely on any accuracy guarantees for MIPS or approximate
near-neighbor search, which leads to significant savings.

8 Mutual Information - Experiments
A popular MI estimator uses the Noise Contrastive Estima-
tion (NCE) loss function. The NCE loss function was orig-
inally used to train language models with large vocabularies
[Gutmann and Hyvärinen, 2010], but it is also a lower-bound
on the mutual information [Oord et al., 2018b]. To maximize
the mutual information between the input data and output rep-
resentation, the NCE loss function trains the model to distin-
guish the positive sample from the N − 1 negative samples
where N is the batch size.

The main limitation of NCE estimator is that the maximum
mutual information estimate is upper-bounded by log(N). If
the mutual information estimate is very high, we will need an
exponential number of samples to get an accurate estimate.
However, when using a large batch size, the gradient update
becomes slow. The ideal batch size for an unbiased MI esti-
mate is the entire dataset, where every data point becomes a
negative sample.

In this experiment, we estimate the partition function us-
ing our LSH IS approach, reducing the dependency on the
batch size used during training. Importance sampling scales
the batch size to the number of elements in our proposal dis-
tribution — the LSH data structure. Empirically, we demon-
strate that LSH importance sampling generates an unbiased
estimate with lower variance than uniform importance sam-
pling.

The code1 for the experiments is available online. We de-
signed the experiments to answer the following four impor-
tant questions:

1. Does importance sampling alleviate the dependency on
the batch size for estimating mutual information using
NCE?

2. What is the bias/variance trade-off for our LSH impor-
tance sampling approach?

We compare and contrast the following estimators against
our approach:

1. Noise Contrastive Estimation (NCE) [Oord et al.,
2018b]: The baseline MI estimator that uses multiple
samples to reduce the estimator’s variance, but has high
bias because the estimate is limited by log(N) where N
is the number of samples in the mini-batch.

2. Uniform Importance Sampling: An IS estimate where
the proposal distribution is a uniform distribution U[0,
N]. All samples are weighted equally.

1https://github.com/rdspring1/LSH-Mutual-Information

3. Interpolate Iα [Poole et al., 2019]: This approach inter-
polates the high-bias, low-variance INCE and low-bias,
high-variance INJW estimators using the α parameter.

We applied the various estimators to a correlated Gaussian
problem [Poole et al., 2019]. We used a separable critic ar-
chitecture where f(x, y) = g(x)ᵀf(y) where f and g are
neural network functions. The X and Y variables are drawn
from a 20-d Gaussian distribution with zero mean and corre-
lation ρ. This problem allows us to calculate the exact mutual
information.

I(X;Y ) = −d2 log(1− ρ
2)

Figure 4: The mutual information for correlated Gaussian random
variables where ρ is the correlation between X and Y and d is the
number of dimensions.

By increasing the correlation ρ, we increase the mutual in-
formation between X and Y in a controlled manner from 2
to 10. In the experiment, as the mutual information content
changes, we see how the different MI estimators behave.

Figure 5 shows the effect of increasing the batch size while
using importance sampling to estimate the mutual informa-
tion. As the batch size increases, the variance for both ap-
proaches decreases. However, the LSH Sampling approach is
less biased than the Uniform Sampling approach.

The computational cost of the estimators depends on the
batch size N and the number of samples K selected by the
proposal distribution. For uniform sampling, the batch size
and the number of samples are equal N = K, so the cost is
O(N2). For LSH Sampling, the number of samples K varies
slightly for each example, so the cost is O(NK).

We wanted a fair comparison of the computational cost of
the estimators. Therefore, the batch size for uniform IS was
selected, so the computational cost between the LSH Sam-
pling and Uniform Sampling approaches were roughly equal.

We compare NCE, Uniform IS, and LSH IS for batch size
50 in Figure 6. NCE is upper-bounded by its batch size
ln(50) = 3.91. The upper bound for Uniform IS and LSH
IS is ln(50, 000) = 10.82 while using the same amount of
computation as NCE. As we increase the mutual information,
the InfoNCE estimate plateaus while Uniform IS and LSH IS
estimates increase appropriately.

Figure 7 compares LSH IS and the Interpolate estimator for
a fixed alpha parameter and different batch sizes. As the batch
size increases for the Interpolate Iα estimator, the variance
decreases. The LSH IS estimator is more unbiased and has
less variance than the Iα estimator for batch size 32 and 64.

