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Abstract
Crowdsourcing is a new computing paradigm that
harnesses human effort to solve computer-hard prob-
lems. Budget and quality are two fundamental fac-
tors in crowdsourcing, but they are antagonistic and
their balance is crucially important. Induction and
inference are principled ways for humans to acquire
knowledge. Transfer learning can also enable in-
duction and inference processes. When a new task
comes, we may not know how to go about approach-
ing it. On the other hand, we may have easy access
to relevant knowledge that can help us with the new
task. As such, via appropriate knowledge trans-
fer, for example, an improved annotation can be
achieved for the task at a small cost. To make this
idea concrete, we introduce the Crowdsourcing with
Multiple-source Knowledge Transfer (CrowdMK-
T) approach to transfer knowledge from multiple,
similar, but different domains for a new task, and
to reduce the negative impact of irrelevant sources.
CrowdMKT first learns a set of concentrated high-
level feature vectors of tasks using knowledge trans-
fer from multiple sources, and then introduces a
probabilistic graphical model to jointly model the
tasks with high-level features, workers, and their
annotations. Finally, it adopts an EM algorithm
to estimate the workers’ strengths and consensus.
Experimental results on real-world image and text
datasets prove the effectiveness of CrowdMKT in
improving the quality and reducing the budget.

1 Introduction
Many data management and analytic tasks, such as protein
structure prediction [Cooper et al., 2010] and sentiment analy-
sis [Liu et al., 2012], cannot be solved effectively by existing
computer-only algorithms. Crowdsourcing has emerged as an
effective way to address such tasks by utilizing hundreds of
thousands of Internet workers. Thanks to public crowdsourc-
ing platforms, e.g., Amazon Mechanical Turk (AMT)1 and
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CrowdFlower2, we have easy access to the crowd.
Two key problems in crowdsourcing are quality control and

budget saving. Workers engage into crowdsourcing platforms
for different reasons [Li et al., 2017]; some want to make
some money while others participate just for fun. As such,
many workers may answer questions randomly to maximize
their income, while reliable (expert) workers may do their best
to gain a sense of achievement and reputation. In addition,
workers with different backgrounds have different specialties.
A southeast Asian farmer with little education may not be
as good at math as a college graduate, but the former has
more experience in farming. If we have a task related to
rice cultivation, then the farmer with little education may do
better than the college student. To better accomplish tasks
within limited budget, we need to jointly model the workers
and the tasks, so that we can allocate appropriate tasks to
suitable workers [Daniel et al., 2018; Tu et al., 2020a]. Some
attempts have been made to jointly model workers and tasks to
improve the quality and to save the budget [Kurve et al., 2015;
Tu et al., 2020b; Yu et al., 2020]. They model the difference
between workers’ skills and task difficulty. If a worker’s skill
exceeds the difficulty of a task, the worker is assigned to the
task.

However, when we face a new domain, for which limited
knowledge is available, it is hard to discover capable workers
for the tasks. A natural thought is to borrow knowledge from
other related domains (i.e., transfer learning). For example, if
we want to separate a pear from a pomelo, but we are not famil-
iar with either, how could we learn the characteristics of the t-
wo quickly? We can resort to the known discriminative pattern-
s between apples and oranges (as illustrated in Figure 1), and
use them to differentiate a pear from a pomelo. In other words,
we can use the intrinsic induction and inference ability of trans-
fer learning to acquire new knowledge [Pan and Yang, 2009;
Weiss et al., 2016]. Motivated by this observation, we advo-
cate the integration of transfer learning into crowdsourcing to
handle tasks from a new domain by referring to tasks in other
related but different domains. By extracting and transferring
knowledge from the source domain to the target domain, we
can draw a sketch of the task, achieve better task assignments
and annotation quality, and also remedy the sparsity and the
cold-start problem (too few data to build an initial stable mod-

2https://www.figure-eight.com/
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(a) apple (b) orange (c) pear (d) pomelo

Figure 1: The differentiation between pear and pomelo can be made
by knowledge transfer from the similar scenario of apple vs. orange
(discriminative patterns: color, shapes, sarcocarp, etc.).

el) in crowdsourcing. However, ponderously using transfer
learning is not always safe, since the transferred knowledge
may not always be helpful for the target task [Rosenstein et
al., 2005].

