
Adaptively Multi-Objective Adversarial Training for Dialogue Generation

Xuemiao Zhang1∗ , Zhouxing Tan1∗ , Xiaoning Zhang2 , Yang Cao4 and Rui Yan3†

1School of Software & Microelectronics, Peking University
2Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

3Wangxuan Institute of Computer Technology, Peking University
4SenseTime Research

{zhangxuemiao, tzhx, ruiyan}@pku.edu.cn, xiaoningzhang42@gmail.com, caoyang@sensetime.com

Abstract

Naive neural dialogue generation models tend to
produce repetitive and dull utterances. The promis-
ing adversarial models train the generator against
a well-designed discriminator to push it to improve
towards the expected direction. However, assessing
dialogues requires consideration of many aspects of
linguistics, which are difficult to be fully covered
by a single discriminator. To address it, we reframe
the dialogue generation task as a multi-objective
optimization problem and propose a novel adver-
sarial dialogue generation framework with multi-
ple discriminators that excel in different objectives
for multiple linguistic aspects, called AMPGAN,
whose feasibility is proved by theoretical deriva-
tions. Moreover, we design an adaptively adjusted
sampling distribution to balance the discriminators
and promote the overall improvement of the gener-
ator by continuing to focus on these objectives that
the generator is not performing well relatively. Ex-
perimental results on two real-world datasets show
a significant improvement over the baselines.

1 Introduction
The end-to-end neural systems [Serban et al., 2016; Luan et
al., 2016] based on SEQ2SEQ framework [Sutskever et al.,
2014] and using the maximum likelihood estimation (MLE)
objective have been extensively studied because of its abil-
ity to generate unseen conversations and high scalability. But
the dialogue responses generated by these models tend to be
generic, dull, repetitive [Tao et al., 2018; Li et al., 2016;
Zhang et al., 2018] in practice. Recently, sequence genera-
tive adversarial nets (SeqGAN) [Yu et al., 2017] apply the
promising adversarial training method of GANs [Goodfellow
et al., 2014] on sequence generation task by employing pol-
icy gradient and Monte Carlo (MC) search. AdverREGS [Li
et al., 2017] employs adversarial training to actual dialogue
generation task and trains the generator against a real-fake
discriminator. DP-GAN [Xu et al., 2018] and DAL [Cui et
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al., 2019] try to increase the diversity of the generated re-
sponses by designing a fine-grained diversity discriminator
and utilizing the duality between query and response genera-
tion, respectively.

But in fact, assessing dialogue responses should consider
many aspects of linguistics such as diversity, fluency, syn-
tax habits of human, and so on. However, although a well-
designed discriminator can make the generator perform well
in the corresponding expected aspect, other aspects are of-
ten ignored. We notice that the multi-adversarial framework,
denoted MDGAN, that extends GANs to multiple discrim-
inators has achieved promising results on image generation
tasks. Many models in MDGAN [Durugkar et al., 2017;
Neyshabur et al., 2017; Albuquerque et al., 2019] use their
specially designed methods to weight the sum of the losses of
image discriminators to optimize the image generator overall.

We hope the generator can cover multiple linguistic as-
pects to achieve overall improvement and perform relatively
well in all aspects. Intuitively, we can view dialogue gener-
ation as a multi-objective optimization problem [Deb, 2001;
Albuquerque et al., 2019]. Each objective is designed for a
linguistic aspect, and a corresponding discriminator provide
guidances towards this objective, thereby optimizing the gen-
erator towards multiple objectives. However, this idea faces
challenges. The main challenge is to innovatively propose
a theoretically proven and practically effective framework
that extends the original adversarial dialogue generator opti-
mization problem to a multi-objective optimization problem,
where each objective is defined by policy gradient. The sec-
ond is to explore how to design and combine various linguis-
tic objectives, and to deal with the problem of asynchronous
optimization of different objectives during training.

