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Abstract
Multi-dimensional classification (MDC) has at-
tracted much attention from the community.
Though most studies consider fully annotated data,
in real practice obtaining fully labeled data in
MDC tasks is usually intractable. In this paper,
we propose a novel learning paradigm: Multi-
Dimensional Partial Label Learning (MDPL)
where the ground-truth labels of each instance are
concealed in multiple candidate label sets. We first
introduce the partial hamming loss for MDPL that
incurs a large loss if the predicted labels are not in
candidate label sets, and provide an empirical risk
minimization (ERM) framework. Theoretically, we
rigorously prove the conditions for ERM learnabil-
ity of MDPL in both independent and dependent
cases. Furthermore, we present two MDPL algo-
rithms under our proposed ERM framework. Com-
prehensive experiments on both synthetic and real-
world datasets validate the effectiveness of our pro-
posals.

1 Introduction
Multi-dimensional classification (MDC) aims to assign each
instance to multiple classes, which has been seen in a variety
of real-world applications, including but not limited to, text
categorization [Ortigosa-Hernández et al., 2012], gene func-
tion prediction [Barutçuoglu et al., 2006] and image annota-
tion [Read et al., 2014; Batal et al., 2013; Arias et al., 2016].
In order to train an effective MDC model, it is typically de-
sirable to obtain a large number of precisely annotated data.
Unfortunately, obtaining fully labeled data in MDC tasks is
usually intractable. As a result, it is non-trivial to learn multi-
dimensional classifiers from partially labeled data.

Weakly-supervised learning has been explored to deal
with partially labeled data in various settings. For exam-
ple, semi-supervised learning (SSL) [Chapelle et al., 2002]
learns from both labeled and unlabeled data. In positive-
unlabeled learning (PUL) [Denis, 1998; Kiryo et al., 2017],
there are only positive labeled data and unlabeled data avail-
able. In partial label learning (PLL) [Cour et al., 2011;
∗Corresponding Author.

Liu and Dietterich, 2012; Wu and Zhang, 2018], the ground-
truth label is concealed in a set of candidate labels. Recently,
there are also some works that address the weakly-supervised
learning problem in multiple-label setting, such as semi-
supervised multi-label learning [Zhan and Zhang, 2017],
partial multi-label learning (PML) [Fang and Zhang, 2019;
Wang et al., 2019] and semi-supervised multi-dimensional
classification [Ortigosa-Hernández et al., 2012].

In this work, we consider a new weakly-supervised MDC
scenario where the ground-truth labels of each instance
are concealed in multiple candidate label sets, i.e. Multi-
Dimensional Partial Label Learning (MDPL). Take the im-
age [Khosla et al., 2011] in Table ?? as an example, it is as-
sociated with four class variables {Place, Tree, Dog Breeds,
Weather}. It is hard for the annotators to identify all the cor-
rect labels, but they can provide some candidate labels with
much less effort. Label disambiguation and label correlation
extraction pose the serious challenges in MDPL. The noisy
information will decrease the generalization performance of
MDPL. However, the label correlations will provide addi-
tional semantic information to disambiguate the noisy labels.
For example, since there exist some trees in the image, it is
more likely to be a Mountain instead of a Glacier.

Our main contributions in this paper are to formulate the
MDPL problem and provide an empirical risk minimization
(ERM) framework. In particular, we propose a partial ham-
ming loss that incurs a large loss if the predicted labels are not
included in candidate label sets. Theoretically, we rigorously
present the conditions for ERM learnability of MDPL in both
independent and dependent cases. Moreover, we instantiate
two MDPL algorithms under our empirical risk minimiza-
tion framework. Extensive experiments on both synthetic and
real-world datasets demonstrate that our proposed methods
can effectively handle MDPL tasks.

