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Abstract
Graph neural networks (GNNs) have made consid-
erable achievements in processing graph-structured
data. However, existing methods cannot allocate
learnable weights to different nodes in the neigh-
borhood and lack of robustness on account of ne-
glecting both node attributes and graph reconstruc-
tion. Moreover, most of multi-view GNNs mainly
focus on the case of multiple graphs, while de-
signing GNNs for solving graph-structured data of
multi-view attributes is still under-explored. In
this paper, we propose a novel Multi-View At-
tribute Graph Convolution Networks (MAGCN)
model for the clustering task. MAGCN is designed
with two-pathway encoders that map graph embed-
ding features and learn view-consistency informa-
tion. Specifically, the first pathway develops multi-
view attribute graph attention networks to reduce
the noise/redundancy and learn the graph embed-
ding features of multi-view graph data. The second
pathway develops consistent embedding encoders
to capture the geometric relationship and the con-
sistency of probability distribution among differ-
ent views, which adaptively finds a consistent clus-
tering embedding space for multi-view attributes.
Experiments on three benchmark graph databases
show the effectiveness of our method compared
with several state-of-the-art algorithms.

1 Introduction
Multi-view clustering is a fundamental task in machine learn-
ing. It aims to integrate multiple features and discover con-
sistent information among different views [Xie et al., 2019;
Li et al., 2019; Zhang et al., 2018a]. Existing multi-view
clustering methods have achieved considerable results in the
Euclidean domains [Andrew et al., 2013; Gao et al., 2020].
However, those algorithms are no longer suitable for process-
ing intensively studied data, which often occurs in the non-
Euclidean domains such as graphs in social network connec-
tions, article citations, etc. In light of this, graph embedding
∗Corresponding Author
†Corresponding Author

methods, which could effectively explore the graph structured
data, have received much attention recently.

Graph embedding converts graph data into a low-
dimensional, compact, and continuous feature space, which
is usually implemented by matrix-factorization [Belkin and
Niyogi, 2002], random-walk [Perozzi et al., 2014], or graph
neural networks (GNN) [Salehi and Davulcu, 2019; Kipf and
Welling, 2017]. Among existing methods, GNNs, largely
owing to their efficiency and inductive learning capability
[Hamilton et al., 2017], have become one of the most pop-
ular paragons. Generally, GNNs calculate the embedding of
a graph node by applying multiple graph convolutional layers
to gather the information of node neighbors through nonlinear
transformations and aggregation functions. Hence, they can
preserve the topological structure, vertex content information
of the graph-structured data. Although the above GNNs can
effectively process single-view graph data, they are not appli-
cable to multi-view graph data.

To tackle this challenge, some research attempts are made
in using GNNs for multi-view data of multiple graph struc-
tures. For example, multi-view graphs are used for predic-
tion and classification of drug similarity and medicine in the
medical filed [Zhang et al., 2018b; Ma et al., 2018], and are
also leveraged for ridehailing demand forecasting and global
poverty [Geng et al., 2019; Khan and Blumenstock, 2019].
However, those multi-view graph neural networks have the
following limitations: 1) They cannot allocate learnable spec-
ifying different weights to different nodes in neighborhood;
2) They may neglect to proceed the reconstruction of both
node attributes and graph structure to improve the robustness;
3) The similarity distance measure is not explicitly consid-
ered for the consistency relationship among different views.
Moreover, existing multi-view GNN methods mainly focus
on the case of multiple graphs, while ignoring equally impor-
tant attribute diversity, i.e. multi-attribute. Nonetheless, in the
real world, it is common that we have multiple characteristic
attributes with the same connection relationship of a graph.
For instance, people could have multiple attributes, such as,
job, hobby, etc., in the connection graph of social network.

Motivated by the above observations, in this paper, we pro-
pose a novel Multi-view Attribute Graph Convolution Net-
works for clustering (MAGCN) the graph-structured data of
multi-view attributes (see Fig.2). Specifically, 1) to allo-
cate learnable weights to different nodes, MAGCN devel-
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Figure 1: Part of Multi-view Attribute Graph Convolution Encoder
for view m.

ops multi-view attribute graph convolution encoders with
attention mechanism for learning graph embedding from
multi-view graph data. 2) Attribute and graph reconstruc-
tion are both computed by the graph convolution decoders
of MAGCN. 3) The geometric relationship and the proba-
bility distribution consistency among multi-view graph data
are incorporated into the consistent embedding encoders of
MAGCN to further facilitate the clustering task. The key con-
tributions of our work are summarized as follows.
• We propose a novel Multi-View Attribute Graph Convo-

lution Networks for clustering on the graph-structured
data of multi-view attributes.
• We develop multi-view attribute graph convolution

encoders with attention mechanism to reduce the
noise/redundancy of the multi-view graph data. In ad-
dition, reconstruction of both node attributes and graph
structure are considered to improve the robustness.
• Consistent embedding encoders are designed to extract

the consistency information among multiple views, by
exploring the geometric relationship and the probability
distribution consistency of different views.