In this paper, we introduce a two stage Crowdsourc-
ing approach using Multiple-source Knowledge Transfer
(CrowdMKT) to reduce the chance of negative transfer from a
single source domain. CrowdMKT firstly extracts a set of con-
centrated high-level pattern vectors of the target task and other
related tasks by sparse coding [Lee et al., 2007]. We advocate
that these high-level pattern vectors contain key features and
important information for the target tasks. CrowdMKT then
introduces a probabilistic graphical model based on the new
patterns to jointly model the workers’ ability, the collected
annotations and the crowdsourcing workflow. Next, it infers
the truth, workers’ abilities and other parameters used in the
model with an EM (expectation–maximization) algorithm. Via
task transfer and truth inference, CrowdMKT can achieve a
better understanding of the target tasks, and can assign tasks
to workers more effectively. Our main contributions are sum-
marized as follows:

• CrowdMKT combines crowdsourcing with multi-source
transfer learning to make use of the external abundant
and free knowledge to alleviate the lack of information in
an unfamiliar task domain, and it enables the modeling
of tasks and workers in a natural and reliable manner.

• CrowdMKT is the first approach to learn from multiple
domains in crowdsourcing. As such, it maximizes the
chance of useful and reliable knowledge transfer, and
reduces the chance of negative transfer.

• By using free and abundant external knowledge, our
CrowdMKT alleviates the cold start problem, and obtains
higher quality annotations than state-of-the-art methods
[Fang et al., 2014; Zhang et al., 2017; Demartini et al.,
2012; Koller and Friedman, 2009] and its variants.

2 Related Work
Our work is closely related to two branches of research, trans-
fer learning and task assignment in crowdsourcing. Trans-
fer learning aims to improve the performance of a learner
in target domains by transferring knowledge embedded in
different but related source domains [Pan and Yang, 2009;
Weiss et al., 2016]. As such, the dependence on a large
number of target domain data can be alleviated for the tar-
get learner. Typical transfer learning focuses on knowledge

transfer from samples, features, parameters, relations and the
combination of them. To reduce the risk of negative knowl-
edge transfer from a single source domain to the target do-
main, several multi-source transfer learning approaches have
been invented and proved that transferring knowledge from
multiple related but different source domains can boost the
performance of the target domain [Yao and Doretto, 2010;
Ding et al., 2018], while they require the source domains
having sufficient label information to evaluate the relatedness
between source and target domains. Our CrowdMKT is built
on multiple sources and feature-based transfer learning in an
unsupervised manner to extract the high-level patterns of tasks
and to reduce the chance of negative transfer.

An effective task assignment strategy helps to achieve high-
quality annotation with a limited budget. Diverse strategies
have been proposed [Li et al., 2017], some focus on the individ-
ual worker’s reliability and intention [Demartini et al., 2012;
Tu et al., 2020a], task difficulty and information [Hu and
Zhang, 2018], the cost of tasks [Gao et al., 2013], both worker
and task [Mavridis et al., 2016; Yu et al., 2020]. However,
most of these efforts can not generalize to tasks in a new do-
main, since they all require sufficient accomplished tasks of
individual workers for task assignment.

Some attempts have been made to plug transfer learning
into crowdsourcing for better task assignment. Transfer learn-
ing for crowdsourcing [Mo et al., 2013] borrows knowledge
from auxiliary historical tasks to improve the data veracity for
a target task and to relieve the sparsity and cold-start problem.
However, it only focuses on the worker and requires workers
with a lot of experience and job logging. Crowd-selection
on Twitter [Zhao et al., 2013] uses transfer learning to clas-
sify tasks and workers, and then treats the user’s followers
and followings on Twitter as potential workers to assign task.
Domain vector estimation [Zheng et al., 2016] analyzes the
domains of a task with respect to the knowledge base (i.e.,
Wikipedia and Freebase) using transfer learning and utilizes
the domain-sensitive worker model to accurately infer the true
answer of a task. Active learning for crowdsourcing with
knowledge transfer [Fang et al., 2014] combines task domain
and source domain data using sparse coding to get a more
concise high-level expression and then uses active learning
to select the right worker for the right task. However, it only
transfers from one source domain and is vulnerable to negative
transfer, where the source domain has negative impact on the
task domain. The main reason is that these two domains are
not so ‘alike’; another possible reason is that the two domains
contain similar noisy data.