2 Related Work
2.1 Multi-Dimensional Classification
In multi-dimensional classification (MDC), each object is as-
sociated with multiple class variables. It is a generalization of
multi-label learning [Liu and Tsang, 2017; Shen et al., 2018;
Liu et al., 2019] that allows each class variable to have more
than two values. Compared to MLL problems, the label cor-
relations in MDC are more sophisticated, because the intra-
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Class
Type Multi-Dimensional Multi-Dimensional Partial Labels

Place Mountain Mountain, Glacier
Tree Yes Yes

Dog Breeds Malamute Siberian Husky, Malamute
Weather Sunny Sunny, Snowy, Cloudy

Table 1: An example of MDPL task for image annotation. In MDC, we provide all the ground-truth labels. In MDPL, only some candidate
labels are given but it takes much less time than precise annotation.

class labels are exclusive, while inter-class labels may still
correlate to each other. One popular strategy for MDC is bi-
nary relevance (BR) [Read et al., 2014] that decomposes the
original problem into several multi-class classification prob-
lems. Despite its computational efficiency, BR neglects the
label dependencies and hence the predictive performance is
limited. To cope with this shortcoming, many works are pro-
posed, including probabilistic graph model based algorithms
[Batal et al., 2013; Benjumeda et al., 2018], classifier chains
[Zaragoza et al., 2011], instance-based approaches [Jia and
Zhang, 2019] and so on. Nevertheless, all of them require the
training data to be precisely labeled, which is demanding and
time-consuming.

Consequently, some weakly-supervised multiple-label
problems have been studied, such as semi-supervised multi-
label learning [Zhao and Guo, 2015; Zhan and Zhang, 2017],
partial multi-label learning (PML) [Fang and Zhang, 2019;
Wang et al., 2019], semi-supervised multi-dimensional clas-
sification [Ortigosa-Hernández et al., 2012] and so on. How-
ever, most of these learning paradigms explore only multi-
label setting where the labels are restricted to be binary and
it is non-trivial to study the generalized weakly-supervised
MDC problems.

2.2 Partial Label Learning

The partial label learning (PLL) setting is between fully su-
pervised and unsupervised learning setting, but is quantitively
different from SSL [Chapelle et al., 2002; Zhan and Zhang,
2017] and PUL [Denis, 1998; Kiryo et al., 2017]. In PLL,
each instance is equipped with a set of candidate labels. The
ground-truth label is guaranteed to be included and the re-
maining labels are termed as distractor labels or false posi-
tive labels. The biggest challenging issue in PLL is to disam-
biguate the ground-truth label from the distractor labels and
many papers [Cour et al., 2011; Liu and Dietterich, 2012;
Wu and Zhang, 2018; Feng and An, 2019; Lv et al., 2020]
are presented to address this problem. There are also some
works [Fang and Zhang, 2019; Wang et al., 2019] studying
partial multi-label learning, which extends PLL problem to
the multiple-label learning field. Nonetheless, PML restricts
the labels to be binary and thus is unpractical in many real-
world tasks [Read et al., 2014].

To bridge this gap, we propose a novel learning paradigm:
multi-dimensional partial label learning where the ground-
truth labels of each instance are concealed in multiple can-
didate label sets.

3 Learning Framework
We first formulate the problem of MDPL and introduce an
empirical risk minimization framework.

Consider a standard setting of MDC problem with an input
space X ⊆ Rm and an output space Y = C1 × C2 × ...× Cd.
Here Ci = {li1, li2, ..., liki} is the i-th class space and Y is
their Cartesian product. The ultimate goal of MDC is to in-
duce a mapping from X to Y that captures the dependence
of the outputs on inputs. To this end, based on a training
dataset Q = {(xi, Yi)|xi ∈ X , Yi ∈ Y , 1 ≤ i ≤ n}, a
learner chooses an optimal hypothesis h∗ from a given hy-
pothesis space H to minimize the prediction loss. Specifi-
cally, common choices of prediction loss (or risk) for MDC
include hamming loss and global loss [Read et al., 2014].