2 Related Work
Learning graph node embedding within broader graph struc-
ture is crucial for many tasks on graphs. Existing GNNs
models in processing graph-structured data belong to a set
of graph message-passing architectures that use different ag-
gregation schemes for a node to aggregate feature messages
from its neighbors in the graph. Graph Convolutional Net-
works [Kipf and Welling, 2017] scale linearly in the num-
ber of graph edges and learn hidden layer representations
that encode both local graph structure and features of nodes.
By stacking self-attention layers in which nodes are able to
attend over their neighborhoods’ features, Graph Attention
Networks (GAT) [Velickovic et al., 2018] enable specifying
different weights to different nodes in neighborhood. Graph-
SAGE [Hamilton et al., 2017] concatenates the node’s feature
with diversified pooled neighborhood information and effec-
tively trades off performance and runtime by sampling node
neighborhoods. Message Passing Neural Networks [Gilmer

et al., 2017] further incorporate edge information when do-
ing the aggregation.

To handle the problem of multi-view graph node embed-
ding, some researchers have made some attempts. In the med-
ical field, [Zhang et al., 2018b] propose a method based on
GCNs for fusing multiple modalities of brain images in rela-
tionship prediction, which is useful for distinguishing Parkin-
son’s Disease cases (a prevalent neurodegenerative disease)
from controls. Another novel model [Geng et al., 2019],
called spatiotemporal multi-graph convolution network, en-
codes the non-Euclidean correlations among regions using
multiple graphs and explicitly captures them using multi-
graph convolution encoder. In application accounting for so-
cial networks, Multi-GCN [Khan and Blumenstock, 2019] in-
corporates non-redundant information from multiple views
into the learning process. [Ma et al., 2018] utilize multi-
view graph auto-encoder, which integrates heterogeneous,
noisy, nonlinear-related information to learn accurate simi-
larity measures especially when labels are scarce.

However, those multi-view GNNs cannot allocate learn-
able specifying different weights to different nodes in neigh-
borhood, where we can learn from the excellent ideas of
GAT. And the clustering performance of them is limited as
they do not consider the structure and distribution consistency
for clustering embedding. What’s more, GNNs for solving
graph-structured data of multi-view attributes is still under-
explored. Existing multi-view GNNs mainly focus on the
case of multiple graphs and neglect the equally important at-
tribute diversity. Thus, in this paper, we propose MAGCN on
multi-view attribute graph data.

3 Proposed Methodology
3.1 Notation
A graph can be represented as G = (V,E)(G ∈ Rn×n),
where V = {v1, v2, ..., vn} is the node set and E is the edge
set, n denotes the number of nodes, and vi represents the i-th
node. In this study, we augment graph G with the node m-
th view attribute feature Xm = {x1m, ..., xim, ..., xnm}(Xm ∈
Rn×dm), m = 1, 2, ...,M , where xim refers to the feature
vector associated with node vi andM is the number of views.

3.2 The Framework of MAGCN
As shown in Fig.2, our model contains two principle
modules: multi-view attribute graph convolution Encoders
and consistent embedding Encoders. We first encode
multi-view graph data Xm into graph embedding Hm =
{h1m, ..., him, ..., hnm}(Hm ∈ Rn×d) by multi-view attribute
graph convolution encoders. Then, fed Hm into consistent
embedding encoders and obtain a consistent clustering em-
bedding Z. The clustering process is eventually conducted
on the ideal embedding intrinsic description space which is
computed by Z.

