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Abstract

Networked data often demonstrate the Pareto prin-
ciple (i.e., 80/20 rule) with skewed class distribu-
tions, where most vertices belong to a few ma-
jority classes and minority classes only contain a
handful of instances. When presented with im-
balanced class distributions, existing graph embed-
ding learning tends to bias to nodes from major-
ity classes, leaving nodes from minority classes
under-trained. In this paper, we propose Dual-
Regularized Graph Convolutional Networks (DR-
GCN) to handle multi-class imbalanced graphs,
where two types of regularization are imposed
to tackle class imbalanced representation learning.
To ensure that all classes are equally represented,
we propose a class-conditioned adversarial training
process to facilitate the separation of labeled nodes.
Meanwhile, to maintain training equilibrium (i.e.,
retaining quality of fit across all classes), we force
unlabeled nodes to follow a similar latent distri-
bution to the labeled nodes by minimizing their
difference in the embedding space. Experiments
on real-world imbalanced graphs demonstrate that
DR-GCN outperforms the state-of-the-art methods
in node classification, graph clustering, and visual-
ization.

1 Introduction
Graphs are commonly used to encode both direct and implicit
relationships between objects, e.g., in a social network the in-
terconnected users tend to share similar interests and repre-
sent a unique class collectively [Lee et al., 2018]. Accord-
ingly, current graph-based data mining tasks such as graph
representation learning or embedding mainly focus on model-
ing the relative affinities between nodes from both topological
and attribute content perspectives [Zhang et al., 2020], such
that nodes belonging to same classes (e.g., “research area”
in a citation network) can be clustered together in the em-
bedding space. In the past, significant research efforts have
been applied to supervised or semi-supervised graph neural
models [Wu et al., 2020], including the recently proposed
Graph Convolutional Networks (GCN) [Kipf and Welling,

2016] and many its variants [Zhang et al., 2019]. These meth-
ods typically adopt an end-to-end learning paradigm by train-
ing a node-level multi-class classifier after convolutional rep-
resentation learning from the input graph [Veličković et al.,
2018], i.e., each node forms its representation by aggregating
features from all immediate neighborhoods. Despite the re-
markable performance achieved in many application domains
such as text classification [Yao et al., 2019], image recog-
nition [Chen et al., 2019] and recommender systems [Wang
et al., 2019], existing methods often assume that the input
class distributions are nearly or perfectly balanced, i.e., bal-
anced label samples for each class are deliberately provided
to ensure representation learning equilibrium across multi-
ple classes thereby avoiding the class imbalance problem en-
tirely.

However, many real-world datasets naturally demonstrate
highly-skewed class distributions due to the asymmetric and
unrestricted evolution of different parts in these real-world
graph-based systems [Huang et al., 2016]. For example, in
the NCI chemical compound graph [Pan and Zhu, 2013], only
about 5% of molecules are active in the anti-cancer bioassay
test. In the Cora citation network [Lin and Cohen, 2010],
26.8% of the papers belong to the Neural Network domain
compared with the Rule Learning and Reinforcement Learn-
ing domains which only contain 7.9% and 4.8% respectively.
When generalizing to graphs with an imbalanced class dis-
tribution, existing GCN methods have a tendency to overfit
to majority classes, resulting in undesirable embedding re-
sults for the minority classes. For example, Figure 1 presents
the node classification result for each class on the Cora ci-
tation network, where L1 and L6 are minority classes (i.e.,
they contain far fewer instances than other majority classes
such as L0). We observe that, in most cases, nodes from
all seven classes can be correctly classified in the balanced
setting, whereas for imbalanced setting, nodes from the two
minority classes, L1 and L6, are frequently misclassified.