To effectively handle tasks in new domains, we intro-
duce CrowdMKT to transfer knowledge from multiple source
domains and to increase the chance of positive transfer.
CrowdMKT not only can jointly capture the intrinsic patterns
of tasks, but also the specialty of workers, and thus contribute
to better annotations and save the budget.

3 Methodology
3.1 Problem Definition
Let us consider a set of crowdsourcing tasks, and let C be the
set of possible answers. W workers are invited to annotate the
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tasks using |C| distinct labels. The unknown ground truth of a
task is denoted as yi ∈ C. LetXt = {xt

1,x
t
2, · · · ,xt

Nt
} denote

Nt tasks in the target domain. Each xt
i ∈ Rd denotes a target

task. Similarly Xs = {xs
1,x

s
2, · · · ,xs

Ns
}(s = 1, · · · , S) de-

notes a source domain. The collected annotations on Nt tasks
fromW workers form an annotation data matrix A ∈ RNt×W ,
where each element aiw = c ∈ {0}∪C represents the fact that
the w-th worker annotated the i-th task with label c. Specif-
ically, aiw = 0 states that the w-th worker does not provide
any annotation for this task.

Given Nt tasks and a fixed budget, we want to use external
free information to better model the tasks and the workers with
the aim of completing the tasks with high quality answers and
a reduced budget. To achieve this goal, we represent the raw
feature vectors of target tasks using transfer learning on the
feature vectors of tasks in other domains. After performing
the transfer learning process (mainly via sparse coding with
under-complete dictionary [Lee et al., 2007]), the mutual fea-
tures shared by the source and target domains are amplified
and strengthened, and the noisy features are eliminated. By
doing so, the positive knowledge transfer from multiple source
domains to the target domain can be augmented and the raw
vectors are concentrated. Each base in the dictionary poten-
tially expresses some high-level discriminative patterns that
help us to model the workers and the tasks. The following
subsections describe the process in detail.

3.2 Transfer Learning Process

The transfer learning process aims at learning high-level pat-
terns of tasks to better model tasks and hence workers by
sparse coding (SC) [Lee et al., 2007]. The basic idea of SC
is to represent input vectors with a number of basis vectors
(typically called dictionary). Suppose the number of basis
vectors is k. Based on whether k is larger or smaller than the
original task feature dimensiona d, we have an over-complete
(k > d), a complete (k = d), or an under-complete (k < d)
dictionary. The loss function of sparse coding is:

min
bj ,zi

∑
i
‖xi −

∑k

j=1
zijbj‖2 + γ‖zi‖1,

s.t. ‖bj‖ ≤ c, ∀j ∈ 1, · · · , k
(1)

where xi ∈ Rd is the raw feature vector, {b1, · · · ,bk} is
the dictionary of k distinct words, and each bj ∈ Rd is a
basis vector. By linearly combining the bases, we get the new
representation of xi as zi = [zi1, · · · , zik]. The last term is an
l1-norm regularization enforcing the sparsity of zi.

Our problem has a different setting than the standard SC
problem, where we want to find the shared features between
source and target domains, and the new representation in the
target domain is sparse. Eq. (1) should be applied to the two
domains simultaneously with l1-norm regularization. With an
under-complete dictionary (k < d), we can compress input
vectors to k-dimensional vectors without losing too much
information; in this way the dimension inflation problem can

be avoided. Eq. (1) is extended as follows:

min
bj ,zi

∑S

s=1

∑Ns

i=1
‖xs

i −
∑k

j=1
zsijbj‖2

+
∑Nt

i=1
‖xt

i −
∑k

j=1
ztijbj‖2 + γ‖zti‖1,

s.t. ‖bj‖ ≤ 1, ∀j ∈ 1, · · · , k

(2)

The first and second parts are transfer learning processes tak-
ing place between the source and target domains. Since we
only need the target domain feature vector, the l1-norm regular-
ization is only applied to the target domain, and γ controls the
weight of this regularization. The norm constraint for bases
(‖bj‖ ≤ 1, ∀j ∈ 1, · · · , k) is needed to prevent the following
undesirable situation: there always exists a linear transforma-
tion of bj’s and ztij’s which keeps

∑k
j=1 bjz

t
ij unchanged,

while making zji close to zero [Lee et al., 2007].
The above equation can be rewritten in matrix form as

follows:

min
B,Zt

∑S

s=1
‖Xs −BZs‖2F + ‖Xt −BZt‖2F + γ‖Zt‖1

s.t.
∑

i
|bi,j | ≤ 1, ∀j ∈ 1, 2, · · · , k

(3)
where Xs and Xt are the original feature data matrices for
the tasks, Zs and Zt are the representation matrices for the
tasks in multiple source domains and the target domain. The
columns of these matrices are the new feature vectors of the
corresponding tasks. B contains the shared basis vectors (or
dictionary) which we want to extract from all the tasks.