Multi-view Attribute Graph Convolution Encoder
In multi-view attribute graph convolution encoders, the first
pathway encoders map multi-view node attribute matrix and
graph structure into graph embedding space. Specifically, for
the m-th view, the function of a graph embedding model is

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2974



A group of 
sunflowers in the 

sunshine

Multi-view Attribute 
Graph Convolution 

Encoders

Inner Product 
Decoder

Inner Product
Decoder

Consistent Embedding 
Encoders

1X

mX

1H

G

Graph Convolution Decoder

mH
Fully Connected Layer

1Z

mZ

Z

1Q

mQ

P

Common Graph

View 1

View m

Reconstructed View 

1X̂

ˆ
mX

Reconstructed Graph

1Ĝ
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Figure 2: The framework of Multi-View Attribute Graph Convolution Networks for Clustering (MAGCN). It contains two key components:
1) Multi-view attribute graph convolution encoders with attention mechanism: they are used to learn graph embedding from node attribute
and graph data. Attribute and graph reconstruction are executed for end-to-end learning. 2) Consistent embedding encoders further obtain a
consistent clustering embedding among multiple views through geometric relationship and probability distribution consistency.

fm(G,Xm; θ) → Hm. It maps graph G and m-th view at-
tributes Xm to d-dimensional graph embedding features Hm,
where θ represents multi-view graph auto-encoder parame-
ter. As shown in Fig.1, the output of l-th multi-view attribute
graph convolution encoders is

H(l)
m = σ

(
D−

1
2G′D−

1
2H(l−1)

m W(l)
)
, (1)

where G′ = G + IN is the relevance coefficient matrix
with added self-connection. IN is the identity matrix, Dii =∑
j G
′
ij and W(l) is the trainable parameter of the l-th multi-

view auto-encoder layer and σ denotes the activation func-
tion. As for H(l)

m , when l = 0, H(0)
m is the initial m-th view

attribute matrix Xm and when l = L, H(L)
m is the final graph

embedding feature representation Hm.
To determine the relevance between nodes and their neigh-

bors, we use a attention mechanism with shared parameters
among nodes. In the l-th multi-view encoder layer, the learn-
able relevance matrix S is defined as

S = ϕ
(
G� t(l)s H(l)

mW(l) +G� t(l)r H(l)
mW(l)

)
, (2)

where ts(l) and tn
(l) ∈ R1×dl represent the trainable pa-

rameters related to their own nodes and neighbor nodes, re-
spectively. � refers to the element-wise multiplication with
broadcasting capability, and ϕ denotes the activation function
which is generally set as the sigmoid activation function (i.e.,
sigmoid (x) = 1/ (1 + exp−x)). We normalize S to get the
final relevance coefficient G, so Gij is computed by

Gij =
exp (Sij)∑

k∈Ni

exp (Sik)
. (3)

where Ni is the set of all nodes adjacent to node i.

After applying L multi-view encoder layers, we get graph
embedding Hm which preserves basically all information
about multi-view node attribute matrix X and graph structure
G. Then, we consider the feature Hm that contains almost all
the information to decode as different views. In the decoding
process, we use the same number of layers as encoders for de-
coders, and each decoder layer tries to reverse its correspond-
ing encoder layer. In other words, the decoding process is the
inverse of the encoding process. The final decoded output is
reconstructed node attribute matrix X̂m and the reconstructed
graph structure Ĝm, m = 1, 2, ..., V . Specifically, the output
of the (l − 1)-th multi-view attribute graph convolution de-
coders is

Ĥ(l−1)
m = σ

(
D̂−

1
2 Ĝ′D̂−

1
2 Ĥ(l)

m Ŵ(l)
)
. (4)

After applying L decoder layers, reconstructed multi-view
node attribute matrix X̂m = Ĥ

(0)
m is obtained. As for the re-

constructed graph structure Ĝm, Ĝij
m is implemented by an

inner product decoder of him and hjm, where him and hjm are
the node i and j of graph embedding features Hm. Specifi-
cally, Ĝij

m is computed by

Ĝij
m = φ(−him

>
hjm), (5)

where φ(·) is the inner product operator.
Finally, the reconstruction loss Lre of reconstructed multi-

view node attribute matrix X̂ and reconstructed graph struc-
ture Ĝ can be computed by following:

Lre = min
θ

M∑
i=1

∥∥∥Xi − X̂i

∥∥∥2
F
+ λ1

M∑
i=1

∥∥∥G− Ĝi

∥∥∥2
F
, (6)

where θ is the network parameter of multi-view attribute
graph convolution encoders.
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Consistent Embedding Encoders
In consistent embedding encoders, for view m, we first adopt
nonlinear feature extraction mapping for graph embedding
Hm. Hm is mapped into low-dimensional space Zm. The
mapping function is gm(Hm; η) → Zm, where η represents
encoder parameter. Zm contains almost all the original in-
formation so that it is not suitable for multi-view integrating
directly. Then, we use consistent clustering layer to learn a
common clustering embedding Z which is adaptively inte-
grated by all the Zm.