9 Conclusion
In this paper, we presented the concept of locality-sensitive
sampling (LSS), which uses the locality-sensitive hashing
(LSH) data structure as an efficient proposal distribution. The
samples are weighted by their LSH probability to obtain an
unbiased estimator. Using this LSH sampler, we can estimate
the partition function using far fewer samples than the entire
state space. We demonstrated the effectiveness of locality-
sensitive sampling (LSS) for estimating the mutual informa-
tion using neural network function approximators.
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Figure 5: The effect of increasing the batch size while using importance sampling for mutual information estimation - LSH IS (Top) and
Uniform IS (Bottom). The LSH data structure used k = 10 bits and L = 10 hash tables. We scaled the size of the sample set to the total
size of the dataset - 50K items. Approximately 200-300 samples per query are retrieved from the LSH data structure. The dashed black line
is the maximum mutual information estimate. The solid black line is the true mutual information. The batch size and sample size for uniform
sampling was selected so that both methods use roughly the same amount of computation.
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Figure 6: The comparison between NCE, LSH IS, and Uniform IS estimators for batch size 50. NCE is upper-bounded by its batch size —
ln(50) = 3.91. The upper bound for Uniform IS and LSH IS is ln(50, 000) = 10.82, while using the same amount of computation as NCE.
As the mutual information increases, the NCE estimate plateaus while Uniform IS and LSH IS estimates increase appropriately.
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Figure 7: The comparison between LSH IS and Interpolate estimators. The LSH data structure contains 5K items with k = 8 bits and L = 10
hash tables. The average sample size per query was 91 elements and a 32 batch size. For the interpolate method, α = 0.01.
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A Locality-Sensitive Sampling
This paper focuses on the new concept of Locality-Sensitive
Sampling. Technical portions of this paper appeared in
Spring 2017 [Spring and Shrivastava, 2017a]. Tradition-
ally, Locality-Sensitive Hashing (LSH) is used for approx-
imate nearest-neighbor search (ANN). For the ANN algo-
rithm, LSH returns a set of items close to the query. Often
times, we filter the returned items to find the closest items to
the query.

Locality-Sensitive Sampling views the LSH data structure
as a fast, adaptive sampler. Items are inserted into a set of
hash tables, according to the locality-sensitive hash function.
Then, for a given query, a subset of similar items is retrieved
from the hash tables and weighted by the LSH collision prob-
ability. Note, the filtering step associated with ANN is not
necessary, improving computational performance. Instead of
sampling from a probability distribution, we sample items
from the LSH data structure. A key difference is that the sam-
pling probabilities for all the items do not sum to 1 with LSH
sampling.

A.1 Timeline for LSH Sampling
1. Spring 2016 - Scalable and Sustainable Deep Learn-

ing via Randomized Hashing [Spring and Shrivastava,
2017b] — Instead of running all nodes in a neural net-
work, this paper saves computation by sparsely activat-
ing a set of nodes sampled adaptively using LSH.

2. Spring 2017 - Scalable Partition Function Estimation
via LSH Sampling [Spring and Shrivastava, 2017a] —
This paper reduces the computational cost of calculating
the normalization constant for the Softmax classifier. It
combines Importance Sampling with a SimHash LSH
Sampler to find an unbiased estimator for the partition
function.

3. FOCS 2017 - Hashing-Based-Estimators for Kernel
Density in High Dimensions [Charikar and Siminelakis,
2017] — This paper derives a Hash-Based Estimator
(HBE) for Kernel Density Estimation (KDE) in high-
dimensions using the Euclidean distance LSH family.

4. AAAI 2018 - Scaling-up Split-Merge MCMC with Lo-
cality Sensitive Sampling [Luo and Shrivastava, 2019]
— This paper uses a MinHash LSH Sampler as an
efficient proposal distribution for Split-Merge MCMC
methods.

5. WWW 2018 + WWW 2020 - [Luo and Shrivastava,
2018; Coleman and Shrivastava, 2019] — RACE is
a sketching algorithm for kernel density estimation in
high-dimensional spaces in a streaming setting. It com-
presses a set of high-dimensional vectors into an array
of integer counters, which is capable of estimating the
kernel density for a wide range of problems.

6. NeurIPS 2019 - Fast and Accurate Stochastic Gradient
Estimation [Chen et al., 2019] — Locality Gradient De-
scent (LGD) uses an LSH Sampler to select examples
during gradient descent. It is an unbiased estimator of
the full gradient and converges faster than Stochastic
Gradient Descent (SGD).

B LSH Partition Function

Theorem B.1. Assume there is a set of states Y . Each state y
occurs with probability [p1 . . . pN ]. For some feature vector
x, function f(yi) = eθyi ·x Then, there is a random variable
whose expected value is the partition function.

Est =
N∑
i=1

1[yi∈S] ·
f(yi)

pi

E[Est] =
N∑
i=1

E[1[yi∈S]] ·
f(yi)

pi
(6)

=
N∑
i=1

pi ·
f(yi)

pi
(7)

=
N∑
i=1

f(yi) (8)

= Zθ (9)

Theorem B.2. The variance of the partition function estima-
tor is:

V ar[Est] =
N∑
i=1

f(yi)

pi

2

−
N∑
i=1

f(yi)
2 (10)

+
∑
i6=j

f(yi)f(yj)

pipj
Cov(1[yi∈S] · 1[yj∈S]) (11)

If the states are selected independently, then we can write the
variance as:

V ar[Est] =
N∑
i=1

f(yi)

pi

2

−
N∑
i=1

f(yi)
2

Proof. The expression for the variance of the partition func-
tion estimator is:

V ar[Est] = E[Est2]− E[Est]2

Est2 =
∑
ij

1[yi∈S]1[yj∈S]
f(yi)f(yj)

pipj
(12)

=
∑
i

1[yi∈S]
f(yi)

2

p2i
+
∑
i6=j

1[yi∈S]1[yj∈S]
f(yi)f(yj)

pipj

(13)

Notice.

