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Abstract

Representation learning of knowledge graphs aims
to project both entities and relations as vectors in
a continuous low-dimensional space. Relation Hi-
erarchical Structure (RHS), which is constructed
by a generalization relationship named subRela-
tionOf between relations, can improve the over-
all performance of knowledge representation learn-
ing. However, most of the existing methods ignore
this critical information, and a straightforward way
of considering RHS may have a negative effect on
the embeddings and thus reduce the model perfor-
mance. In this paper, we propose a novel method
named TransRHS, which is able to incorporate
RHS seamlessly into the embeddings. More specif-
ically, TransRHS encodes each relation as a vector
together with a relation-specific sphere in the same
space. Our TransRHS employs the relative posi-
tions among the vectors and spheres to model the
subRelationOf, which embodies the inherent gen-
eralization relationships among relations. We eval-
uate our model on two typical tasks, i.e., link pre-
diction and triple classification. The experimental
results show that our TransRHS model significantly
outperforms all baselines on both tasks, which veri-
fies that the RHS information is significant to repre-
sentation learning of knowledge graphs, and Tran-
sRHS can effectively and efficiently fuse RHS into
knowledge graph embeddings.

1 Introduction

With the rapid development of Artificial Intelligence (Al),
Knowledge Graphs (KGs) such as Freebase [Bollacker et al.,
2008], DBpedia [Auer er al., 2007], and NELL [Carlson et
al., 2010], have become fundamental data sources that sup-
port the development of many Al-related applications. A typ-
ical KG is usually represented as multi-relational data with
enormous triple facts in the form of (head entity, relation, tail
entity), denoted as (h, r, t).

Even though the constructed KGs have millions of facts,
they are still sparse graphs in contrast to common connec-
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Figure 1: Example of relation hierarchical structure in NELL

tions in the real world, and thus the existing KGs need to be
completed in order to improve their quality and usability. KG
completion, i.e., predicting missing facts from existing ones,
has become an indispensable tool to construct a high-quality
KG. Recently, an effective approach for this task is represen-
tation learning, which aims to embed a knowledge graph into
a continuous vector space while preserving inherent structure
of the KG. Many methods have been proposed on represen-
tation learning of KGs, among which the translation-based
models are considered to be most popular.

Unfortunately, the most existing translation-based repre-
sentation learning methods merely focus on the structured
information in triples, paying less attention to the rich infor-
mation implied in RHS. [Zhang et al., 2018] suggests that
relations in KGs conform to a three-layer structure, i.e., se-
mantically similar relations can construct clusters of relations
and coarse-grained relations can be further split into several
fine-grained sub-relations. However, the structure mentioned
in that paper is actually not a real RHS, which is simply ob-
tained by a clustering algorithm. In addition, limiting the re-
lation structure to three layers is not universal enough consid-
ering the complexity of relations in KGs.

To address the above issue, in this paper, we introduce
a more general RHS. Figure 1 shows a KG with RHS, in
which (1) the rectangles represent entities, (2) the rounded
rectangles represent the relations, (3) the solid lines denote
the observed facts, and (4) the dashed lines denote the latent
facts, respectively. Given an observed triple (Mike Smith,
coachesTeam, Falcons), then the triple (Mike Smith,
worksFor, Falcons) and the triple (Mike Smith,
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personBelongsToOrganization, Falcons) can be
logically derived according to RHS among these relations.
Fusing RHS information into KG embeddings can intuitively
improve the prediction ability of the model, however, in the
meanwhile, it may also introduce the following influences:
(1) when an existing model has been trained, a direct way of
considering the RHS information will change the embeddings
of relations. (2) In addition, most translation-based models
satisfy h + r ~ t, so the embeddings of entities will also
be affected. These two issues will break the original model
and reduce the model performance. In order to make full
use of RHS while eliminating this effect as much as possi-
ble, we propose a novel and effective representation learning
method for KGs named TransRHS. Our TranRHS model is
elaborately designed to encode the RHS information so that
this information can be seamlessly integrated into the embed-
ding without affecting the original model. More specifically,
for each triple (h,r,t), h,t € R? are learned for entities, and
r € R? together with a multi-dimensional relation-specific
sphere are also learned. The information in RHS is encoded
into knowledge graph embeddings by using relative positions
among the vectors and the spheres. Then TransRHS is opti-
mized by minimizing the corresponding loss functions.

In summary, we highlight our key contributions as follows,

1. To the best of our knowledge, we are the first to investi-
gate the problem of representation learning of KGs with
relation hierarchical structure, i.e., the subRelationOf
generalization relationships among relations.