The main issue of class-imbalanced learning lies in that
one or more classes may severely overrepresent others, which
significantly compromises the performance of most standard
learning algorithms [He and Garcia, 2009]. This issue is ex-
acerbated in the case of graph-structured data due to the fol-
lowing two reasons:

• Topological Interplay: In addition to rich features as-
sociated with each graph node, different nodes can have
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Figure 1: The confusion matrices of multi-class node classification
results on Cora using a GCN with 3% of labeled nodes for semi-
supervised representation learning and classification. (a) and (b)
correspond to the balanced (e.g., deliberately class-balanced training
nodes) and imbalanced (e.g., randomly sampled class-imbalanced
training nodes) settings, respectively.

frequent topological connections with each other, mean-
ing the class assignment for each node is no longer
simply determined by its respective features but is also
strongly impacted by its connected nodes.
• Unclear Boundaries: Graph data often involve multi-

ple highly-skewed node classes, which makes it hard to
balance representation learning with accurately identi-
fying class boundaries since the learning of a particular
class could be seriously impacted by other nearby class
structures throughout the graph, i.e., the majority classes
would dominate feature propagation between nodes.

In this paper, we focus on a more general setting of multi-
class imbalanced graph learning and develop a novel graph
convolutional network incorporating two types of regular-
ization. To the best of our knowledge, this is the first
work that studies the node-level class-imbalanced graph em-
bedding problem with graph neural networks. In the pro-
posed framework, we first use a two-layer graph convolu-
tion network to derive node representations trained on class-
imbalanced labels. To make representation learning for dif-
ferent classes of node more distinguishable (e.g., clear bound-
aries), we incorporate a conditional adversarial training pro-
cess to help separate the labeled node representations of dif-
ferent classes. In addition, to reduce the negative propagation
influence from the convolution training of majority classes
enforced on their structure-nearby minority classes, we train
all unlabeled nodes to fit a similar data distribution to the
well-trained labeled nodes in the learned embedding space,
which promotes counterbalanced training between majority
and minority classes.

In summary, our contribution is twofold: 1) we propose to
study a node-level graph embedding problem that takes class
distribution into account; 2) we propose DR-GCN, adopting
a conditional adversarial training together with distribution
alignment to learn robust node representations for both ma-
jority and minority classes.

2 Related Work
Graph neural networks. Driven by the promising learn-
ing capability of deep neural networks on grid-like data (e.g.,

images), Graph Neural Networks (GNNs), architectures de-
signed with non-Euclidean geometric data in mind, have seen
an explosion in attention over these past five years [Wu et
al., 2020]. In essence, GNNs seek to exploit the character-
istics of geometric data to provide a more powerful mecha-
nism by which node representations are generated using both
structural and contextual information. Graph Convolutional
Networks (GCN) [Kipf and Welling, 2016] use a spectral-
based convolution filter through which a node’s features are
aggregated from its direct neighborhood. Such convolution
learning has been proven efficient and successfully applied
in many problem domains [Yao et al., 2019]. Graph Atten-
tion Networks (GAT) [Veličković et al., 2018] are another
recently proposed class of end-to-end GNNs similar to GCN,
which introduce an attention mechanism that assigns larger
weights to more important nodes, walks, or models. Some
other useful feature aggregation methods have been proposed
[Hamilton et al., 2017], including the Tree-LSTM [Tai et al.,
2015] that learns representations for parent nodes by using
child-sum tree long short-term memory networks to gather
information from all child nodes.
Class imbalanced learning. Class imbalanced learning is
a long-standing challenge faced by machine learning [Sun et
al., 2009], which aims to avoid model learning bias towards
majority classes by lifting the influence of minority classes
[Japkowicz and Stephen, 2002]. Conventional methods ad-
dress this problem either from the data or algorithm level [He
and Garcia, 2009]. The data level approach tries to rebalance
the prior class distributions through a pre-processing step in-
cluding over-sampling minority classes [Chawla et al., 2002]
or under-sampling majority classes [Drummond et al., 2003].
However, these techniques could cause over-fitting or discard
valuable information. In comparison, approaches at the algo-
rithm level seek to modify existing algorithms to emphasize
minority classes such as cost-sensitive learning [Dong et al.,
2018].