In this paper, we propose the adaptively multi-objective
adversarial dialogue generation framework using policy gra-
dient, called AMPGAN, to push the generator Gθ to achieve
overall improvement. AMPGAN models dialogue genera-
tion as a stochastic policy in reinforcement learning (RL)
and directly performs gradient policy update to generate dis-
crete dialogue utterances, and is formalized as the multi-
objective optimization problem by framing the simultaneous
maximization of rewards received from multiple discrimina-
tors. We design multiple objectives of linguistics for guid-
ing Gθ of AMPGAN: indistinguishable from the human ut-
terances, high syntactic score and diversity. We propose mul-
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tiple corresponding discriminators and an adaptively adjusted
sampling distribution to dynamically organize them to partic-
ipate in adversarial training. Through the adaptive distribu-
tion, AMPGAN can focus on the aspects that Gθ not perform
well relatively. When Gθ is still weak and have much room
to improve in aspect ai, AMPGAN will adaptively increase
the probability that the corresponding Di is selected to par-
ticipate in adversarial training, to motivate Gθ to optimize
towards ai; Conversely, when Gθ can easily deceive the dis-
criminatorDj of aspect aj , AMPGAN will adaptively reduce
its probability, and pay more attention to other relatively weak
aspects. Thereby,Gθ can cover multiple aspects and solve the
asynchronous optimization problem.

Our contributions are summarized as: (1) We reframe the
dialogue generation as a multi-objective optimization prob-
lem and propose the novel multiple adversarial generation
framework (AMPGAN) to improve the generator towards
multiple objectives of linguistics and provide the theoretical
derivation and proof; (2) We explore how to choose and com-
bine different discriminators, and design an adaptively adjust-
ing sampling distribution to balance all discriminators; (3) We
conduct ample experiments on two datasets, and experimen-
tal results show the effectiveness of AMPGAN framework.

2 Methodology
We propose the adaptively multi-adversarial dialogue gener-
ation framework using policy gradient, called AMPGAN, to
push the dialogue generator to improve towards multiple ob-
jectives based on linguistic apects, as shown in Figure 1.

2.1 The AMPGAN Framework
Given a dialogue query utterance x = {xi}mi=1 of m words,
the generator Gθ needs to produce a response y = {yj}nj=1
of n words, where xi, yj ∈ T (the word vocabulary). AMP-
GAN conducts gradient policy update directly by modeling
Gθ defined by a SEQ2SEQ model as a stochastic policy in re-
inforcement learning (RL). Each discriminator in AMPGAN
is designed to judge on the complete generated sequence ac-
cording to a linguistic objective, and reports the RL reward
which is passed back to the intermediate state-action steps us-
ing MC search. Note that all discriminators {Di}Ni=1 do not
share parameters. We extend and divide the types of discrim-
inators into three categories, binary classification task DC ,
regression task DR and direct rule scorer DI . Among them,
DC andDR are parameterized models that need training, and
DI is a set of scoring logical rules which can be understood
as a fully trained and completely correct discriminator.

More formally, Gθ and {Di}Ni=1 play the following mini-
max optimization game:

min
Gθ

max
{Di}Ni=1

V (Gθ, {Di}Ni=1) = ED∼π(Q)(Ex∼pd(x)

log(D(x)) + Ez∼pz(z) log(1−D(Gθ(z))))
(1)

where the random variable discriminator D obeys the distri-
bution π(Q) on the increment Q of RL rewards. x is the
ground truth data and z is the query data drawn from a prior
pz(z). Gθ maps z to the fake responses which obeys the dis-
tribution pg . Next we will provide formal theoretical analysis.

Theoretical Analysis
Firstly, we consider the optimization of multiple discirmina-
tors for any given Gθ and π(Q) under the proposed AMP-
GAN framework. Note that since the rule scorer DI is con-
stant, here we only need to consider the variableDC andDR.

Proposition 1. For Gθ and π(Q) fixed, the optimal dis-
criminator Di is: Di

∗ = pd(x)/(pd(x) + pg(x)).
Proof. According to the induced measure theorem

[Somesh Das Gupta, 2000], the two expectations are equal:
Ez∼Pz [f(G(z))] = Ex∼PG [f(x)]. The objective function
can be rewritten as below:

V (G, {Di}Ni=1) =

∫
x

∑N

i=1
pDi(pd(x) logDi(x)

+pg(x) log(1−Di(x)))dx

(2)

Let A :=
∑N
i=1 pDi(pd(x) logDi(x) + pg(x) log(1 − Di(x)))

then diag({ pDi (pd(x)(Di−1)2+pg(x)Di
2)

Di2(Di−1)2
}Ni=1) is the Hessian

matrix of −A, and all leading principle minors of the ma-
trix are greater than 0, thereby −A is a convex function. So
the maximum point D∗i of A is stationary points on [0, 1]:

∂A

∂Di
= pDi(

pd(x)

Di
+

pg(x)

Di − 1
) = 0

Di
∗ = pd(x)/(pd(x) + pg(x)) ∈ [0, 1]