Assume Zm and Zb are the low-dimensional space feature
matrices of view m and b obtained from consistent embed-
ding encoders. Then we can use them to compute a geomet-
ric relationship similarity score as si(Zm,Zb), where si(·)
is a similarity function. si(·) can be measured by the Man-
hattan Distance, Euclidean distance, cosine similarity, etc. If
the simplest difference similarity function is taken, the loss
function of geometric relationship consistency Lgeo is

Lgeo = min
η

M∑
i6=j

‖Zi − Zj‖2F . (7)

where η is the network parameter of encoder.
Besides the geometric relationship, we also consider the

consistency of the probability distribution between com-
mon representation Z and latent representation of each view
Zm, where Z=

∑M
m=1 βiZi is an adpative fusion on a low-

dimensional feature space, Zm = {z1, ..., zi, ..., zn}(Zm ∈
Rn×d). We show the details of computing the probability
distribution of Z and Zm in the following.

Following [Tao et al., 2019; Wang et al., 2018], we use the
Student’s t-distribution, , as a kernel to measure the similarity
between integrated node representation zi and centroid µj .
Thus, the original probability distribution Q of Z is

qij =
(1 + ||zi − µj ||2/α)

−α+1
2∑

j′ (1 + ||zi − µj′ ||2/α)
−α+1

2

, (8)

where {µj}kj=1 is the k initial cluster centroids, α is the de-
gree of freedom of the Student’s t-distribution, qij is the prob-
ability of assigning node i to cluster j. In our experiments, we
compute target probability distribution P of Z. pij is the el-
ements of P, and 0 ≤ pij ≤ 1. By raising qi to its second
power and normalizing it with the frequency per cluster as
follows, we obtain

pij =
q2ij/fi∑
j′ q

2
ij′/fj′

, (9)

where fj =
∑
i qij are soft cluster frequencies. To this end,

we define our objective as a probability distribution consis-
tency loss Lpro between the soft assignment Qm of Zm and

Database Attribute1 Attribute2 Classes Nodes Edges

Cora 1, 433 2, 708 7 2, 708 5, 429
Citeseer 3, 703 3, 327 6 3, 327 4, 732
Pubmed 500 19, 717 3 19, 717 44, 438

Table 1: The details for experimental databases.

the auxiliary distribution P of Z with trade-off parameters ρ
as follows

Lpro = min
η

M∑
m=1

ρm ‖Qm −P‖2F . (10)

In this way, we could concentrate on the same class data
by sharping the data distribution and get a more effective and
common representation for multi-view clustering.

3.3 Task for Clustering
By combining Eq. (6), Eq. (7) and Eq. (8), the total loss func-
tion of the proposed MAGCN is eventully formulated as

L = min
g,c,P

Lre + λ2Lgeo + λ3Lpro. (11)

Optimizing the overall loss L, we learn the auxiliary distri-
bution P from the clustering embedding feature Z. Then we
predict the cluster of each node from auxiliary distribution P.
For node i, its cluster can be calculated by pi, in which the in-
dex with the highest probability value is the i’s cluster. Hence
we could obtain the cluster label of node i as

yi = argmax
k

(pik) . (12)

4 Experimental Analysis
4.1 Experimental Setting
Metrics and Databases
In order to evaluate the effectiveness of our proposed ap-
proach, we conduct extensive experiments on three citation
network databases (Cora, Citeseer and Pubmed) [Sen et al.,
2008] with three evaluation metrics: clustering accuracy
(ACC), normalized mutual information (NMI) and average
rand index (ARI), and the higher these indicators, the better
the clustering effect. The general graph-structured database
contains one graph and one attribute and there is no such real
graph-structured data with multi-view attributes at present.
Due to the databases used in the experiments, the attributes
of graph-structured data are 0, 1, which are discrete structured
and also one-sided described. So we make attributes contin-
uous by changing the operation of that, for the purpose of
describing the graph structure more abundantly. Inspired by
multi-graph, which constructs another graph by themselves,
we construct additional attribute views by original attributes.
Specifically, we use Fast Fourier Transform (FFT), Gabor
transform, Euler transform and Cartesian product to construct
view 2 based on view 1. In Sec. 4.2, the results of each view 2
are analyzed. Brief statistics of the three databases are shown
in Table 1, where view 2 is constructed by Cartesian product.
For other experiments, we construct from the first view based
on Cartesian product.