3 Problem Definition and Preliminary
3.1 Problem Definition
Given a graph with imbalanced node label distributions rep-
resented by G = (V,E,X,L), where V = {vi}i=1,··· ,n is
a set of n unique nodes, E = {ei,j}i,j=1,··· ,n; i6=j is a set
of edges that can be equal to a n × n adjacency matrix A,
with Ai,j = 1 if ei,j ∈ E or Ai,j = 0 otherwise, and
self-loops removed. X is a matrix Rn×m containing all n
nodes with their associated features, i.e., Xi ∈ Rm is the
feature vector of node vi, where m is the number of unique
features in the graph. Graph G has multiple classes, denoted
by L = {Lk}k=1,··· ,|L|, that partition G to |L| clusters, where
each class Lk categorizes a set of similar nodes. The class dis-
tribution may be highly-skewed as one or more classes con-
tain many more nodes than others, i.e., |L1| � |L2|. In such
a case, L1 belongs to the majority classes while L2 belongs
to minority classes.

The task in this paper is to represent graph G in a d-
dimensional semantic space Hd with naturally imbalanced
class labels for semi-supervised training, i.e., randomly sam-
ple a few labeled instances from the whole node population.
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Figure 2: The proposed DR-GCN model. The node representations are obtained through a two-layer semi-supervised convolution learning
with multi-class node classification (the middle panel). During training, a multi-class conditioned adversarial training (the bottom panel)
ensures that embedding features can well represent node in each class to enhance the separation of different classes. Meanwhile, a distribution
alignment training (the top panel) between labeled and unlabeled node representations strikes an influence balance between the majority and
minority classes. Both the adversarial and alignment learning will help to train the convolution layers through back-propagation.

During training, the node space V = Vl ∪Vu is actually the
union of labeled (Vl) and unlabeled (Vu) nodes both with
imbalanced class distributions.

3.2 Conditional Generative Adversarial Networks
Conditional Generative Adversarial Networks (cGAN)
[Mirza and Osindero, 2014] consist of two components: a
generator G(z|y) that maps the noise data z (e.g., sampled
from a prior distribution z ∼ pz(z)) to the real data dis-
tribution space, and a discriminator that assigns probability
D(x|y) to indicate whether or not x is a given real training
sample or the probability (1−D(x|y)) to indicate x is a fake
generated sample (e.g., x = G(z|y)). The training of cGAN
tries to find the optimal discrimination between the real and
fake samples, and meanwhile encouragesG(z|y) to approach
the real data distribution. The objective of optimizing these
two aspects is given as:

min
G

max
D
L(D,G) = Ex∼pdata(x) logD(x|y)

+Ez∼pz(z) log(1−D(G(z|y)))
(1)

BothD andG are conditioned on some information y (e.g.,
class labels), thus G can finally generate samples associated
with y and D can well discriminate samples bound with y of
varying value assignments.

4 The Proposed Method
The proposed DR-GCN model for multi-class imbalanced
graph learning is shown in Figure 2, which involves three co-
operative components as follows.

4.1 Class-Imbalanced Convolution Learning
In this paper, we adopt two-layer graph convolutional net-
work [Kipf and Welling, 2016] to perform node-level repre-
sentation learning on the input graph G, where the first-order

and second-order neighborhood relations can be sequentially
modeled as:

O = ÃReLU(ÃXW0)W1 (2)

Here, Ã = D̃−
1
2 (A + I)D̃−

1
2 is the normalized symmet-

ric adjacency matrix, where I is the identity matrix and
D̃ii =

∑
j(A + I)ij . W0 ∈ Rm×r and W1 ∈ Rr×d are

respectively the learned parameters for the first and second
convolution layers, where r is the dimensionality of the first
layer hidden representation. ReLU is the activation function
represented by f(x) = max(0, x).

The second-layer node embeddings have the same dimen-
sion as the number of classes (i.e., d = |L|) passed through
a softmax classifier to perform multi-class node classification
training by:

Z = softmax(O) =
exp(O)∑
i exp(Oi)

(3)

Lgcn = −
∑

vi∈Vl

d∑
j=1

Yij lnZij (4)

Eq. (4) computes the cross-entropy error of classification re-
sults, where Vl is a set of labeled training nodes and Y ∈
Rn×|L| is the one-hot label indicator matrix of graph nodes.