(3)

And D∗i is also the optimal point of V (G, {Di}Ni=1) Q.E.D.
Secondly, we fix Di = D∗i and find the optimal solution

G∗ for the generator of the proposed AMPGAN framework.
Theorem 1. Let C(G) = max

{Di}Ni=1

V (G, {Di}Ni=1), then

minC(G) = − log 4.
Proof. Bring D∗i into the above formula:

C(G) =
∑N

i=1
pDi [Ex∼pd(x) log(

pd(x)

pd(x) + pg(x)
)

+ Ex∼pg(x) log(
pg(x)

pg(x) + pd(x)
)]

= (
∑N

i=1
pDi)(− log 4 + (KL(pd(x)||pd(x) + pg(x)

2
)

+KL(pg(x)||pd(x) + pg(x)

2
))

= − log(4) + JSD(pd||pg)
(4)

when pd and pg are consistent, get the minimum value
− log(4) Q.E.D.

Thirdly, we directly use a policy gradient of RL to optimize
Gθ, which can avoid the problem of differentiation difficulty
[Yu et al., 2017] for discrete dialogue data in the traditional
GAN naturally. Each Di in AMPGAN guides to improve Gθ
by computing a specific reward signal on sequences generated
by Gθ using MC rollout strategy. Specifically, starting from
the current state s = Y1:t−1, action a = yt, using MC search
until the complete sequence is generated, the search sequence
set MCGθ (Y1:t;N) is obtained. And the value function QGθDi
of single discirminator Di on this set is set to the average
discrimination score as:

QGθDi (s = Y1:t−1, a = yt) =
1

M

∑M

m=1
Di(Y

m
1:T ) (5)
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Figure 1: The architecture of AMPGAN. Given queries, the gen-
erator generates fake responses. A discriminator will be sampled
to compute the reward to optimize the generator according to the
adaptively adjusted distribution. All discriminators are supervisedly
trained by using true and fake responses.

where Y1:T ∈MCGθ (Y1:t;N), M is the simulations number
of MC. When there is no intermediate reward, we can use the
average value JDi(θ) assigned by the expectation of value
function QGθDi to evaluate the policy Gθ [Sutton et al., 2000].

JDi(θ) =
∑

y1∈Y
Gθ(y1|s0)QGθDi (s0, y1) (6)

In AMPGAN framework, dialog generation is viewed as a
multi-objective optimization problem. Formally, the genera-
tor solves the following multi-objective problem:

maxJ (θ) = [JD1(θ), JD2(θ) . . . JDN (θ)]T (7)

Specifically, we design an adaptively adjusted distribution
D ∼ π(Q) to organize the multiple objectives as:

maxJ (θ) = ED∼π(Q)JD(θ) (8)

So that AMPGAN can continue to pay attention to the ob-
jectives that Gθ not performs well relatively and Gθ can be
balanced and improved towards many objectives more stably.

Formally, when Gθ is weak in an objective, AMPGAN
dynamically strengthens the adversarial training between Gθ
and the corresponding Di by adaptively adjusting the sam-
pling distribution π(Q) = {p(k)(D = Di)}Ni=1 as:

p(Di)
(k) =

1

Z
p(Di)

(k−1) exp(∆QGθDi
(k)

) (9)

where Z =
∑N
i=1 p

(k−1)
i exp(∆Q

Gθ
Di

(k)
) and ∆Q

Gθ
Di

(k)
= Q

Gθ
Di

(k)
−

Q
Gθ
Di

(k−1)
+ N (0, σ) and N (0, σ) is Gaussian noise, and initial

π(Q) is p(0)(D = Di) = 1
N . When ∆QGθDi is larger, that is,

there is much room for Gθ to improve in the corresponding
objective, AMPGAN will select Di with a larger probability.

Then the gradient of (8) can be computed as:

∇θJ (θ) = ED∼π(Q)

∑T

t=1
EY1:t−1∼Gθ[∑

y∈Y
∇θGθ(yt|Y1:t−1)QGθD (yt|Y1:t−1)

] (10)

We can use θ ← θ + αk∇θJ (θ) to update the parameters
θ of the generator, where αk denotes the learning rate. And
in practice, we estimate the expectation in the Eq. (10) by
sampling discirminators according to π(Q).