2. We propose a novel representation learning method
named TransRHS, which merely adds a relation-specific
sphere to the representation of each relation in vector
space, but is capable of fusing the information of RHS
into the KG embeddings.

3. The experimental results on link prediction and triple
classification show that TransRHS outperforms all base-
lines by more than 20% and 5%, respectively, which ver-
ifies that RHS can significantly enhance the quality of
knowledge graph embeddings.

2 Related Work
2.1 KG Embedding with Facts

As a pioneering work of knowledge graph embedding,
TransE [Bordes er al., 2013] opens a line of translation-based
methods. TransE encodes both entities and relations as vec-
tors in the same space, say R%. Given a fact (h,r,t), the
relation is interpreted as a translation vector r so that the enti-
ties h and t can be linked by r with low error, i.e., h+r ~ t
when (h, r,t) holds.

Despite its simplicity and efficiency, TransE still has draw-
backs in dealing with 1-to-N, N-to-1, and N-to-N relations.
For a 1-to-N relation, e.g., directorOf, TransE might
learn very similar vector representations for Titanic and
Avatar which are all films directed by JamesCameron,
even though they are different entities.

To fix this issue of TransE, an effective strategy is to al-
low an entity to have distinct representations when involved
in different relations. Following this general idea, TransH
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[Wang et al., 2014b] models entities again as vectors, but
each relation r as a hyperplane together with a translation op-
eration on that hyperplane, enabling an entity to play distinct
roles in different scenarios. Furthermore, TransR [Lin ef al.,
2015b] directly models entities and relations in separate en-
tity and relation spaces, projecting entities from entity space
to relation-specific space when judging the distance between
entities. TransD [Ji ez al., 2015] simplifies TransR by further
decomposing the projection matrix into a product of vectors.
RotatE [Sun er al., 2019] proposes a rotation-based transla-
tional method, which represents entities as complex vectors
and relations as rotations in a complex vector space.

Another category of knowledge representation learning
models is the semantic matching models which have also
turned out to be effective. RESCAL [Nickel et al., 2011]
associates each entity with a vector to capture its latent se-
mantics, and each relation is represented as a matrix which
models pairwise interactions between latent factors. Dist-
Mult [Yang et al., 2015] simplifies RESCAL by restricting
relation matrices to diagonal matrices. However, this over-
simplified model can only deal with symmetric relations that
is clearly not powerful enough for general knowledge graphs.
HolE [Nickel er al., 2016] combines the expressive power
of RESCAL with the efficiency and simplicity of DistMult.
ComplEx [Trouillon et al., 2016] extends DistMult by in-
troducing complex-valued embeddings so as to better model
asymmetric relations.

2.2 KG Embedding with Multi-Source
Information

It has been widely recognized that multi-source information
including entity types, relation paths, and textual descrip-
tions, considered as supplements for the structured informa-
tion implied in triples, is significant for KG embeddings.

The type information is available in most KGs, usually
represented in a type of “is-a” relations. A straightforward
method [Nickel et al., 2012] to model type information is
to regard the triples describing type information as ordinary
triples. [Guo et al., 2015] proposed semantically smooth em-
bedding (SSE), which requires entities of the same type to
stay close to each other in the embedding space. TKRL [Xie
et al., 2016b] is a translational distance model with type-
specific entity projections, which can handle hierarchical en-
tity categories and multiple category labels.

In most KGs, the textual information is another kind of
common source that can be used for representation learn-
ing of KGs. KG embedding with textual information dates
back to the NTN model [Socher et al., 2013], where tex-
tual information is simply used to initialize entity represen-
tations. However, this method separates textual information
separately from KG facts, and hence fails to leverage inter-
actions between them. The first joint model [Wang et al.,
2014al], which aligns the given KG with an auxiliary text
corpus, and then jointly conducts KG embedding and word
embedding, makes better use of textual information during
embedding. DKRL [Xie et al., 2016a] proposes description-
based representations for entities with CBOW or CNN, which
is capable of modeling entities in the zero-shot scenario.

Rich information implied in relation hierarchical structure
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is also significant for KGs, which has been surprisingly ig-
nored. [Lin et al., 2015a] presents PTransE, which encodes
relation paths to embed both entities and relations in a low-
dimensional space. [Zhang et al., 2018] proposes a three-
layer structure of relations, which is merely an abstract struc-
ture obtained by gathering similar relations into clusters of re-
lations and splitting coarse-grained relations into several fine-
grained sub-relations. Our RHS is a structure constructed by
the generalization relationship named subRelationOf , which
contains abundant semantic information. To take advantage
of RHS, we propose a KG embedding model called Tran-
sRHS.