E[1[yi∈S]1[yj∈S]] = E[1[yi∈S]]E[1[yj∈S]]+Cov[1[yi∈S]1[yj∈S]]

E[1[yi∈S]] = pi
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E[Est2] =
N∑
i=1

f(yi)

pi

2

+
N∑
i=1

f(yi)[Zθ − f(yi)] (14)

+
∑
i6=j

f(yi)f(yj)

pipj
Cov(1[yi∈S] · 1[yj∈S]) (15)

=
N∑
i=1

f(yi)

pi

2

+ Z2
θ −

N∑
i=1

f(yi)
2 (16)

+
∑
i6=j

f(yi)f(yj)

pipj
Cov(1[yi∈S] · 1[yj∈S]) (17)

Notice.
N∑
i=1

f(yi) = Zθ

N∑
i6=j

f(yj) =
N∑
j=1

f(yj)− f(yi) = Zθ − f(yi)

Notice. E[Est]2 = Z2
θ .

V ar[Est] =

N∑
i=1

f(yi)

pi

2

−
N∑
i=1

f(yi)
2 (18)

+
∑
i6=j

f(yi)f(yj)

pipj
Cov(1[yi∈S] · 1[yj∈S]) (19)

Theorem B.3. For any two states y1 and y2:

P (y1|x; θ) ≥ P (y2|x; θ) ⇐⇒ p1 ≥ p2

where
pi = 1− (1−M(θyi · x)K)L

P (y|x, θ) ∝ eθy·x

Proof. Follows immediately from monotonicity of ex and 1−
(1−M(x)K)L with respect to the feature vector x. Thus, the
target and the sample distributions have the same ranking for
all the states under the probability.

C LSH Interaction with Training
During training, the feature vectors of the dataset are altered
through gradient descent. However, a single gradient step
does not perturb the features vectors significantly. Therefore,
we periodically rebuild the hash tables to minimize the com-
putational overhead. Also, substantial changes to the feature
vectors occur at the beginning of training. As training pro-
gresses, the changes to the feature vectors diminish. We take
advantage of this property by annealing the rate in which we
rebuild the hash tables. Also, LSH is embarrassingly par-
allel, so we generate the hash fingerprints using GPUs and
construct the hash tables in parallel with multiple threads.

D Estimating Mutual Information with
Importance Sampling

We modified the proof for InfoNCE [Oord et al., 2018b] for
our importance sampling MI estimator. Assume there is a
set of states Y = [y1 . . . yN ]. Let x, yi ∈ Y be the input and
output variables respectively. The optimal value for f(y, x) is
p(y|x)
p(y) where f is a neural network function. For each positive

example, we sample from our proposal distribution the nega-
tive examples Yneg. Let N − 1 be the total number of states in
the proposal distribution excluding the positive example.

Loptimal
IS = −EY log

[
f(yi, x)

f(yi, x) +
∑
yj∈Yneg

f(yj ,x)
pj

]
(20)

= EY log
[
1 + f(yi, x)

∑
yj∈Yneg

f(yj , x)

pj

]
(21)

= EY log
[
1 + f(yi, x)

N−1∑
j=1

1[yj∈S]
f(yj , x)

pj

]
(22)

≈ EY log
[
1 + f(yi, x)E

[N−1∑
j=1

1[yj∈S]
f(yj , x)

pj

]]
(23)

= EY log
[
1 + f(yi, x)

N−1∑
j=1

pj
E[f(yj , x)]

pj

]
(24)

= EY log
[
1 + f(yi, x)

N−1∑
j=1

E[f(yj , x)]
]

(25)

= EY log
[
1 +

p(yi|x)
p(yi)

(N − 1)Eyj
p(yj |x)
p(yj)

]
(26)

= EY log
[
1 +

p(yi|x)
p(yi)

(N − 1)

]
(27)

≥ EY log
[
p(yi|x)
p(yi)

N

]
(28)

= −I(y, x) + log(N) (29)

Loptimal
IS = −I(y, x) + log(N) where N is the number of el-

ements in the proposal distribution. For InfoNCE, the mu-
tual information estimate is bound by the batch size M —
Loptimal

NCE = −I(y, x)+ log(M). By using an efficient proposal
distribution such as our LSH data structure, N �M . There-
fore, our importance sampling approach reduces the bias in
the MI estimator by effectively scaling the batch size to the
total size of the proposal distribution.
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