Algorithm 1 Training AMPGAN.
Require: generator policy Gθ; N discriminators {Di}Ni=1;

sampling distribution π(Q); dataset S = {X1:T }
1: Randomly initialize Gθ, {Di}Ni=1, {π(Di) = 1

N }
N
i=1.

2: Pre-train Gθ using MLE on S
3: Generate negative samples using Gθ
4: Pre-train {Di}Ni=1 separately
5: while MPGAN do not converges do
6: Sample a discirminator Di using π(Q)
7: for g-steps do
8: Generate a sequence Y1:T = (y1, ..., yT ) ∼ Gθ
9: for t in 1 : T do

10: Compute Q(a = yt; s = Y1:t−1) by Eq. (5)
11: end for
12: Update generator via policy gradient Eq. (10)
13: end for
14: for d-steps do
15: Combine negative examples generated by current

Gθ and positive examples sampled from S to train Di

16: end for
17: Update π(Q) by Eq. (9)
18: end while

In summary, Algorithm 1 shows the details of AMPGAN.
Before adversarial training, we first pretrain the generator Gθ
using MLE on training set S , and then use Gθ to generate
negative examples. We sample positive examples from S and
combine them with negative ones to pretrain parameterized
discriminators {Di}Ni=1. During adversarial training, Gθ and
each discriminator are trained alternately. At each training
step, a discriminatorDi will be selected from {Di}Ni=1 to par-
ticipate in adversarial training according to distribution π(Q).
We sample positive examples from S and use Gθ to synthe-
size corresponding negative ones and use both to train Di.
Gθ is updated by using the policy gradient and MC search
based on the expected final value function received from Di.
Finally, we adaptively adjust the sampling distribution π(Q)
based on the increments of the generator’s scores in various
aspects. Following [Li et al., 2017], we employ the Teacher
Forcing strategy to tellGθ what sequences are good and guide
Gθ push itself to produce these good sequences by exposing
the good target sentence to it directly.

2.2 AMPGAN for Dialogue Generation
We train the dialogue generator Gθ against 3 discriminators.

Generator
We use a standard SEQ2SEQ [Sutskever et al., 2014] model
implemented by two-layer LSTMs with attention mechanism
[Luong et al., 2015] to implement the generator’s policy Gθ
[Li et al., 2017]. Gθ encodes the input queries into hidden
states, and then decodes them into output responses.

Real-Fake Discriminator
We continue the previous works [Li et al., 2017] and use the
generic Real-Fake discriminator Drf to judge whether an in-
put dialogue utterances {x, y} are generated by humans (de-
noted as a real label) or machines (fake). Drf is essentially a
two-classifier, and uses a hierarchical encoder [Serban et al.,
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2016] with a two-class softmax layer to report the probabil-
ity Q+ that {x, y} are real and Q− that {x, y} are fake. The
purpose of usingDrf is to encourageGθ to generate dialogue
utterances that are difficult to distinguish between real or fake
by taking Q+ as the reward.

Syntactic Discriminator
We notice that the generated sequences are often confusing
because the arrangement of words is not in line with human
syntax norms. We try to improve the syntax score of the gen-
erated sequences by feeding Gθ the syntactic reward reported
by the proposed syntactic discriminator Dsyn. Following
[Vashishth et al., 2019], We use graph convolutional networks
(GCN) to extract syntactic features embedding esyn of a se-
quence. We use the Stanford CoreNLP parser [Manning et
al., 2014] to parse each word sequence s = {x1, x2, ..., x|s|}
into a dependency parse graph G = (Vs, Es), whereas Vs =
{x1, x2, ..., x|s|} and Es stands for the labeled directed depen-
dency edges (xi, xj , lij), where lij is the dependency relaiton
label of xi to xj . We use the corresponding word embedding
vi ∈ Rd to initialize each node embedding h0

i ∈ Rd in Vs.
In graph convolutional layers of Dsyn, we employ the

SynGCN [Vashishth et al., 2019] model with Edge Label
Gating Mechanism to aggregate each node. Then embed-
ding hki ∈ Rd of node i after k GCN layers is computed
as hki = SynGCN(h0

i ). We use max-pooling operation
to obtain syntactic embedding esyn = {em}dm=1, where
em = max{hkim}

|s|
i=1. Finally, syntactic score ssyn is com-

puted as: ssyn = σ(BN(Wsesyn + bs)), where Ws ∈ R1×d

is a parameter vector, bs is a bias, BN is a batch normaliza-
tion layer [Ioffe and Szegedy, 2015], and σ(·) is the sigmod
function. We use ssyn as the reward to guide Gθ to produce
utterances that conform to human expressions.