3  Our Approach

In this section, the technical details of how to take advantage
of the information implied in the relation hierarchical struc-
ture are specified. First, the formal definitions of RHS and the
problem formulation for representation learning of KGs with
RHS are provided. Then, our method TransRHS is proposed
and explained in detail. Finally, the new loss functions and
the optimization method are introduced.

3.1 Relation Hierarchical Structure

Relation hierarchical structure, which implies inherent rele-
vance among relations, is of significance for representation
learning of KGs. This kind of information is usually en-
coded by a generalization relationship named subRelationOf
between relations and stored in the form of triples. Taking the
relations in Figure 1 for instance, a subRelationOf triple
(athLedTeam, subRelationOf, athPlaysForTeam)
indicates the semantic relevance between the relation
athLedTeam and the relation athPlaysforTeam, that
is, the former is a sub-relation of the latter.

Depth
1
i-th
. Relation . layer
. Hierarchical ﬂ
. Structure U/
of relation» J-th

* sub-relation

k oo 0 }"(k)

3

Figure 2: Formalization of relation hierarchical structure
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As shown in Figure 2, a typical relation hierarchical struc-
ture is tree-like. We usually use the most general relation r
as the root node of the corresponding tree structure, and r®)
represents the j-th sub-relation at the i-th layer in the rela-
tion hierarchical structure. n; denotes the total number of
sub-relations in the i-th layer. For simplicity, we use 7(¥)
to represent a sub-relation at the k-th layer. A path from
the root node r to any leaf node r(*) can be formalized as
PF = {pr 7 @) ()} where the subscript r of P* de-
notes the root node of this tree structure and the superscript k
of that denotes the total number of sub-relations in this path.

Given a knowledge graph, it can be formalized as G =
(E,R,T), where E represents the entity set, R the set of
relations, and T the set of triple facts. Specifically, the re-
lation set of the KG with RHS can be further formalized as
R = {sro} U R;, where R; represents the set of relations be-
tween entities, and sro (i.e., subRelationOf) represents the
generalization relationship between relations.

Therefore, the triple set 7" in a KG can be divided into two
corresponding disjoint subsets:

1. subRelationOf triple set T, = {(r,sro,p)|r,p €
R}, where r,p are relations between entities and sro
is the generalization relationship between relations,
namely subRelationOf .

2. Relational triple set T, = {(h,r,t) | h,t € EAT € R},
where h,t represent head entity and tail entity, respec-
tively, and r represents a relation between entities.

Representation learning of KGs with RHS aims to learn
embeddings for entities and relations in the same space R¢.
For each entity e € E , we learn a low-dimensional vector
e € R?. For each relation € R; and its RHS information,
we learn a low-dimensional vector » € R? together with a
relation-specific sphere s. We typically use A to represent
the set of positive triples. A KG embedding model should
satisfy the following two formulas to incorporate the RHS
information, namely

(h,r,t) € To A (r,sro,p) € T, — (h,p,t) e A (1)
and
(r,sro,p) € T, A (p, sro,pp) € T, — (r,sro,pp) € A (2)

, which are essentially a realization of the rdfs5 and rdfs7
rules in the RDFS semantics, respectively [Hayes and Patel-
Schneider, 2014].

3.2 TransRHS

Notations are described first. Given a positive fact (h,r,t),
h denotes a head entity, r represents a relation, and ¢ denotes
a tail entity. The bold letters h, r, and t denote the corre-
sponding embeddings. A denotes the set of positive triples,
and A’ represents the set of negative triples. Therefore, we
use (h,7,t) € A to indicate that (h,r,t) is a positive triple.
TransE assumes that the score function

fr(ht) =41 —t][1)2 3)

is low if (h,r,t) € A, which indicates that the lower f,.(h,t)
is, the more probable (h,, t) is to be a positive triple.
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To take advantage of the implicit information implied in
RHS, a novel method named TransRHS is proposed, where
Formula (1) and Formula (2) can be explicitly embodied
in embeddings. Taking Formula (1) for instance, when
(r,sro,p) € T, holds, if (h,r,t) € T, is a positive triple,
then (h,p,t) must be a positive triple. So the embeddings
should satisfy that if h + r ~ t, then h + p = t. Further-
more, f,(h,t) should be less than f,(h,t) according to the
Formula (3).