In MDPL tasks, we are interested in the case where the
correct labels are adulterated by false positive labels. To be
more specific, the ground-truth labels are invisible and only a
collection of candidate label sets S = {s1, s2, ..., sd} ∈ S is
given, where S = (2C1 − ∅) × (2C2 − ∅) × ... × (2Cd − ∅)
is the candidate class space and si ⊆ Ci is the i-th can-
didate label set for the corresponding class space. We de-
note a complete example by (x, Y, S), where only instance
vector x and candidate label collection S are accessible.
The goal of MDPL is to learn a multi-dimensional classi-
fier h : X 7→ Y from multi-dimensional partially labeled
data by minimizing the expected hamming loss: LHD (h) =

E(x,Y,S)∼D[
1
d

∑d
i=1 I(hi(x) 6= yi)], where D is the underly-

ing data distribution, hi(x) is the i-th predicted label and yi
denotes the i-th ground-truth label. Since the correct labels
are invisible in the training dataset, we can not minimize the
standard hamming loss directly. Inspired by partial 0/1 loss
[Cour et al., 2011], we introduce a multi-dimensional version
named expected partial hamming loss,

LPD(h) = E(x,Y,S)∼D[
1

d

d∑
i=1

I(hi(x) /∈ si)] (1)

An obvious observation is that expected partial hamming loss
is an underestimate of the true expected hamming loss. Thus,
it is not a surrogate and we have to explore some conditions
where minimizing the partial loss can also bound the true loss.
Moreover, a large loss will incur if the predicted labels are not
included in candidate label sets. It motivates us to employ the
VC-dimension of the inside-out set binary classification task
as a bridge to complete our theoretical proof.

In summary, based on our proposed expected partial ham-
ming loss, we propose an empirical risk minimization frame-
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work for MDPL, and each hypothesis h will be evaluated by
average partial hamming loss,

LPZ (h) =
1

nd

n∑
i=1

d∑
j=1

I(hj(xi) /∈ sij) (2)

where Z = {(xi, Si)|xi ∈ X , Si ∈ S, 1 ≤ i ≤ n} is the
partially labeled training dataset and sij is the j-th candidate
label set of i-th training example.

4 Learnability of MDPL
In this section, we will discuss how to bound the true loss
using expected partial hamming loss. In this paper, we only
investigate the realizable case where an optimal hypothesis
h∗ makes the risk LHD (h∗) = 0.

4.1 Independent Case
We first consider the independent case, i.e. the labels are in-
dependent to each other. Then we can simply decompose the
MDPL problem to a set of partial label learning problems.

Many works have studied PLL problems based on min-
imizing the upper-bound of risk LDp

, usually, the ex-
pected 0/1 loss [Cour et al., 2011]: LDp

(hp) =
E(x,y,s)∼Dp

[I(hp(x) 6= y)], where Dp is the underlying dis-
tribution of a PLL task. Based on this risk, we obtain the
following lemma.
Lemma 1. Assume that the labels in an MDPL problem are
independent to each other. Then if a PLL problem adopts
the expected 0/1 loss as risk and it is PAC-learnable with
sample complexity n0(Hp, δ, ε), the MDPL problem is also
PAC-learnable with sample complexity as follows,

n1(H, δ, ε) = max
i
n0(Hip, δ, ε) (3)

whereHip is the i-th PLL hypothesis space.

Proof. If a PLL problem is PAC-learnable [Shalev-Shwartz
and Ben-David, 2014], then for every ε, δ ∈ (0, 1), when the
training set has size n ≥ n0(Hp, δ, ε), there exists an ERM
learner Ap that returns a hypothesis hp ∈ Hp with expected
0/1 loss LDp

(hp) ≤ ε. Since the labels in this MDPL prob-
lem are independent to each other, the MDPL task can be
decomposed to d PLL problems. By running an ERM learner
Aip on each single PLL problem, and aggregating the hy-
pothesises hi = Aip(Zip), we can obtain an MDPL classifier
h = [hi]d, where Zip is the i-th PLL training dataset. When
the training set has size n ≥ n1(H, δ, ε) ≥ n0(Hip, δ, ε), for
every ε, δ ∈ (0, 1), the following inequality holds with prob-
ability no less than 1− δ,

LHD (h) =
1

d

d∑
i=1

E(x,yi,si)∼Dp
[I(hi(x) 6= yi)]

=
1

d

d∑
i=1

LDp
(hi) ≤ 1

d
· dε = ε

(4)

We conclude that the MDPL problem is PAC-learnable with
sample complexity n1(H, δ, ε).

The learnability of partial label learning can refer to many
works [Cour et al., 2011; Ishida et al., 2017]. For instance,
the small ambiguity degree condition, proposed by [Cour et
al., 2011], is one of the most popular assumptions in PLL
problems.