To optimize Eq. (3), we use the alternative optimization
strategy, which optimizes one variable while fixing the other
variables in an iterative manner. With B and Zt fixed, the
problem becomes an easy convex optimization problem with
respect to Zs, with no sparse constraints on each source do-
main Xs, and can be solved using a gradient method, such as
steepest descent. Once B and all the Zs are fixed, the problem
becomes a classic l1-norm regulation optimization problem,
and we can use standard solvers (i.e., Least Angle Regression
and Orthogonal Matching Pursuit [Wright et al., 2010]). When
Zt and all the Zs are fixed, the objective becomes a dictionary
learning problem, and we can update each column of B using
singular value decomposition or the least squares method. Our
empirical study shows that the above optimization converges
within 300 iterations.

3.3 Crowdsourcing Process
In this section, we propose a novel probabilistic generative
model, illustrated in Fig. 2. This model describes the process
that generates noisy annotations {aiw}Nt,W

i=1,w=1 of multiple
workers with different expertise ewi based on the transferred
task features {zti}

Nt
i=1. Our goal is to study the variational

relationship between the workers’ ability, the transferred high-
level features of tasks, and the true labels.

Generation of true labels. We advocate that the trans-
ferred high-level task features zti for xt

i carry information
concerning its ground truth. In other words, the ground truth
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Figure 2: Probabilistic generative model of CrowdMKT. Circular
nodes are random variables and square nodes are factor nodes. The
shaded nodes represent observed values (worker annotations aiw and
transferred task features zti). The model describes the process of
generating an answer aiw for zti with unknown ground truth yi by
worker w with expertise ewi . r∗ is the vector that maps zti to yi and
is determined by the hyper parameter τ .

of a task mainly depends on its features. To quantify the re-
lationship between task features and the true label, a logistic
regression is used as follows:

p(yi | zti, r∗) = (1 + exp(−r∗T · zti))−1 (4)

where r∗ is the parameter of the logistics regression. Of
course, other approaches can also be adopted to quantify the
relationship. Eq. (4) may be contaminated with additive
noises, which can result in over-fitting. Thus, we assume a
Normal prior on r∗:

(r∗ | τ) ∼ N (0,
1

τ
I) (5)

where τ > 0 is a constant and tuned using a validation set.
Other priors can also be readily adopted. For example, if r∗ is
expected to be sparse, the Laplacian prior can be used.

Generation of crowdsourced labels. In practice, workers
with different expertise may annotate the same tasks different-
ly, and the expertise of a worker is associated with the specific
task features. Thus, we define ew ∈ Rk as the whole expertise
and estimate the specific label-quality ewi of the w-th worker
on the i-th task using a linear combination as follows:

ewi = (zti)
T · ew (6)

For simplicity, the conditional probability of the workers’ ex-
pertise with respect to the task features is defined as follows:

p(ewi | zti) = (1 + exp(−ewi ))−1 (7)

We give an example to further reformulate Eqs. (6) and (7).
Suppose that all the workers share the same four main skills
(‘politics’, ‘sports’, ‘science’, and ‘entertainment’), and two
workers w1 and w2 have expertise e1 = [0.8, 0, 0.8, 0] and
e2 = [0, 0.8, 0, 0.8], respectively. If the task ‘Will IJCAI2020
be held in Yokohama, Japan?’ with high-level feature vector
zt1 = [0, 0, 1, 0] is assigned to w1 and w2, the quality of w1

on zt1 is e1
1 = zt1

T · e1 = 0.8, while the quality of w2 on
this task is e2

1 = zt1
T · e2 = 0. Using Eq. (7), we can

estimate the conditional probabilities p(e1
1 | zt1) = 0.690 and

p(e2
1 | zt1) = 0.500.