Information Discriminator
The generator tends to produce high frequency words. We
design the information discirminator Dinfo to directly com-
pute the normalized information amount sinfo of the gener-
ated utterance with n tokens. Formally, sinfo is computed
as sinfo = 1

n

∑n
i=1

I(wi)−I(wmin)
I(wmax)−I(wmin) , whereas I(wi) =

− log p(wi), p(wi) is the frequency of word wi, wmax and
wmin are the two words with the largest and smallest word
frequencies in the corpus, respectively. We use sinfo as the
reward to push Gθ to explore more novel words.

3 Experiments
3.1 Datasets
Cornell Movie Dataset∗ (denoted as S1) contains a large
metadata-rich collection of fictional conversations extracted
from raw movie scripts. It consists of 220579 exchanges
between 10292 pairs of characters in the movie, involving
9035 characters in 617 movies, a total of 304713 utterances.
OpenSubtitles Dataset (S2) is a well-known human-human
scripted dialogue dataset. It is extracted from movie subtitles
which are not speaker-aligned [Tiedemann, 2009]. We use

∗Cornell Movie–Dialogs Corpus

the English short message data, which contains about 140M
utterances in total, covers 106K movie works.

3.2 Training Details
We sort the words in each corpus by word frequency and use
the first 35K words with high word frequency as the vocab-
ulary. We filter out dialogue utterances with less than 5 or
more than 40 tokens. We set the training batch size to 128,
the size of word embeddings and the graph node embeddings
to 512, the hidden size of hidden layers of all encoders in all
models to 256, and the number of all LSTM layers to 2, and
GCN layer number of Dsyn to 1. We train all models using
Adam optimizer [Kingma and Ba, 2015], and all the dropout
rates to 0.7. For the generator Gθ, we use the learning rate
decay strategy and set the initial learning rate to 0.1 and the
decay factor to 0.99. We set the learning rate to 0.001 fixedly
for Drf and Dsyn. In pre-training, we first pre-train Gθ 5000
iterations, then use Gθ to produce 2500×128 negative exam-
ples and sample the same amount of positive ones from the
dataset correspondingly. We combine both to pre-train Drf

and Dsyn. In MC search, we employ the experience [Li et
al., 2017] that given a partially decoded sP , Gθ will keep
sampling tokens in word distribution until decoding is com-
plete. Repeat this process k times (k is set to 7) and obtain k
sequences sharing a common prefix sP . The average of the
corresponding k scores given by the discriminator is used as
the reward. During training of each model, if the performance
on the validation set has not improved for a long time, stop
training and choose the checkpoint with the best performance.

3.3 Experiments Results
We use the following models as the baselines. (1) MLE
trains a standard SEQ2SEQ generatorGθ using the traditional
MLE; (2) PG-BLEU [Yu et al., 2017] trains Gθ by policy
gradient using the BLEU score of generated sequences as the
reward directly, thereby obtaining a higher BLEU score; (3)
AdverREGS [Li et al., 2017] is a standard adversarial model
that Gθ is trained against a real-fake discirminator alone, and
can be viewed as an extension of SeqGAN on the SEQ2SEQ
framework; (4) DP-GAN [Xu et al., 2018] designs a fine-
grained diversity discriminator to guide Gθ to produce se-
quences with high diversity. (5) DAL [Cui et al., 2019] tries
to increase the response diversity by utilizing the duality be-
tween query and response generation.

We regularly combine different discriminators to guide the
generator: (1) D1: only use single Drf , noted as Adver-
REGS; (2) D2: only use single Dsyn; (3) D3: only use single
DInfo; (4) D1&D2: combine Drf and Dsyn; (5) D1&D3:
combine Drf and DInfo; (6) D2&D3: combine Dsyn and
DInfo; (7) D1&D2&D3: combine Drf , Dsyn and DInfo.

We use two categories of metrics to evaluate each model,
namely Adversarial Evaluation [Li et al., 2017; Bowman et
al., 2016] and widely used Common Evaluation metrics.