4.2 Dependent Case
During the past decades, a variety of works [Zaragoza et al.,
2011; Read et al., 2014; Shen et al., 2018] have proved that
neglecting label correlations may achieve degenerated perfor-
mance in multiple-label problems. Thus, it is crucial to study
the problem in what condition can MDPL tasks be learned in
the dependent case.

Here we propose a sufficient condition for the PAC-
learnability of MDPL tasks.

Theorem 1. In an MDPL problem, if there exists a positive
constant γ > 0 such that,

∀h ∈ H : LHD (h) > 0,
LPD(h)
LHD (h)

≥ γ (5)

then in realizable case, the MDPL problem is PAC-learnable.

We first introduce an MDC algorithm, Class Powerset (CP)
[Read et al., 2014], into MDPL scenario. The basic idea is
to transform the MDC problem to a multi-class classification
problem by regarding each label combination as a new class.
Then it learns a multi-class classifier f : X 7→ Ỹ where Ỹ
is the new label space with size

∏d
i=1 ki. Since all the label

combinations are considered, we can fully explore the label
correlations across the class space.

Specifically, we call an ERM learnerAcp that returns a hy-
pothesis minimizing the multi-class risk, i.e. expected 0/1
loss. Nonetheless, in MDPL setting, the learner does not
have direct access to the precise data. To deal with this is-
sue, we involve a surrogate loss called global loss LG with
corresponding partial global loss LGP , which are defined as,

LGD(h) = E(x,Y,S)∼D[I(∃i, hi(x) 6= yi)],

LGPD (h) = E(x,Y,S)∼D[I(∃i, hi(x) /∈ si)]
(6)

We can immediately obtain their relation,

1

d
LGD(h) ≤ LHD (h) ≤ LGD(h),

1

d
LGPD (h) ≤ LPD(h) ≤ LGPD (h)

(7)

The last step is to design a CP algorithm Acp that mini-
mizes the empirical partial global loss,

Acp(Z) = argmin
h∈Hmc

LGPZ (h)

= argmin
h∈Hmc

1

n

n∑
i=1

I(∃i, hi(x) /∈ si)
(8)

In traditional MDC setting, it is a typical multi-class learn-
ing problem. Let Hcpb be a binary hypothesis class with VC-
dimension τ = VCdim(Hcpb ), e.g.,Hcpb is linear with τ = m.
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Suppose that the multi-class hypothesis space Hmc is con-
structed above Hcpb using one-versus-all strategy. According
to Lemma 29.5 in [Shalev-Shwartz and Ben-David, 2014],
the Natarajan dimension [Natarajan, 1989] ofHmc enjoys an
upper-bound of,

Ndim(Hmc) ≤ 3τ log(τ
d∏
i=1

ki)
d∏
i=1

ki (9)

where Ndim(·) denotes the Natarajan dimension of a hypoth-
esis space. Nevertheless, in MDPL setting, our learning prob-
lem is no longer a multi-class task and the Natarajan dimen-
sion can not directly yield the sample complexity.

Our strategy is to construct a binary classification task from
the problem above. Given a partial example (x, S), the binary
classifier should predict whether there exist some predicted
labels yi outside their corresponding candidate label sets, i.e.
returning I(∃i, yi /∈ si). We observe that the binary clas-
sification loss is the partial global loss. Therefore, we can
design an ERM learnerAb that callsAcp and then transforms
the prediction to binary output space. Compared with class
powerset method, it is unpractical but provides good theoret-
ical results. Now our task is to explore the VC-dimension of
the binary classifier.

Denote the hypothesis space of this binary classification
task byHb. We have the following lemmas.