In opposition to the deliberately balanced training samples
in existing works [Kipf and Welling, 2016; Veličković et al.,
2018] (i.e., each training class has a similar number of la-
beled nodes), we focus on the more practical case of naturally
class-imbalanced distributions, i.e., Vl is constructed with
randomly sampled nodes from the whole population. How-
ever, as demonstrated in Figure 1 traditional GCN fails to
handle the class-imbalanced graphs, we thus introduce two
types of regularization training to mitigate this problem.
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4.2 Class-Conditioned Adversarial Regularization
With standard convolutional learning under the imbalanced
setting, the minority classes could be easily assimilated by
nearby majority classes. To enhance the separation of dif-
ferent classes, we impose a conditional adversarial training
on all labeled nodes. For each real training sample x ∈ Vl

(e.g., v6) with its class indicator y (e.g., one-hot vector), the
generator takes a noise z generated from the prior normal dis-
tribution z ∼ pz(z) as input, which then transforms to a real-
like fake sample gx (e.g., g6) after a concatenation with y
and through learning with a standard multi-layer perceptron
(MLP). On the other hand, the discriminator learns to classify
the real and fake samples conditioned on y. To improve the
learning capacity of generator, we add a regularization that
forces the generated fake node could reconstruct the respec-
tive neighborhood relations (e.g., g6 has similar topology role
as v6) in the graph by:

Lreg =
∑

vi∈N(x)

‖hgx − hvi‖2 (5)

where Eq. (5) denotes the pairwise distance between gx and
x’s neighbors N(x). Finally, the adversarial training objec-
tive is given as:

min
G,L

max
D
L(D,G) = Ex∼pdata(x) logD(x|y)

+Ez∼pz(z) [log(1−D(G(z|y))) + Lreg]
(6)

Eq. (6) is trained in a mini-batch fashion with balanced
training classes. The main idea of the adversarial training is
that while the discriminator learns to correctly classify train-
ing samples conditioned on different classes, it would in re-
turn encourage the convolution layers to learn distinguishing
representations for different classes of nodes.

4.3 Latent Distribution Alignment Regularization
While the adversarial training can promote distinguishing re-
sults for labeled nodes, it could lead to overfitting within
the labeled space, leaving the minority classes in the un-
labeled space under-trained [Japkowicz and Stephen, 2002;
He and Garcia, 2009]. We thus propose imposing a distribu-
tion alignment training between labeled and unlabeled node
representations, where the assumption is that balanced con-
volution training across multi-imbalanced classes in the un-
labeled space will be enforced in order to match the well-
trained class-imbalanced nodes in the labeled space.

We assume that representations in labeled space (e.g.,
hxl
∈ Hd, xl ∈ Vl) and unlabeled space (hxu ∈ Hd, xu ∈

Vu) follow two d-dimensional multivariate Gaussian distri-
butions xl ∼ N (µl,Σl) and xu ∼ N (µu,Σu), where their
probability density functions are given as:

p(xl;µl,Σl) =
exp

(
− 1

2 (xl − µl)
T Σ−1

l (xl − µl)
)

(2π)d/2|Σl|1/2
(7)

p(xu;µu,Σu) =
exp

(
− 1

2 (xu − µu)T Σ−1
u (xu − µu)

)
(2π)d/2|Σu|1/2

(8)

where µl, µu ∈ Rd and Σl,Σu ∈ Rd×d are the mean
and covariance, respectively. For the situation in which

Algorithm 1: Training the DR-GCN model
Input : An information network: G = (V,E,X,L)
Output: The node embeddings: O ∈ Rn×d

Initialization: j = 1, training epoch I and M , batch size
N , labeled set Vl and unlabeled set Vu that are both
trainable through convolution layers by Eq. (2)

while j ≤ I do
O ← learn convolution representations by Eq. (2)
N (µl,Σl)← learn latent distribution from Vl

N (µu,Σu)← learn latent distribution from Vu

L ← compute the classification loss by Eq. (14)
[W0,W1]← update network parameters in Eq. (2)
for τ ∈ [1,M ] do

x∆ ← sample a batch of N class-balanced
training samples from Vl, where x∆ is
trainable;
z∆ ← sample a batch of N noise data from
z ∼ pz(z)