In order to encode the RHS information without increasing
the complexity in both space and time, TranRHS merely in-
troduces one more sphere for each relation compared with
the TransE. For purpose of reducing the impact on the
translation-based model to the minimum, TransRHS will fol-
low the translational requirement, i.e., h + r =~ t when
(h,r,t) holds. In TransRHS, each entity e € E is learned
as a low-dimentional vector e € R? and each relation r € R,
is encoded as a low-dimentional vector r € R¢ together with
a relation-specific sphere. More specifically, given a pair of
triples (h,r,t) € T, and (r, sro,p) € T, TransRHS learns
relation p as a low-dimensional vector p € R? and its corre-
sponding spheres s; with radius m;. Analogously, r € R?
and the sphere s, with radius mo are obtained for relation r.
And head entity h and tail entity ¢ are represented as low-
dimensional vectors h,t € RY. The distance between the
h + p and t can be defined as:

dy=|lh+p—t|- 4)

Similarly, we define the distance between h + r and t as:

The ideal embeddings in TransRHS are shown in Figure 3
and meets the following conditions:

1. h + pis inside the sphere s1 (dy < mq).

2. h+ris between the sphere s and so (m < do < ma).
3. The sphere s is inside the sphere so (m1 < mo).

The following situations still need to be optimized:

1. h + pis outside the sphere s; (dy > my ).

2. h + ris outside the sphere so (dy > ma).

3. h + ris inside the sphere s; (d2 < my).

4. The sphere s- is inside the sphere s; (m; > mg).

For the above conditions, we define the loss functions as:

041[||h+p7t||27m1]+ if di > my
a2[||h+r—t||2—m2]+ if do > mo
fruS = (6)
ag[ml—\|h+r—t\|2]+ if do < my

a4[m1—m2}+ if my > mo

The condition discussed above involves two layers of RHS.
In fact, our model could be applied to encode the information
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Figure 3: Illustration of TransRHS

of n-layer RHS into embeddings naturally. For the sake of
illustration, we take a three-layer RHS as an example. Given
a relational triple (h,r,t) and two subRelationOf triples
(r, sro,p) and (p, sro, pp), the spheres s1, s, and s3 corre-
sponding to the relations pp, p, and r are learned respectively.
Similarly, the ideal embeddings should satisfy the following
conditions:

1. h + pp is inside the sphere s .

2. h + p is between the sphere s; and s,.
3. h + r is between the sphere s, and ss.
4

. The sphere s; is inside the sphere s which is inside the
sphere s3 .

Based on the above analysis, our method is easily extended to
be appropriate for encoding an n-layer RHS.

The above assumption indicates that the deeper the relation
r located in the RHS, the larger the radius m of the sphere
corresponding to the relation . However, the increasing ra-
dius of the sphere will make h + r to lie farther away from
t, which will conflict the basic principles of the translation-
based models, i.e. h + r ~ t. To address the above issue, we
set the difference between the radii of two adjacent spheres
should decrease as the depth of relations increases in RHS.
We use m ;) to represent the radius of the relation at the ¢-th
layer in RHS and design a proportional-declined weighting
strategy among 1m.(; 1), My;), and m ;1) as follows:

M) = Mei-1) 2 Mg —ma =0 (L=n)  (7)
in which we set 7 € (0.5,1). This strategy indicates that the

difference between m ;) and m;_1) is larger than the differ-
ence between m ;) and m; 1), which fits in our objective.

3.3 Training Method

For relational triples, we use A and A’ to denote the positive
triple set and the negative triple set, respectively. Then we
can define a margin-based loss function for relational triples:

Lorr= Y. >

(h,r,t)EA (R, rt")EA’

['Y+fr(hvt)_fr(h/»tl) ]+ (8)

where [z], = max (0, ) and + is the margin separating pos-
itive triples and negative triples.
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Relations Inferences
ziﬁiiiigigszgzzizgim (r, athleteLedSportsTeam, y) — (z, athletePlaysForTeam, ¥)

Sport coachesTearﬁr/l (r, athletePlaysForTeam, y) +— (z, personBelongsToOrganization, y)
personBelongsToOrganization (r, coachesTeam, y) — (x, personBelongsToOrganization, y)
capitalCityOfCountry
cityLocatedInCountr . . .