Lemma 2. Let K =
∏d
i=1 ki. The VC-dimension of Hb can

be bounded by,

VCdim(Hb) ≤
3τK log(τK)

log 2− e−1
(log(3τK log(τK)) + 2 logK)

(10)

Proof. Let ν = VCdim(Hb) and µ = Ndim(Hmc). Then,
the maximum size of a set that Hb can shatter is ν. In other
words, there are 2ν different dichotomies (i.e., labelings) in-
duced by Hb over these ν instances. Based on Lemma 29.4
in [Shalev-Shwartz and Ben-David, 2014], we can conclude
that,

2ν ≤ νµK2µ (11)

Taking the natural logarithm of both sides yields that,

ν log 2 ≤ µ log ν + 2µ logK (12)

To bound ν, we involve a function g(x) = e log x − x. Its
maximum value g(x) = 0 is obtained when g′(x) = 0, i.e.
x = e. Hence, g(x) ≤ 0 holds for all x > 0. Choosing
x = ν

µ gives that log ν ≤ ν
eµ + log µ. Hence,

ν log 2 ≤ µ( ν
eµ

+ log µ) + 2µ logK

ν ≤ µ log µ+ 2µ logK

log 2− e−1
(13)

Combining Eq. (9) and Eq (13), we obtain the desired result.

Lemma 3. For every δ, ε ∈ (0, 1), every distribution D over
X , and the binary classification task defined above, if the re-
alizable assumption holds, when running algorithm Ab on a
training set of size n satisfying

n ≥ n2(Hb, δ, ε) = 4
32ν

ε2
· log(64ν

ε2
)

+
8

ε2
· (8ν log(e/ν) + 2 log(2/δ))

(14)

then the algorithm returns a hypothesis h such that with prob-
ability of at least 1− δ, LGPD (h) ≤ ε.

The proof can be found in [Shalev-Shwartz and Ben-David,
2014].

Now recalling Eq. (5) and Eq. (7), when Ab runs on a
training set of size n2(Hb, δ, εγ ), the hamming loss has the
following bound,

LHD (h) ≤ γLPD(h) ≤ γLGPD (h) ≤ ε (15)

Taking the corresponding multi-class hypothesis h as our so-
lution, we obtain a provable algorithm that ensures the MDPL
problems to be PAC-learnable with a finite sample complex-
ity n2(Hb, δ, εγ ). Therefore, Theorem 1 is proved.

4.3 Further Discussion
Remark of the Proposed Condition
Suppose we know the distribution of partial examples. We
can design a Bayesian optimal classifier with zero partial
hamming loss. In realizable case, our goal is to find a hy-
pothesis h∗ that satisfies LHD (h∗) = 0. Denote the optimal
hypothesis set by H∗. If there exists a hypothesis ĥ /∈ H∗
such that LPD(ĥ) = 0, even the Bayesian optimal classifier
can not guarantee to return an optimal solution. Hence, our
sufficient condition actually ensures the ERM learner to re-
turn an optimal hypothesis fromH∗.
Relation to PML
Another observation is that the recently popularized task of
partial multi-label learning also benefits from our theoretical
analysis. In a typical PML problem, the ground-truth binary
labels are adulterated with some irrelevant labels. If we re-
gard each candidate label as a two-element candidate label
set, it can be categorized into MDPL problems. In indepen-
dent case, each positive label is accompanied by a negative
label. Thus, it should be treated as a positive-unlabeled learn-
ing problem instead of a PLL problem, whose learnability can
be referred to [Denis, 1998]. In the dependent case, PML en-
joys the same PAC-learnability as MDPL. In reality, PML is
an untypical branch of MDPL, because only positive labels
will be partially labeled.

Practical Implementation
According to our theoretical analysis, two MDPL algorithms
are instantiated under our ERM framework. In independent
case, we propose MDPL-BR that reduces an MDPL problem
to multiple PLL tasks, which can be solved by any off-the-
shelf PLL method. And we present the MDPL-CP method
for dependent case. Note that by Eq. (7), partial hamming
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Datasets avg.#CLs† MDPL-CP MDPL-BR MDPL-kNN P-VLS CoH
Puppy 1.3 1.1 1.4 1.4 .603±.047 .384±.033 .432±.043 .578±.084 .529±.073

Bridge

1 2 1 2 3 .736±.050 .367±.052 .461±.038 .659±.044 .473±.045
1 2 2 2 3 .673±.041 .352±.033 .360±.025 .659±.053 .436±.024
1 2 2 2 4 .664±.081 .359±.032 .364±.056 .646±.063 .418±.046
1 2 2 2 5 .609±.023 .340±.062 .404±.041 .601±.034 .400±.045