Update the generator with its stochastic gradient
(where xk ∈ x∆ and zk ∈ z∆):

5 1
N

N∑
k=0

[logD(xk|yk)+ log(1−D(G(zk|yk)))

+
∑

vi∈N(xk)

‖hgxk
− hvi

‖2]

Update the discriminator and the convolution
layers (e.g., W0 and W1) with their stochastic
gradient:

5 1
N

N∑
k=0

[logD(xk|yk)+log(1−D(G(zk|yk)))]

end
j = j + 1

end

class labels have no correlations with each other, Eqs. (7)
and (8) can be respectively represented as the product of
d independent Gaussian distributions with diagonal covari-
ance matrices Σl = diag(σ2

l,1, σ
2
l,2, · · · , σ2

l,d) and Σu =

diag(σ2
u,1, σ

2
u,2, · · · , σ2

u,d) [Ahrendt, 2005] by:

p(xl;µl,Σl) =

d∏
k=1

1√
2πσl,k

exp

(
− (xl,k − µl,k)2

2σ2
l,k

)
(9)

p(xu;µu,Σu) =
d∏

k=1

1√
2πσu,k

exp

(
− (xu,k − µu,k)2

2σ2
u,k

)
(10)

where the parameters can be approximated from the labeled
and unlabeled samples as:

µl =
1

|Vl|
∑

vi∈Vl

hvi
, µu =

1

|Vu|
∑

vj∈Vu

hvj
(11)

Σl =
1

|Vl|
∑

vi∈Vl

(hvi
−µl)

2, Σu =
1

|Vu|
∑

vj∈Vu

(hvj
−µu)2

(12)
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Items Cora Citeseer PubMed DBLP
# Nodes 2708 3327 19717 17725
# Edges 5429 4732 44338 52890

# Features 1433 3703 500 6974
# Classes 7 6 3 4

Table 1: Graph dataset characteristics.

Class Labels L0 L1 L2 L3 L4 L5 L6

Cora 29 9 16 13 15 11 7
Citeseer 18 20 21 8 15 18 –
PubMed 39 21 40 – – – –
DBLP 45 12 32 10 – – –

Table 2: Class distributions for graphs (%).

We finally minimize the difference betweenN (µl,Σl) and
N (µu,Σu) based on the Kullback-Leibler divergence (both
Σl and Σu are non-singular) [Joyce, 2011] as:

Ldist =
1

2

(
log
|Σu|
|Σl|

− d+ tr(Σ−1
u Σl)+

(µu − µl)
T Σ−1

u (µu − µl)

) (13)

4.4 Algorithm Training and Optimization
Algorithm 1 illustrates the proposed framework. DR-GCN is
trained through three components: the standard convolution
training in a semi-supervised manner, the conditional adver-
sarial training to promote the distinguishing representations
for various classes and the distribution alignment training that
maintains the learning equilibrium between majority and mi-
nority classes. To avoid the strong constraints introduced by
the distribution alignment training on the standard represen-
tation convolution learning, we combine them together by:

L = (1− α)Lgcn + αLdist (14)

where α is set to balance the two aspects of training.

5 Experimental Setup
Datasets. We use four widely-used benchmark graph
datasets [Wu et al., 2020], including Cora, Citeseer, Pubmed,
and DBLP. The data statistics are summarized in Table 1. All
four graphs are naturally class-imbalanced and their class dis-
tributions are shown in Table 2. We can observe that for each
graph some classes contain much less number of nodes than
others, i.e., for Cora dataset 29% of graph nodes belong to
class L0 while only 7% belong to class L6.
Compared methods. We compare with the following state-
of-the-art embedding methods, including DeepWalk [Perozzi
et al., 2014] that learns node representations based on the
SkipGram model [Mikolov et al., 2013], Graph-LSTM [Tai
et al., 2015], standard GCN [Kipf and Welling, 2016], GCN
combined with random under-sampling (GCNRUS) [Liu et
al., 2008] and GAT [Veličković et al., 2018] that all learn
node representations from both graph structure and content
with spectrum-based convolution filters. We also compare
with two variants DR-GCNgan and DR-GCNdist that respec-
tively incorporate the class-conditioned adversarial regular-
ization and the latent distribution alignment regularization.