Implementation Details
In our experiments, we used two layers of multi-view at-
tribute graph convolution encoders for all three databases.
For Cora database, node representation dimensions of the
two layer are set as [512, 512]. As to the Citeseer database,
node representation dimensions of the two layer are set as
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Database Info. Cora Citeseer Pubmed

Metric ACC NMI ARI ACC NMI ARI ACC NMI ARI

K-means [MacQueen, 1967] X1 0.500 0.317 0.239 0.544 0.312 0.285 0.580 0.278 0.246

Graph Encoder [Tian et al., 2014] G 0.301 0.059 0.046 0.293 0.057 0.043 0.531 0.210 0.184
Deep Walk [Perozzi et al., 2014] G 0.529 0.384 0.291 0.390 0.131 0.137 0.647 0.238 0.255

DNGR [Cao et al., 2016] G 0.419 0.318 0.142 0.326 0.180 0.043 0.468 0.153 0.059
M-NMF [Wang et al., 2017b] G 0.423 0.256 0.161 0.336 0.099 0.070 0.470 0.084 0.058

DCCA [Andrew et al., 2013] X1&X2 0.436 0.214 0.160 0.450 0.221 0.204 0.443 0.048 0.040
DCCA [Andrew et al., 2013] G&X1&X2 0.583 0.416 0.342 0.513 0.283 0.238 0.508 0.097 0.097
DCCAE [Wang et al., 2015] X1&X2 0.472 0.289 0.221 0.503 0.240 0.211 0.537 0.122 0.092
DCCAE [Wang et al., 2015] G&X1&X2 0.564 0.311 0.241 0.534 0.310 0.230 0.581 0.239 0.186

GAE [Kipf and Welling, 2016] G&bestX 0.530 0.397 0.293 0.380 0.174 0.141 0.632 0.249 0.246
VGAE [Kipf and Welling, 2016] G&bestX 0.592 0.408 0.347 0.392 0.163 0.101 0.619 0.216 0.201

MGAE [Wang et al., 2017a] G&bestX 0.684 0.511 0.448 0.661 0.412 0.414 0.593 0.282 0.248
ARGAE [Pan et al., 2018] G&bestX 0.640 0.449 0.352 0.573 0350 0.341 0.681 0.276 0.291

ARVGAE [Pan et al., 2018] G&bestX 0.638 0.450 0.374 0.544 0.261 0.245 0.513 0.117 0.078
DAEGC [Wang et al., 2019] G&bestX 0.704 0.528 0.496 0.672 0.397 0.410 0.671 0.266 0.278

GATE [Salehi and Davulcu, 2019] G&bestX 0.658 0.527 0.451 0.616 0.401 0.381 0.673 0.322 0.299

MAGCN-view 1 G&X1 0.710 0.553 0.476 0.698 0.418 0.403 0.683 0.321 0.310
MAGCN-view 2 G&X2 0.594 0.409 0.327 0.621 0.363 0.366 0.539 0.261 0.227

MAGCN G&X1&X2 0.751 0.598 0.532 0.711 0.458 0.462 0.691 0.331 0.321

Table 2: Clustering results of various methods on three databases. Best results are highlighted in red and the suboptimal results are marked in
blue. Info. means the input of different methods: G donates the graph structure, X1 and X2 represent the node feature of view 1 and view 2.

Figure 3: Visualization the change of parameters λ2 and λ3 of geometric relationship consistency and probability distribution consistency.

[2000, 512]. For Pubmed, the dimension of two-layer multi-
view attribute graph convolution auto-encoder is [128, 64]. In
integrate-encoder, we use a fully connected layer in all three
databases. We use non-linear activation function σ as Relu
function in the multi-view graph convolution auto-encoder.
As for regular term coefficient λ1, λ2 and λ3, we set λ1 as
1. λ2 and λ3 are set range from 10−2 to 102, and analyze
the influence of parameters later in Sec. 4.2: Impact of Loss
Coefficient.

Comparison Algorithms
We choose several state-of-the-art clustering compared algo-
rithms as follows.
• node attribute: K-Means;
• graph structure: Graph Encoder, DeepWalk, denoising

autoencoder for graph embedding (DNGR) and modu-
larized nonnegative matrix factorization (M-NMF);
• graph structure & node attribute: graph auto-

encoders (GAE) and variational graph auto-encoders
(VGAE), marginalized graph autoencoder (MGAE), ad-

versarial regularized graph autoencoder (ARGAE) and
adversarial variational regularized graph autoencoder
(ARVGAE), deep attentional embedding graph clus-
tering (DAEGA) and graph attention auto-encoders
(GATE);

• deep multi-view clustering: deep canonical correla-
tion analysis (DCCA) and deep typical correlated auto-
encoder (DCCAE).