Flare

3 2 1 .942±.013 .910±.010 .921±.006 .683±.125 .928±.008
4 4 2 .939±.025 .862±.020 .906±.021 .331±.031 .922±.008
6 4 2 .928±.051 .888±.011 .883±.015 .454±.070 .919±.009
7 5 2 .902±.090 .837±.021 .868±.018 .576±.030 .913±.007

WQanimal

2 1 2 1 2 2 1 .632±.009 .614±.009 .604±.003 .622±.014 .601±.016
2 2 2 2 2 2 2 .631±.016 .605±.005 .586±.008 .629±.018 .616±.009
2 2 3 3 2 2 2 .621±.015 .577±.009 .566±.010 .616±.012 .578±.017
3 3 3 3 3 3 3 .612±.011 .524±.022 .513±.010 .622±.018 .554±.015

WQplant

1 1 1 2 2 2 2 .671±.015 .644±.005 .638±.008 .659±.014 .615±.016
2 2 2 2 2 2 2 .660±.006 .638±.003 .623±.005 .658±.008 .604±.018
3 2 3 2 2 3 2 .653±.013 .601±.010 .579±.005 .643±.016 .596±.014
3 3 3 3 3 3 3 .648±.010 .543±.007 .533±.013 .646±.013 .568±.011

Thyroid

2 2 1 1 1 1 1 .961±.002 .962±.001 .960±.001 .799±.014 .952±.016
2 2 1 1 2 2 1 .960±.001 .961±.001 .960±.002 .717±.049 .954±.008
3 3 1 1 2 2 1 .959±.001 .953±.003 .959±.001 .710±.022 .943±.004
3 3 2 1 2 2 2 .960±.002 .896±.004 .958±.003 .746±.039 .949±.004

† Average number of candidate labels. Each configuration for a synthetic dataset demonstrates the average number of candidate
labels on each dimension, respectively.

Table 2: Results of hamming accuracy on all datasets (mean±standard deviation). The best ones are in bold.

loss is also a surrogate loss to partial global loss. Therefore,
we unify the two algorithms by minimizing the proposed par-
tial hamming loss. To validate the theoretical results, we con-
sider all the label combinations in the experiments. How-
ever, such a strategy may decrease the scalability of MDPL-
CP. This problem can be alleviated by an ensemble technique
[Tsoumakas et al., 2011]. Due to the page limitation, we
leave it for future work.

5 Experiments
In this section, we evaluate the performance of our proposed
methods on both synthetic and real-world dataset. All the
computations are performed on a workstation with an i7-
5930K CPU, a TITAN Xp GPU and 64GB main memory run-
ning Linux platform.

5.1 Dataset
Synthetic Datasets
We follow the experimental setting in [Wang et al., 2019]
and synthesize a total of 20 MDPL datasets from 5 real-
world MDC datasets. The MDC datasets are collected
from UCI repository [Dheeru and Karra Taniskidou, 2017]:
1) Bridges estimates bridge properties from specific con-
straints; 2) WQplant and WQanimals determine the plant
and animal species in Slovenian rivers; 3) Flare predicts
number of times that certain types of solar flare occurred
within 24 hours period; 4) Thyroid determines types of thy-
roid problems based on patient information. For each class

Datasets N m d K
Puppy 102 1,000 4 2-4

Bridges 108 7 5 2-6
Flare 1,066 10 3 3-8

WQanimal 1,060 16 7 4
WQplant 1,060 16 7 4
Thyroid 9,172 29 7 2-5

Table 3: Statistics of the experimental datasets.

variable of an example, we randomly select some negative la-
bels and aggregate them with the ground-truth label to obtain
a candidate label set. Different configurations are controlled
by the number of average candidate labels in each class space.
The detailed information is reported in Table 3.

Puppy Dataset
Because the MDPL is a new learning setting, there is no pub-
licly available MDPL dataset yet. To further boost our empir-
ical studies, this paper builds one real-world MDPL dataset
Puppy. A total of 102 dog images are collected and catego-
rized to 4 class variables {Place, Tree, Dog Breeds, Weather}.
We manually tagged all the data examples by ground-truth
labels. The candidate label sets are collected by crowd-
sourcing. Moreover, we extract 1000-dimensional fc-8 fea-
ture of these images using a pre-trained VGG-19 [Simonyan
and Zisserman, 2015] model.
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Figure 1: Some MDPL image annotation examples on Puppy. For
each image, we show the candidate labels, and the labels predicted
by all the methods. The black labels denote the ground-truth or the
correctly predicted ones. The red labels denote the distractor labels
or wrongly predicted ones.