Figure 3: Influence of class imbalance ratio.

Figure 4: Influence of parameter α.

Settings. We evaluate the model by conducting node classi-
fication, graph clustering, and visualization, respectively. We
randomly sample 3% of nodes from the entire graph for train-
ing as per label rates used by standard GCN methods. The re-
maining nodes are split into validation and testing sets where
10% are used for hyperparameter optimization, and 90% are
used for testing respectively. For node classification, the per-
formance is computed in terms of Accuracy (Acc) and AUC
score [Kipf and Welling, 2016]. Each experiment is repeated
10 times and we report the mean values with standard errors.
For graph clustering task, the k−means algorithm is used
with learned node embeddings as inputs and the performance
is computed w.r.t four metrics [Xia et al., 2014] including
accuracy (Acc), precision, F1-score (F1) and normalized mu-
tual information (NMI). For GCN-based methods, we set the
hidden embedding size r as 10, the dropout rate as 0.3, the
L2 norm regularization weight decay as 0.03 and the learning
rate for the gradient decent algorithm as 0.002. We set the
maximum training epoch I as 1000 with an early stopping of
200. In our approach, the default values for M , N and α are
set as 1, |Vl|/2 and 0.7, where |Vl| is the total number of
labeled nodes.

5.1 Node Classification
Experiment results. The classification results are shown in
Table 3. We can observe that both DR-GCNgan and DR-
GCNdist perform better than GCN, which demonstrates the
effectiveness of the introduced class-conditioned adversar-
ial regularization and latent distribution alignment regular-
ization for class-imbalanced node classification. In addi-
tion, on all four class-imbalanced graphs our DR-GCN model
outperforms the random under-sampling method GCNRUS

and other state-of-the-art methods such as GAT and Graph-
LSTM, which verifies the superiority of our approach.

Varying imbalance ratio. We test the performance of DR-
GCN w.r.t training ratio between minority class and majority
class on Cora and Citeseer. For Cora dataset, we assume L1
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Datasets Cora Citeseer Pubmed DBLP
Metrics Acc AUC Acc AUC Acc AUC Acc AUC

DeepWalk 35.95±2.63 72.47±1.56 24.44±1.75 59.30±1.53 41.36±0.52 64.89±0.35 38.77±0.50 64.64±0.67

Graph-LSTM 70.87±0.76 87.73±1.46 66.04±0.88 85.39±0.18 81.05±0.64 92.96±1.05 77.65±0.45 94.42±0.17

GCN 65.83±0.25 84.53±0.11 65.43±0.20 86.23±0.11 80.69±0.08 91.40±0.01 70.82±0.28 84.30±0.23

GCNRUS 66.59±0.44 86.64±0.62 65.21±1.05 87.13±0.36 78.93±0.78 90.34±0.73 66.23±0.47 81.29±0.27

GAT 71.18±0.32 92.57±0.13 67.16±1.23 86.01±0.56 81.50±0.08 93.23±0.04 77.52±0.70 93.45±0.46

DR-GCNgan 66.13±0.39 85.55±0.13 66.31±0.17 86.68±0.05 80.69±0.50 92.89±0.45 70.86±0.03 84.36±0.01

DR-GCNdist 72.54±1.38 92.79±0.35 67.07±1.00 88.81±0.24 80.92±0.39 92.92±0.57 76.90±0.35 92.92±0.10

DR-GCN 74.09±0.51 93.66±0.33 67.71±0.49 89.19±0.12 81.69±0.32 93.39±0.36 78.86±0.12 94.93±0.60

Table 3: Performance of class-imbalanced node classification on Cora, Citeseer, Pubmed and DBLP.