Adversarial Evaluation
Adversarial evaluation helps to analyze the impact of differ-
ent discriminator combinations of AMPGAN. Following [Li
et al., 2017], we train automated machine evaluators to dis-
tinguish machine-generated responses from human-generated
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responses, such as accurately distinguishing real or fake, giv-
ing high scores to real responses and low scores to the fake.
We design three machine evaluators, namely RealE, SyntaxE
and InfoE, corresponding to Drf , Dsyn and Dinfo, to re-
port the ratio FoolRate of the cases that RealE are deceived,
the syntax score SynScore, and the ratio InfoRate of the in-
formation amount of the generated responses to the ground
truth, respectively. Note that each evaluator is in the same
architecture as its corresponding discriminator, but trained
separately using supervised methods and do not participate
in adversarial training. The abilities of parameterized RealE
and SyntaxE are 0.09 and 0.11, indicates how much we can
trust the evaluation results given by the evaluators, and the
smaller the value, the better. We also report the comprehen-
sive score NormAve of SynScore, InfoRate and FoolRate as
1
3

∑3
i=1(xij − ximin)/(ximax − ximin), where xij , x

i
max, and

ximin are the score of model j, maximum and minimum in
the table on the i-th indicator respectively.

Table 1 shows the evaluation results. From Table 1 we can
find out that AMPGAN can effectively improve the generator
Gθ. Specifically, it can be summarized as follows: (1) Using a
single discriminator is risky. We can find each model can fool
the real-fake evaluator RealE to a large extent (greater than
97%) on S1, which shows that generators can easily perform
well in this objective on S1, even without the guidance reward
of Drf . (2) The generators against a single discriminator can
go deeper towards expected objectives. We can find the gen-
erator against single D1 or D2 or D3 performs better in its
corresponding objective than other single adversarial training
models. (3) The generator trained against multiple discrimi-
nators can find a balance and achieve an overall improvement
towards multiple objectives, although it may be weakened
unilaterally. We can find the generator against D1&D2&D3

achieves significantly higher overall performance, although
unilateral indicator values decrease a bit. Empirically then,
we recommend that designers should design a general objec-
tive with the corresponding discirminator to report the basic
but universal reward and supplement it with other specific re-
wards according to actual needs, so that the model can per-
form well in general and also stand out in several areas.

Common Evaluation
The metrics of common evaluation are as follows:

(1) BLEU score [Papineni et al., 2002] is widely used in
sequence generation tasks [Li et al., 2016], measuring the
overlaping between the generated word sequences and the
ground truth; (2) Distinctness metric proposed by [Li et al.,
2016] measures the diversity of generated token sequences.
(3) Human Evaluation (HM): We ask three human annota-
tors with a linguistic background to report on the overall qual-
ity of the responses to 200 examples randomly sampled from
the test set, which are generated by the full AMPGAN model
and all baseline models. (4) Similarity&Relevance: We also
report the similarity between the ground truth responses and
the generated, and the relevance between the queries and the
generated responses at semantic level by calculating cosine
similarity of the two token sequence embeddings computed
by the pretrained BERT [Devlin et al., 2018] model.

Table 2 shows the evaluation results. From Table 2, we

Model SynScore InfoRate FoolRate NormAve

S1

MLE 0.624 0.817 0.984 0.367
PG-BLEU 0.540 0.889 0.987 0.498

AdverREGS(D1) 0.584 0.864 0.992 0.573
DP-GAN 0.481 0.921 0.993 0.617

DAL 0.521 0.917 0.992 0.630
SynGCN(D2) 0.715 0.832 0.979 0.403
InfoAmt(D3) 0.377 0.950 0.987 0.474
D1&D2 0.672 0.801 0.998 0.624
D1&D3 0.541 0.896 0.993 0.620
D2&D3 0.655 0.880 0.991 0.661

D1&D2&D3 0.653 0.871 0.995 0.710

S2

MLE 0.348 0.859 0.221 0.193
PG-BLEU 0.356 0.875 0.270 0.250

AdverREGS(D1) 0.392 0.861 0.655 0.600
DP-GAN 0.428 0.932 0.351 0.536

DAL 0.401 0.919 0.435 0.595
SynGCN(D2) 0.500 0.832 0.360 0.466
InfoAmt(D3) 0.285 0.951 0.373 0.450
D1&D2 0.495 0.822 0.529 0.562
D1&D3 0.355 0.864 0.533 0.457
D2&D3 0.458 0.931 0.401 0.688

D1&D2&D3 0.472 0.926 0.477 0.755

Table 1: Results of Adversarial Evaluation on both datasets.

can find out that AMPGAN framework do help achieve bet-
ter results on these common metrics. Specifically, the gen-
erator against three discriminators performs very well. It
achieves the highest BLEU-1 score and Dist-1, Dist-2, and
Dist-3 scores, as well as relatively higher BLEU-2 and Dist-
4 scores on both datasets, indicating that the generated to-
ken sequences have higher overlap with ground truth re-
sponses and higher diversity. It also achieve the highest rank-
ing of Human Evaluation over baselines on both datasets.
Moreover, the pairwise adversarial training generators also
achieved higher word overlap and diversity than the corre-
sponding single adversarial training ones separately.