Location cityLocatedInState Y (r, capitalCityOfCountry, y) — (x, cityLocatedInCountry, y)
stat{eHasCapital (r, stateHasCapital, y) — (y, cityLocatedInState, x)
stateLocatedInCountry

Table 1: Relations and inferences in Sport and Location datasets.

The loss function for subRelationOf triples is defined

as:
Lrgs= Y > fras(hrtp)  (9)

(r,s70,p)ET} (h,r,t)ET.

The total loss of the TransRHS model is comprised of two
parts, as is shown in Equation 10,

L= Lorr + Lrus (10)

The goal of training TransRHS is to minimize the above
loss functions, and iteratively update embeddings of entities,
relations, and spheres.

4 Experiments

Our method is evaluated on two typical tasks commonly used
in knowledge graph embedding: link prediction [Bordes et
al., 2013] and triple classification [Socher et al., 2013].

4.1 Datasets and Experiment Settings

In this research, we evaluate our models on benchmarks Sport
and Location, which are introduced by [Wang er al., 2015]
and extracted from NELL [Carlson et al., 2010]. The rela-
tions in Sport and Location, along with their inferences, are
listed in Table 1. Table 2 gives a summary of these datasets.

Considering that in most KGs there are no negative triples
which are indispensable for the experiments, the process of
model training involves generating negative triples from pos-
itive triples. There are two main strategies for generating neg-
ative triples: “bern” and “unif”’. The former method simply
obtains negative triples by randomly corrupting the positive
triples. Taking a positive fact (h,r,t) for instance, a nega-
tive triple (h', r,t") or (h,r,t’) is obtained by randomly sam-
pling ' or ¢’ from entity set. However, as a real KG is often
far from complete, this way of randomly sampling may in-
troduce many false negative triples into training. The latter
strategy considers the mapping property of the relation, i.e.,
1-to-N, N-to-1, and N-to-N, and sets different probabilities
for replacing head or tail entity during corrupting triples.

TransRHS model is trained with mini-batch SGD. As for
parameters, we select the batch size B among {20, 40, 80,
160} and margin v among {0.5, 1.0, 1.5, 2.0}. We also set
the dimensions of entity and relation to be the same d. For
the learning rate )\, we select a fixed-rate following [Bordes
et al., 2013]. The optimal configurations of our models are:
B =40,y =1.0, A=0.001.
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Dataset |E| |R| #Train #Valid #Test
Sport 1039 4 1349 358 358
Location 445 5 384 65 65

Table 2: Statistics on the datasets

For a fair comparison, all models are trained under the
same dimension d = 100. For the comparison methods, we
use the open source implementations in OpenKE [Han er al.,
2018] with default hyperparameters.

Compared with TransE, we merely introduce a relation-
specific sphere for each relation. Therefore, the space and
time complexity of TransRHS is the same as TransE, which
scales linearly with the dimension d. Given a KG with n
entities and m relations, the space complexity of TransRHS
is O(nd + md) and the time complexity is O(d).

4.2 Link Prediction

Evaluation

Link prediction is to complete a triple (h,r,t) with h or ¢
missing, i.e., predict ¢ given (h,r) or predict h given (r,t).
Rather than requiring one best answer, this task emphasizes
more on ranking a set of candidate entities from the knowl-
edge graph. We follow the same protocol in TransE: for each
testing triple (h,r,t), we replace the tail ¢ by every entity
e € I in the knowledge graph and calculate a dissimilarity
score (according to the scoring function f;.) on the corrupted
triple (h,r,e). Ranking the scores in ascending order, we
then get the rank of the original correct triple. Similarly, we
can get another rank for (h,r,t) by corrupting the head h.
Let ranky (h, r, t) be the ranking of (h,r,t) among all head-
corrupted relations and rank, (h, r,t) denotes a similar rank-
ing with tail corruptions.

We use two evaluation metrics: Hits@N and Mean Recip-
rocal Rank (MRR). MRR is the mean of the reciprocal rank:

1 1
MRR = ——
2% |T)| Z ranky (h,r,t) +

(h,rt)eT

amn

1
ranky (h,r, t)

Hits@N measures the proportion of triples in 7' that rank
among top t after corrupting both heads and tails. The above
is called the “raw” setting. Notice that if a corrupted triple
exists in the knowledge graph, ranking it before the test triple
will have a bad effect on the experimental results. To elimi-
nate this factor, we remove those corrupted triples which exist
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Sport Location
MRR Hits @N(%) MRR Hits@N(%)