Metrics Acc Precision F1 NMI
DeepWalk 31.42 28.48 16.13 2.23

Graph-LSTM 63.90 64.75 62.28 52.36
GCN 63.55 51.58 49.27 42.32

GCNRUS 66.17 61.26 57.98 46.56
GAT 71.14 61.27 62.29 50.99

DR-GCNgan 69.24 65.24 63.23 52.55
DR-GCNdist 69.31 65.24 63.27 53.16

DR-GCN 69.70 65.63 63.49 53.44

Table 4: Clustering results on Cora.

Metrics Acc Precision F1 NMI
DeepWalk 34.96 33.22 30.38 4.77

Graph-LSTM 60.54 58.43 53.87 37.09
GCN 64.13 58.84 55.89 38.20

GCNRUS 66.17 58.21 55.84 37.97
GAT 63.41 55.15 55.16 35.42

DR-GCNgan 64.98 59.09 56.83 38.67
DR-GCNdist 63.90 58.82 56.23 38.17

DR-GCN 64.19 59.17 56.48 38.24

Table 5: Clustering results on Citeseer.

and L6 as minority classes and L0 as majority class. Simi-
larly, we assume L3 as minority class and L1 and L2 as ma-
jority classes for Citeseer. Then, we vary the ratio of train-
ing samples from minority classes and the ratio for majority
classes is changed accordingly (e.g., in Table 2 for Cora the
original training ratios for minority and majority classes are
(9+7) and 29 percents, respectively. When the ratio for mi-
nority classes increases to 18 percent, thereby the ratio for
majority classes is reduced to 27 percent). We can observe in
Figure 3 that DR-GCN significantly outperforms CGN with
various minority class ratios, which demonstrates our model
shows better robustness for class-imbalanced graph learning.
Parameter analysis. Figure 4 shows the impact of param-
eter α to balance the standard convolution learning and the
distribution alignment training in Eq. (14). On both Cora
and Citeseer datasets, the classification performances first in-
crease and then tend to decline with larger values of α.

5.2 Graph Clustering
Table 4 and Table 5 report the clustering results of all base-
lines. On both the Cora and Citeseer datasets, we can observe
that DR-GCN consistently outperforms GCN, which again
verifies the benefit of our regularized learning process. Al-

Figure 5: Graph visualization on the Cora dataset.

though GAT has slightly better Acc performance than that of
others on Cora, it has a rather poor performance w.r.t. Pre-
cision, F1, and NMI compared with DR-GCN on both Cora
and Citeseer datasets. The clustering results demonstrate the
superiority of our proposed learning frameworks.

5.3 Graph Visualization
Figure 5 shows the 2-D node embedding visualization results
on the Cora dataset. Compared with GCN, we can observe
that DR-GCN learns more discriminative node embeddings,
especially for minority classes, such as L1 and L6, which
account for 9% and 7% node population, respectively.

6 Conclusion
Real-world graph structured data usually present highly-
skewed class distributions. The most critical challenge, when
learning from class-imbalanced graphs, is that the nodes have
strong topological interdependence, causing existing network
representation learning methods to underperform on minority
classes. In this paper, we proposed a novel dual-regularized
graph convolutional network that contains a conditional ad-
versarial training to enhance the separation of nodes from dif-
ferent classes and a distribution alignment training to enforce
balanced learning between majority and minority classes.

We conducted extensive comparative studies to evaluate
the proposed framework for both node classification and un-
supervised graph clustering. The validations, visualizations,
and comparisons from the experimental results demonstrated
that the proposed DR-GCN model is effective to handle graph
data with naturally imbalanced class distributions.

Acknowledgements
This research was sponsored in part by the U.S. National Sci-
ence Foundation through Grant Nos. IIS-1763452 and CNS-
1828181.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2884



References
[Ahrendt, 2005] Peter Ahrendt. The multivariate gaussian

probability distribution. Technical University of Denmark,
Tech. Rep, 2005.

[Chawla et al., 2002] Nitesh V Chawla, Kevin W Bowyer,
Lawrence O Hall, and W Philip Kegelmeyer. Smote: syn-
thetic minority over-sampling technique. Journal of artifi-
cial intelligence research, 16:321–357, 2002.