Eq. (7) quantifies the quality of the annotation provided
by worker w to task i. A larger ewi value leads to a higher
probability that aiw will be consistent with the ground truth yi.
On the other hand, a smaller ewi results in a higher probability
that worker w will make mistakes. Thus, the conditional prob-
ability p (aiw|yi, ewi ) can be defined based on the binomial
distribution as follows:

p(aiw | yi, ewi ) = p(ewi )I(yi = aiw)+
1− p(ewi )

|C| − 1
I(yi 6= aiw)

(8)
|C| is the number of alternative answers and I(·) is the indica-
tor function: I(x) returns 1, if x is true; and 0 otherwise. In
Eq. (8), p(ewi ) represents the probability of obtaining a correct
annotation, consistent with the ground truth yi; (1 − p(ewi ))
is the probability of receiving one of the (|C| − 1) incorrect
annotations. Alternative estimators of the conditional proba-
bility are also suitable here. Our choice is driven by simplicity
and intuitiveness.

Given a group of tasks Xt, each worker w (with expertise
ew) independently completes a subset of tasks of Xt, and
provides the answers aiw. To approximate the above process,
we define the conditional joint probability of our probabilistic
model as follows:

p(A|r∗, ew,Zt) =

Nt∏
i

p(yi | zti, r∗)

W∏
w

p(ewi | zti)p(aiw | yi, ewi )

(9)
Note that the index i is used to differentiate different tasks,
and not to indicate the order according to which the workers
complete the tasks.

3.4 Parameter Inference Process
Given a set of extracted feature vectors {zti}

Nt
i=1 of tasks and

collected annotations {aiw}Nt,W
i=1,w=1 of these tasks, we need to

infer the corresponding ground truth {yi}Nt
i=1 and the workers’

special ability measurement {ew}Ww=1 based on the probabilis-
tic graphical model. In other words, we have to infer two
groups of variables in Ψ, Ψ = {{yi}Nt

i=1 , {ew}Ww=1}.
E-step: Based on Bayesian theorem, yi corresponds to the

largest posterior probability on the estimated ground truth
p̂(yi), which can be transformed to the following equation:

p̂(yi) = p(yi | ei,ai, z
t
i, r

∗) ∝ p(yi, ei,ai | zti, r∗)

= p(yi | zti, r∗)
W∏
w

p(aiw | yi, ewi )p(ewi | zti)
(10)

All the variables in Eq. (10) are taken from Ψ obtained in the
last M-step. After computing all possible values of yi and the
corresponding p̂(yi), we choose the yi with largest p̂(yi) as
ground truth.

M-step: In the M-step, we need to find the two groups of
variables in Ψ, which maximize the logarithm of the posterior
expectation on the ground truth yi obtained in the last E-step:

Ψ = max
Ψ

Ey[log(p(zti, ei,ai | yi, r∗)]

= max
Ψ

∑Nt

i

∑W

w
Eyi

[log p(ewi | zti)

+ log p(yi | zti, r∗) + log p(aiw | yi, ewi )]

(11)
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This is an unconstrained maximization problem and we solve
it using the L-BFGS algorithm [Fletcher, 2013]. We iterative
perform the above two steps until a maximum number of
iterations is reached, or until the change in parameter values
is small enough.

4 Experiments
4.1 Experimental Setup
We study the effectiveness of our CrowdMKT through a series
of experiments on two real-world datasets (20-newsgroups
and CUB-200-2011 [Wah et al., 2011]) with multiple source
and target domains. The statistical information of the two
datasets is listed in Table 1. For the Image dataset, we use
VGG-19 [Simonyan and Zisserman, 2014] to obtain its raw
feature vector; for the Text dataset, we use TF-IDF to obtain
the raw feature vector. We fix the feature dimension of all
domains to d = 1000, and set the dictionary size to k = 20.
Note, CrowdMKT can work on domains with diverse numbers
of samples.

The following seven methods are used for experimental
comparison:
(i) MV directly uses majority vote to integrate annotations,
without transfer learning or modeling tasks and workers.
(ii) AWMV [Zhang et al., 2017] utilizes the frequency of
positive labels in the multiple noisy label sets of each task to
estimate a bias rate, and then assigns weights derived from the
bias rate to negative and positive labels.
(iii) ZC [Demartini et al., 2012] uses one parameter to model
the reliability of each worker and infers the true labels of tasks
using an EM algorithm.
(iv) PGM is a probabilistic generative model (as shown in Fig.
2) [Koller and Friedman, 2009] built on the raw task features
without transfer learning.
(v) STL+ALM [Fang et al., 2014] takes advantage of single-
source transfer learning, active learning, and a PGM alike ours.
We exclude the active learning component, and use the same
training data as ours to train this model.
(vi) SKT is a degenerated version of CrowdMKT; it performs
single-source knowledge transfer for crowdsourcing and then
adopts PGM on the new feature vector zt.
(vii) CrowdMKT employs transfer learning with multiple
source domains to extract the high-level features, and then
adopts PGM to infer the truth labels and workers’ capability.