4.2 Experimental Results
Evaluation Metrics with Comparison Algorithms
Table 2 summarizes the comparative evaluation results on
three databases of Cora, CIteseer, and Pubmed. The pro-
posed MAGCN clearly outperforms all the compared meth-
ods. Specifically, MAGCN improves on GCNs of single view
by a margin of more than 5% on Cora and Citeseer and more
than 1% on Pubmed, which indicates that it is effective to in-
tegrate different views with the consistency of geometric rela-
tionship and the probability distribution. From the suboptimal
results, we can see that our method also has a substantial im-
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provement in single-view graph clustering. Meanwhile, the
single view graph convolution clustering methods: DAEGC
and GATE, have relatively better clustering performance,
which shows that attention mechanism aggregating neigh-
borhood information according to trainable attention weights
helps improving clustering performance. In addition, deep
multi-view clustering methods achieve better performance by
using the graph structure information. This shows that the
graph structure information can make beneficial contribution
to clustering. The performance of deep multi-view clustering
methods is even worse than many single-view GCN cluster-
ing methods, which also indicates the excellence of GCN in
processing graph structured data.

Analysis of Probability Distribution Consistency
To illustrate the advantages of probability distribution con-
sistency in our model, we conduct the following visual ex-
periments on Cora database. We randomly select a sample
from the third class and compute original probability distribu-
tion Qm for each view’s low dimensional representation Zm
and the target probability distribution P for the common fea-
ture representation Z. Our goal is to get the ideal description
space of multi-view. In terms of low-dimensional features
Zm, we use the consistency of probability distribution as con-
straint to reduce the differences between different views. As
shown in Fig.4, in the initial iteration, the random initializa-
tion makes the probability of each class basically similar, and
it is impossible to find out which class the sample belongs to.
But the probability in the third class increases with the num-
ber of iterations, and the probability distributions on Z, Z1

and Z2 tend to be consistent, which indicates that the ideal
multi-view description feature Z is learned gradually.

Impact of Parameters
There are three regularization parameters in our model: λ1,
λ2 and λ3, and we use controlling variables method to ana-
lyze their impact. We keep the regular parameters λ1 of re-
construction loss unchanged and change the regular param-
eters λ2 and λ3 of geometric relationship consistency and
probability distribution consistency in the model. As shown
in Fig.3, when λ2 is between 10−2 and 102, the correspond-
ing evaluation metrics ACC, NMI and ARI will largely re-
main the same. That explains that the model has a relatively
good clustering robustness on geometric relationship consis-
tency. As for the regular term λ3 of probability distribution

FFT Cartesian Gabor Euler View 1
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
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NMI
ARI

Figure 5: Metrics vs. different view 2 on Cora database.

consistency, when λ3 was set as 10, the multi-view clustering
has the best performance. When the value of λ2 is too large,
the model clustering performance is not good. Therefore, we
set λ3 of probability distribution consistency around 10 in the
experiment.

Analyzing Different View 2
Analyze the performance of our model when the second view
are constructed in different ways (FFT, Cartesian, Garbor, and
Euler) on Cora database. To facilitate the comparison, we use
the view 1 as the baseline. We keep all parameters consistent
to ensure the fairness of the experiments. As shown in Fig.5,
we can see for all kind of view 2, the clustering results with
two views is better than the case of single view 1 (marked
by black line). In addition, the Cartesian product way works
the better than other constructing ways for view 2 (marked
by red line). This is why we construct the second view using
Cartesian products in all the other experiments.

5 Conclusions
In this paper, we propose a novel Multi-View Attribute Graph
Convolution Networks for Clustering (MAGCN), a generally
method to multi-view graph neural network. MAGCN is de-
signed with dual encoders that reconstruct the extracted fea-
tures in high dimension and integrate the low dimension con-
sistent information. Multi-view attribute graph auto-encoder
and consistent embedding encoder network successively re-
duce the noise and the difference among different views, and
finally get the ideal description space of multi-view attribute
graph for clustering. Experimental results on the multi-view
graph structure databases demonstrate the validity of our
method and perform superior advantages over several state-
of-the-art algorithms.
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