All the datasets are randomly split in to 80% training and
20% testing. We run five times on each dataset and the mean
hamming accuracy with standard deviation are reported.

5.2 Baselines
We compared the proposed algorithms with three state-of-
the-art baselines: 1) P-VLS: PARTICLE [Fang and Zhang,
2019] is an effective PML method that integrates the label
propagation and calibrated label ranking techniques. By re-
garding each nominal label as a binary label, the MDPL prob-
lem can be transformed to a PML problem and solved by
PARTICLE. In this work, we choose the virtual label split-
ting based version, i.e. P-VLS. 2)CoH: CoH [Shen et al.,
2018] is a label embedding based multi-label algorithm that
jointly compresses the input and output to a latent space by
co-hashing. We employ it to deal with MDPL tasks by treat-
ing all the candidate labels as valid ones. Note that P-VLS
and CoH will return a group of positive labels in an uncer-
tain size. Hence, we take the label with maximum score in its
class space as our prediction. 3) MDPL-kNN: we induce a k-
nearest neighbor model from MDPL data and the prediction
is made by voting in each class space.

We use CLPL [Cour et al., 2011] as the base PLL predic-
tor in MDPL-BR method. For MDPL-CP, we choose linear
classifier as the base hypothesis. In practice, we also adopt a
naive convex surrogate loss in [Jin and Ghahramani, 2002] to
implement MDPL-CP. For our methods, the empirical risk is

optimized by stochastic gradient algorithm. We also add an l2
regularization term. The learning rate and the regularization
parameters are fine-tuned by cross-validation. The number
of nearest neighbors is set as k = 10 for all the kNN-based
approaches. Following the experimental setting in [Fang and
Zhang, 2019], we set thr = 0.9 and α = 0.95 for P-VLS.
Finally, following [Shen et al., 2018], the parameters of CoH
are set as α = 100 and d = 10.

5.3 Results
Table 2 lists the results of hamming accuracy of all the meth-
ods on Puppy and 20 synthetic MDPL datasets. Figure 1
shows some real predictive results on some test examples
from Puppy dataset.

From the results, we can see that: 1) MDPL-CP algorithm
achieves the best performance, which verifies our theoretical
analysis. For instance, on Puppy dataset, MDPL-CP algo-
rithm improves the best result of the baselines by 4.3%. By
considering all the label combinations, it fully explores the
label correlations with theoretically guaranteed disambigua-
tion ability. 2) MDPL-BR works well on some datasets such
as Thyroid. However, it generally underperforms MDPL-CP
because of neglecting the correlations, which also further ef-
fects its disambiguating ability. 3) P-VLS and CoH are infe-
rior to MDPL-CP method. Since they are designed for par-
tial multi-label tasks, they will wrongly learn the label cor-
relations of intra-class labels due to the false positive labels,
which leads to degenerated performance. 4) Without consid-
ering both correlations and ambiguity, MDPL-kNN underper-
forms MDPL-CP and MDPL-BR. By these observations, we
conclude that our proposed methods can effectively tackle the
MDPL problems.

6 Conclusion
In this paper, we propose a novel learning paradigm named
Multi-Dimensional Partial Label Learning (MDPL), where
each data instance is equipped with multiple candidate la-
bel sets. Based on our proposed partial hamming loss, we
present an empirical risk minimization framework for MDPL.
Theoretically, we rigorously prove the ERM learnability of
MDPL in specific conditions. We further provide two effec-
tive MDPL algorithms under our ERM framework. In in-
dependent case, we propose MDPL-BR that decomposes the
original task to a series of partial label learning problems. In
dependent case, we propose MDPL-CP which fully explores
the label correlations. Extensive experiments on both syn-
thetic and real-world datasets validate our theoretical studies
and the effectiveness of our proposed methods.
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