Figure 2 shows the results of similarity&relevance evalu-
ation. We can clearly find the combination of D1&D2&D3

makes the generated sentences obtain the highest similarity
with ground truth responses and the highest relevance with
queries on both datasets, indicating the token sequences gen-
erated by this generator are closest to the ground truth at the
semantic level. Moreover, we can also find out the trend that
the generator against multiple combined discriminators can
achieve higher similarity and relevance than the one against
each of these discriminators alone.

Effectiveness of Adaptive Sampling Distribution
We also investigate the adjustment of the discriminator sam-
ple distribution during training, as shown in Figure 3, and
conduct a comparative experiment between using adaptive
distribution and fixed uniform distribution, as shown in Table
3. From Figure 3, we can find out that different datasets have
different characteristics, and AMPGAN can capture these
characteristics by adaptively adjusting the sampling distribu-
tion of all objectives. And during training, improvement de-
grees ofGθ towards different objectives are constantly chang-
ing, so it is very useful to dynamically adjust the distribution.
In addition, from Table 3, we can find that compared with
using a fixed uniform distribution, using the adaptive adjust-
ment distribution helps AMPGAN achieve higher scores of
adversarial evaluation and diversity on two datasets, which
also shows the effectiveness of the adaptive distribution. Tak-
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Model Cornell Opensubtitles
BLEU-1 BLEU-2 Dist-1 Dist-2 Dist-3 Dist-4 HM BLEU-1 BLEU-2 Dist-1 Dist-2 Dist-3 Dist-4 HM

MLE 12.8 1.54 34.8 62.4 78.6 92.4 5.33 14.4 2.42 28.4 53.1 73.8 91.0 5.67
PG-BLEU 13.2 1.79 37.0 65.2 83.2 97.5 5.00 15.2 1.97 30.3 56.7 78.4 95.8 4.33

AdverREGS(D1) 12.1 1.91 38.3 65.0 82.8 95.6 4.33 14.5 2.30 30.3 56.5 78.1 95.7 4.00
DP-GAN 12.0 1.60 37.8 66.9 84.2 98.3 2.00 14.7 1.92 30.5 56.9 79.1 97.6 2.33

DAL 12.9 1.95 38.7 66.2 83.5 97.9 3.00 14.4 2.35 31.1 57.1 79.5 97.3 2.67
SynGCN(D2) 12.3 2.17 32.9 65.6 83.2 95.5 - 13.8 2.36 30.1 56.6 79.0 95.2 -
InfoAmt(D3) 11.8 2.02 36.9 64.7 83.1 95.5 - 14.3 2.42 30.8 57.3 79.4 96.4 -
D1&D2 12.6 2.36 35.8 66.5 83.5 97.8 - 14.7 2.40 31.7 58.7 80.3 97.2 -
D1&D3 12.9 2.14 38.0 66.1 83.7 97.5 - 14.9 2.45 32.4 58.2 80.0 97.4 -
D2&D3 13.5 2.22 38.8 67.1 84.7 98.5 - 14.8 2.48 32.7 59.2 80.8 97.8 -

D1&D2&D3 13.9 2.21 42.9 70.4 87.9 98.4 1.33 15.2 2.43 33.2 60.3 81.1 97.6 2.00

Table 2: Results of common metrics evaluation on Cornell dataset and Opensubtitles dataset.

Figure 2: Results of similarity (sim) and relevance (rel) evaluation
on the generated sentences by the generators against different dis-
criminator combinations.