[Chen et al., 2019] Zhao-Min Chen, Xiu-Shen Wei, Peng
Wang, and Yanwen Guo. Multi-label image recognition
with graph convolutional networks. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition, pages
5177–5186, 2019.

[Dong et al., 2018] Qi Dong, Shaogang Gong, and Xiatian
Zhu. Imbalanced deep learning by minority class incre-
mental rectification. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 41(6):1367–1381, 2018.

[Drummond et al., 2003] Chris Drummond, Robert C Holte,
et al. C4. 5, class imbalance, and cost sensitivity: why
under-sampling beats over-sampling. In Workshop on
learning from imbalanced datasets II, volume 11, pages
1–8, 2003.

[Hamilton et al., 2017] Will Hamilton, Zhitao Ying, and Jure
Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing
Systems, pages 1024–1034, 2017.

[He and Garcia, 2009] Haibo He and Edwardo A Garcia.
Learning from imbalanced data. IEEE Transactions on
knowledge and data engineering, 21(9):1263–1284, 2009.

[Huang et al., 2016] Chen Huang, Yining Li, Chen
Change Loy, and Xiaoou Tang. Learning deep rep-
resentation for imbalanced classification. In Proc. of the
IEEE conf. on Computer Vision and Pattern Recognition,
pages 5375–5384, 2016.

[Japkowicz and Stephen, 2002] Nathalie Japkowicz and
Shaju Stephen. The class imbalance problem: A
systematic study. Intell. Data Anal., 6(5):429–449, 2002.

[Joyce, 2011] James M Joyce. Kullback-leibler divergence.
Inl. Ency. of Statistical Science, pages 720–722, 2011.

[Kipf and Welling, 2016] Thomas N Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. In Intl. Conf. on Learning Representations,
2016.

[Lee et al., 2018] John Boaz Lee, Ryan A Rossi, Xiang-
nan Kong, Sungchul Kim, Eunyee Koh, and Anup
Rao. Higher-order graph convolutional networks. arXiv
preprint arXiv:1809.07697, 2018.

[Lin and Cohen, 2010] Frank Lin and William W Cohen.
Semi-supervised classification of network data using very
few labels. In Intl. IEEE Conf. on Advances in Social Net-
works Analysis and Mining, pages 192–199, 2010.

[Liu et al., 2008] Xu-Ying Liu, Jianxin Wu, and Zhi-Hua
Zhou. Exploratory undersampling for class-imbalance
learning. IEEE Trans. on Systems, Man, and Cybernetics,
Part B (Cybernetics), 39(2):539–550, 2008.

[Mikolov et al., 2013] Tomas Mikolov, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. Efficient estimation of word rep-
resentations in vector space. ICLR Workshop, 2013.

[Mirza and Osindero, 2014] Mehdi Mirza and Simon Osin-
dero. Conditional generative adversarial nets. CoRR,
abs/1411.1784, 2014.

[Pan and Zhu, 2013] Shirui Pan and Xingquan Zhu. Graph
classification with imbalanced class distributions and
noise. In Proc. of the 23rd AAAI Conf. on Artificial In-
telligence, pages 1586–1592, 2013.

[Perozzi et al., 2014] Bryan Perozzi, Rami Al-Rfou, Steven
Skiena, Rami Al-Rfou, and Steven Skiena. Deepwalk: On-
line learning of social representations. In Proc. of the ACM
SIGKDD Intl. Conf., pages 701–710, 2014.

[Sun et al., 2009] Yanmin Sun, Andrew KC Wong, and Mo-
hamed S Kamel. Classification of imbalanced data: A re-
view. Intl. Journal of Pattern Recognition and Artificial
Intelligence, 23(04):687–719, 2009.

[Tai et al., 2015] Kai Sheng Tai, Richard Socher, and
Socher Richard Manning, Christopher D, and Christo-
pher D Manning. Improved semantic representations from
tree-structured long short-term memory networks. In Proc.
of the 53rd Annual Meeting of the Association for Compu-
tational Linguistics, page 1556–1566, 2015.
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