The first four methods build consensus models without us-
ing transfer learning, and the other three use transfer learning.
For CrowdMKT and its variants, we simply set γ = 0.1 and
τ = 1. We empirical found that γ ∈ [0.05, 0.5] gives a good
and stable result, while a too small value can not ensure a
sparse feature vector, and a too large value causes too sparse
regularization. For the other methods, we set the parameters
(if any) following the suggestions of the authors. Following
the canonical setting [Kazai et al., 2011], we simulate four
types of workers (spammer, random, normal, and expert), with
different capacity ranges and proportions as shown in Table 3.
The weighted average capacity is 0.6. We generate 50 workers
and ask each worker to give 24 annotations to the image tasks,
each of which has to have at least one annotation. As a result,
each task on average has five annotations.

Worker type Lower range Upper range Proportion
spammer 0.1 0.25 10%
random 0.25 0.5 10%
normal 0.5 0.8 70%
expert 0.8 1.0 10%

Table 3: Experimental setup of worker compositions and capacity
ranges.

4.2 Consensus Results
We independently run each method ten times to compute the
consensus annotation and report the average accuracy in Table
2. We have several important observations.
(i) Multi vs. single-source transfer: CrowdMKT uses three
source domains and gains a performance superior to its degen-
erate version MKT, which uses any two source domains. MKT
in turns outperforms SKT, which uses any single domain. This
confirms the fact that our multiple-source knowledge transfer
indeed reduces the chance of negative transfer, and the source
domains are complementary and related with the target do-
main. Although STL+ALM uses the first (the best) source
domain for the target domain and has a similar transfer idea as
SKT, its accuracy is still lower than SKT. This is because SKT
(and also CrowdMKT) can better model workers’ specialty,
latent ground-truth, and collected annotations, by a binomial
distribution (via Eq. (8)), as to STL+ALM, it models these
factors using a Gaussian probability-density function.
(ii) Transfer vs. non-transfer: SKT works better than PGM,
which using original task features instead of the high-level
features extracted by transfer learning. This contrast supports
the advantage of knowledge transfer strategy for approaching
tasks in the target domain. PGM has an accuracy comparable
to ZC and to AWMV, and outperforms MV by a large mar-
gin. MV has an accuracy of 0.610, closing to the weighted
average capacity 0.6 (as shown in Table 3). This supports the
effectiveness of the consensus algorithms and the contribution
of knowledge transfer. The accuracy of ZC and AWMV are
lower than that of SKT, which considers a numeric vector to
model the capability of a worker, while ZC and AWMV do
not. ZC only uses the target domain and adopts a binary value
to model the workers’ quality, thus ignoring the fact that a
worker’s ability may vary across different tasks. Like MV,
AWMV does not model workers and tasks, but it considers the
bias of tasks’ labels, so its accuracy is higher than MV.

SKT(1) and SKT(2) have a higher accuracy than SKT(3) on
the Image dataset, which implies that the third source domain
is less related to the target domain than the other two. In fact,
looking at Table 1, we find that the first category (‘Albatross’)
of the target domain is also within the first and second source
domains, but not in the third source domain. But combining
the third source domain with others can still boost the target
domain. This fact again confirms that multi-source transfer
can reduce the chance of negative transfer.