Sample Cornell Opensubtitles
NormAve BAve DAve NormAve BAve DAve

Uniform 0.679 7.89 73.8 0.698 8.84 67.5
Adaptive 0.710 8.06 74.9 0.755 8.82 68.1

Table 3: Comparison of two sampling distributions. BAve is the
average score of BLEU-1 and BLEU-2, and DAve is the average
score of Dist-1, Dist-2, Dist-3 and Dist-4.

ing the OpenSubtitles curve as an example, whenGθ has been
promoted sufficiently towards one objective and its improve-
ment room becomes relatively small, then AMPGAN will re-
duce its probability and focus on other objectives, so as to
achieve the purpose of balancing all objectives and improv-
ing overall performance. And because Dinfo is absolutely
accurate and can basically not be deceived by Gθ, Dinfo can
always provide reward to guide Gθ to improve, which is re-
flected in its high probabilities. However, theDrf has the risk
of saturation [Xu et al., 2018]. From Cornell curve, we can
find that there is no improvement room towards the objective
of Drf soon, indicating that Gθ can quickly fool Drf .

4 Related Works
SeqGAN [Yu et al., 2017] successfully employs the promis-
ing GAN framework into the discrete sequence generation
task by utilizing policy gradient and MC search. AdverREGS
[Li et al., 2017] employs adversarial training to guide the gen-
erator to produce dialogue utterances that difficult for evalu-
ators to distinguish between human-generated and machine-
generated. Many models focus on increasing the diversity
of the generated responses: DP-GAN [Xu et al., 2018] de-
signs a fine-grained discriminator which has a better diversity
evaluation method; The Adversarial Information Maximiza-

Figure 3: Adaptive adjustment of sampling distribution of Real-
Fake(R), SynGCN(S) and InfoAmt(I) as the training progresses.

tion (AIM) [Zhang et al., 2018] optimizes a variational lower
bound on pairwise mutual information between query and re-
sponse; And DAL [Cui et al., 2019] utilizes the duality be-
tween query generation and response generation.

Recent literatures have demonstrated promising results in
image generation tasks for extending the basic GAN frame-
work using multiple discriminators to train against the gener-
ator. D2GAN [Nguyen et al., 2017] combines KL and inverse
KL divergence into a unified objective function and uses the
complementary statistical characteristics of these divergences
to effectively disperse the estimated density to capture multi-
ple modes. The Generative Multi-Adversarial Nets (GMAN)
[Durugkar et al., 2017] trains the generator against a soft-
max weighted arithmetic average of K different discrimina-
tors in the same model architecture. HVM [Albuquerque et
al., 2019] proposes hypervolume maximization to efficiently
optimize a weighted loss from all discriminators for the case
of large neural networks.

5 Conclusions
In this paper, we propose the adaptively multi-objective ad-
versarial dialogue generation framework using policy gra-
dient, called AMPGAN, to push the generator to improve
itself towards multiple objectives of linguistics by feeding
these reward signals from the discriminators corresponding to
these objectives. Comparative experimental results of differ-
ent combination models and baseline models show that AMP-
GAN can significantly improve overall performance with
only minor sacrifices in each objective.

Acknowledgments
This work was supported by the National Science Foundation
of China (NSFC No. 61876196).

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2877



References
[Albuquerque et al., 2019] Isabela Albuquerque, João Mon-

teiro, Thang Doan, Breandan Considine, Tiago H. Falk,
and Ioannis Mitliagkas. Multi-objective training of gener-
ative adversarial networks with multiple discriminators. In
ICML, 2019.

[Bowman et al., 2016] Samuel R. Bowman, Luke Vilnis,
Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy
Bengio. Generating sentences from a continuous space. In
SIGNLL, 2016.

[Cui et al., 2019] Shaobo Cui, Rongzhong Lian, Di Jiang,
Yuanfeng Song, Siqi Bao, and Yong Jiang. DAL: Dual
adversarial learning for dialogue generation. In NAACL
Workshop on NeuralGen, 2019.

[Deb, 2001] Kalyanmoy Deb. Multi-objective optimization
using evolutionary algorithms, volume 16. John Wiley &
Sons, 2001.

[Devlin et al., 2018] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805, 2018.

[Durugkar et al., 2017] Ishan P. Durugkar, Ian Gemp, and
Sridhar Mahadevan. Generative multi-adversarial net-
works. In ICLR, 2017.

[Goodfellow et al., 2014] Ian Goodfellow, Jean Pouget-
Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In NIPS, 2014.

[Ioffe and Szegedy, 2015] Sergey Ioffe and Christian
Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In
ICML, 2015.

[Kingma and Ba, 2015] Diederik P. Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. In ICLR,
2015.

[Li et al., 2016] Jiwei Li, Michel Galley, Chris Brockett, and
Jianfeng Gao. A diversity-promoting objective function
for neural conversation models. In NAACL, 2016.

[Li et al., 2017] Jiwei Li, Will Monroe, Tianlin Shi,
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