Model Filter Raw 1 3 10  Filter Raw 1 3 10
TransE [Bordes et al., 2013] 0.644 0417 533 738 800 0548 0492 446 638 69.2
TransH [Wang et al., 2014b] 0.540 0368 402 655 733 0421 0375 26.1 538 63.8
TransR [Lin et al., 2015b] 0423 0304 28.0 526 656 0553 0489 492 592 653
TransD [Ji et al., 2015] 0.443 0319 272 57.6 695 0.162 0.144 100 153 246
RotatE [Sun et al., 2019] 0.685 0441 613 738 804 0402 0363 36.1 40.7 476
TransE-HRS [Zhang et al., 2018] 0.661 0429 585 709 794 0414 0380 369 423 492
RESCAL [Nickel et al., 2011] 0.071 0.058 4.0 79 122 0.183 0.166 7.6 20.0 407
DistMult [Yang et al., 2015] 0463 0341 398 49.1 583 0346 0328 30.7 353 413
HolE [Nickel et al., 2016] 0.269 0.184 224 26.8 354 0356 0330 33.0 36.1 392
ComplEx [Trouillon et al., 2016] 0.511 0365 43.0 551 662 0365 0342 33.0 369 430
SimplE [Kazemi and Poole, 2018]  0.495 0.380 42.7 52.0 62.8 0.357 0331 31.5 376 40.7
TransRHS (unif) 0.820 0.515 80.5 828 842 0652 0.572 63.1 662 69.2
TransRHS (bern) 0.809 0.514 787 82.1 837 0.660 0.58 64.6 66.2 69.8

Table 3: Evaluation results on link prediction. Best results are in bold.

in either train, valid, or test set before getting the rank of each
test triple. This setting is called “filter”.

Results

The results of the link prediction are shown in Table 3. From
the results, we observe that: (1) TransRHS significantly out-
performs all baselines in terms of both MRR and Hits@N,
which indicates that the RHS information is successfully en-
coded into entity and relation embeddings and could improve
the representation learning of knowledge graphs. (2) The
“unif” sampling trick works well for Sport and the “bern”
sampling trick behaves well for Location.

4.3 Triple Classification

Evaluation

Triple classification is to determine whether a given triple

(h,r,t) is correct or not, which is a binary classification task.
Negative triples are required for the evaluation of triple

classification. Hence, we construct some negative triples fol-

Accuracy(%)

Model Sport  Location
TransE [Bordes et al., 2013] 89.2 68.4
TransH [Wang et al., 2014b] 86.8 73.8
TransR [Lin et al., 2015b] 85.6 66.9
TransD [Ji et al., 2015] 86.1 60.7
RotatE [Sun er al., 2019] 89.2 72.3
TransE-HRS [Zhang et al., 2018] 86.9 69.7
RESCAL [Nickel et al., 2011] 57.8 57.6
DistMult [Yang et al., 2015] 85.7 584
HolE [Nickel et al., 2016] 77.3 69.2
ComplEx [Trouillon et al., 2016] 86.3 74.6
SimplE [Kazemi and Poole, 2018] 86.5 67.6
TransRHS (unif) 89.8 74.8
TransRHS (bern) 90.9 78.4

Table 4: Evaluation results on triple classification

lowing the same setting in [Socher et al., 2013] . There are as
many true triples as negative triples in both valid and test set.

The classification strategy is conducted as follows: We set
different relation-specific thresholds 4, for each relation. For
a triple (h, r, t), if the dissimilarity score of f,.(h,t) is below
6, the triple is then predicted to be positive and otherwise
negative. The relation-specific thresholds 4, are optimized
by maximizing the classification accuracies in all triples with
the corresponding r on the valid sets.

Results

We evaluate this task on both Sport and Location. Evalu-
ation results on triple classification are shown in Table 4.
From Table 4 we observe that: (1) The empirical results in
triple classification demonstrate that TransRHS outperforms
all baselines , which once again confirms the conclusions we
obtained from link prediction and indicates that TransRHS is
capable of encoding RHS information into knowledge graph
embeddings. (2) “bern” sampling trick works well for both
datasets.

5 Conclusion

In this paper, we propose a novel model named TransRHS
for representation learning of knowledge graphs with rela-
tion hierarchical structure. More specifically, each relation
in knowledge graph is encoded into a low-dimensional vector
together with a relation-specific sphere in the same space. In
experiments, we evaluate our model on two typical tasks in-
cluding link prediction and triple classification. Experimental
results show that RHS information is significant for represen-
tation learning of knowledge graphs, and TransRHS model is
capable of encoding RHS information into KG embeddings.
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