Fig. 3 provides another example that demonstrates the effect
of multi-source knowledge transfer. ‘Black footed albatross’
comes from the target domain. We can discriminate the black-
footed albatross from other birds by extracting and transferring
knowledge from three birds of three different source domains.
Collectively, the latter three birds provide the different key
patterns (black plumage, markings around beak and under eye,
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Image dataset
Target domain (Nt = 240) Source domains (Ns = 240, 240, 240)

Black Footed Albatross, Eared Grebe
Pileated Woodpecker, Acadian Flycatcher

Laysan Albatross, Horned Grebe, Red Bellied Woodpecker, Least Flycatcher
Sooty Albatross, Pied Billed Grebe, Red Headed Woodpecker, Yellow Bellied Flycatcher
Brandt Cormorant, Western Grebe, Pileated Woodpecker, Great Crested Flycatcher

Text dataset
Target domain (Nt = 4000) Source domains (Ns = 4000, 4000, 4000)

comp.os.ms-windows.misc, sci.crypt
rec.motorcycles, talk.politics.guns

comp.sys.ibm.pc.hardware, rec.autos, sci.electronics, talk.politics.mideast
comp.sys.mac.hardware, sci.med, rec.sport.baseball, talk.politics.misc
comp.windows.x, sci.space, rec.sport.hockey, talk.religion.misc

Table 1: Datasets used in the experiments. Each dataset has one target domain and up to three source domains.

MV AWMV ZC PGM STL+ALM SKT(1) SKT(2) SKT(3) MKT(1+2) MKT(1+3) MKT(2+3) CrowdMKT
Image .6100 .6832 .6521 .6638 .6813 .7019 .7106 .6831 .7356 .7281 .7300 .7801
Text .6688 .7189 .6854 .7263 .6743 .7548 .7440 .7435 .7855 .7773 .7760 .8120

Table 2: Experiment results (Accuracy) of compared methods. SKT(s) only uses the source domain s, and MKT(s + u) uses two source
domains, which are ordered in Table 1. The standard deviations are always < 0.001 and thus excluded.

Figure 3: An example of multi-source knowledge transfer for charac-
terizing a bird in the target domain of the Image dataset. The top left
bird (Black footed albatross) belongs to target domain, and has three
discriminative patterns: black plumage, markings around beak and
under eye, and black foot (from Wikipedia), which can be collectively
learned and transferred from birds in three source domains.

and black foot) that characterize the target bird.

4.3 Further Analysis
By transfer learning, we gain useful knowledge to initialize the
model, and thus we need fewer instances to achieve a stable
model. We evaluate the relief from the cold start problem by
comparing the needed number of training instances to obtain
a stable model on the Image dataset. We gradually add 5%
training data per round and then repeat PGM, ZC, AWMV,
and CrowdMKT ten times for each round. The results can be
seen in Fig. 4(a). As expected, the accuracy of all methods
increases as the number of completed tasks grows. With 25%
tasks, our CrowdMKT reaches a stable (variance < 0.001)
and superior performance, while ≥45% is needed for PGM.
Both ZC and AWMV need a larger number of accomplished
tasks (budget) to reach a stable model (more than 50% data).
This study confirms that multi-source knowledge transfer can
alleviate the cold start problem, and thus can reduce the budget
needed to set up a stable model by requiring fewer annotated
tasks, once the model being set up, fewer workers are needed
to work on one task, the overall budget can be saved.

We conduct additional experiments to study the impact of
the dictionary size (k) and show the results in Fig. 4(b). The
best accuracy is achieved when k ∈ [20, 30]. A larger k not on-
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Figure 4: (a). Consensus accuracy vs. annotated tasks. To achieve
a stable and superior performance, CrowdMKT needs fewer anno-
tated tasks than methods without knowledge transfer; (b) Consensus
accuracy under different dictionary sizes k for knowledge transfer.

ly reduces the accuracy, but also increases the runtime, where
runtime is recorded on a PC with WinOS 10, AMD Ryzen
7 2700x and 16GB RAM. This is not surprising, since the
dictionary size k is associated with the categorization of work-
ers’ specialities; a too small k cannot capture discriminative
high-level features (specialities), while a too large k tends to
over-categorize the specialities.

We also tested the four types of workers with other capacity
ranges and proportions. The results lead to similar conclusions.
In addition, we observed that CrowdMKT is more robust to
spammers than other compared methods.

5 Conclusions
In this paper, we leverage the inductive and inference abili-
ty of transfer learning to transfer knowledge from multiple
source domains to tackle new tasks in unfamiliar domains. We
introduce a multi-source knowledge transfer and probabilis-
tic generative model-based solution (CrowdMKT) that learns
high-level patterns of tasks to facilitate the crowdsourcing
process. Experimental results show that CrowdMKT achieves
annotations of a higher quality than other competitive methods
at a reduced cost. Our future work will investigate techniques
to establish whether target and source domains are similar, and
if yes, how. The first question answers whether we should
transfer, and the second answers what we should transfer.
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