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Abstract

The task of RDF-to-text generation is to generate a
corresponding descriptive text given a set of RDF
triples. Most of the previous approaches either cast
this task as a sequence-to-sequence problem or em-
ploy graph-based encoder for modeling RDF triples
and decode a text sequence. However, none of
these methods can explicitly model both local and
global structure information between and within
the triples. To address these issues, we propose to
jointly learn local and global structure information
via combining two new graph-augmented struc-
tural neural encoders (i.e., a bidirectional graph en-
coder and a bidirectional graph-based meta-paths
encoder) for the input triples. Experimental re-
sults on two different WebNLG datasets show that
our proposed model outperforms the state-of-the-
art baselines. Furthermore, we perform a human
evaluation that demonstrates the effectiveness of
the proposed method by evaluating generated text
quality using various subjective metrics.

1 Introduction
RDF-to-text generation is to transform a set of Resource De-
scription Framework (RDF) triples into informative and faith-
ful text. The task is challenging since RDF sub-graph struc-
ture needs to be well modeled in addition to capturing seman-
tic information in RDF triples. Figure 1 illustrates an RDF
triples graph with corresponding descriptive text, in which
the nodes (such as ”FOOD-1” and ”INGREDIENT”) repre-
sent the entities and edges (such as ”dishVariation” and ”in-
gredient”) represent the relations between the connected enti-
ties. It has many fact-aware applications such as knowledge-
based question answering [Hao et al., 2017], entity summa-
rization [Pouriyeh et al., 2017], and data-driven text genera-
tion [Liu et al., 2018].

Traditionally, an RDF-to-text generation system mainly fo-
cuses on the pipeline process of content selection and sur-
face realization with human-crafted features. However, a
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INGREDIENT
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PLACE
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COUNTY

PERSON

Input : RDF Triple Graph 
region

leaderName

county

dishVariation

ingredient 

Output : Generated Text 
PERSON is the leader of POPULATEDPLACE(in the 
county of ADMINSTRATIONCOUNTY) which is where 
FOOD-1 originates from.  A variation on the pudding 
is FOOD-2 which has INGREDIENT as an ingredient.

Figure 1: A knowledge graph formulated by a set of RDF triples
with generated text descriptions.

critical issue for error propagation has been largely over-
looked, which does harm to the quality of generated text.
Recently, as the end-to-end deep learning has made great
progress in natural language processing, RDF-to-text gen-
eration has achieved promising performance by using vari-
ous sequence-to-sequence (Seq2Seq) models [Gardent et al.,
2017b; Jagfeld et al., 2018]. Conceptually, RDF triple ele-
ments need to be processed and concatenated into a sequence
in order to feed into Seq2Seq models.

However, simply transforming the RDF triples into a se-
quence may lose important higher-order information. Since
RDF triples can be represented as a knowledge graph, two
graph-based approaches have been proposed recently for
RDF-to-text generation. Trisedya et al. presented a graph-
based triple encoder GTR-LSTM that captures both intra-
triple and inter-triple entity relationships by sampling dif-
ferent meta-paths to preserve graph structure in the encoder.
However, since the encoder component is still based on recur-
rent neural networks, it often fails to capture rich local com-
plex structure information between entities and relationships.

On the other hand, Marcheggiani and Perez-Beltrachini
proposed a graph-to-sequence model (Graph2Seq) based on
a modified Graph Convolutional Networks (GCN) [Kipf
and Welling, 2016], which directly encodes graph-structured
RDF triples and decodes a text sequence. However, it is
well known that GCN often gets overfitting quickly when us-
ing multiple layers (>= 3), which weakens its capability of
learning longer range dependence. Therefore, this model usu-
ally performs better on capturing local structure information
of the graph than capturing global information between the

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3030



RDF triples.
To address the aforementioned issues, we propose a novel

neural network architecture by exploiting graph-augmented
structural neural encoders for RDF-to-text generation. To this
end, we first present to exploit both power of graph encoder
and graph-based meta-paths encoder to jointly learn structure
information locally and globally. We then present separated
attentions on two different inputs i.e., graphs and meta-paths
to jointly learn the final hidden representation of RDF triples
in order to better decode the text sequence.

The combined encoders can focus on multiple perspec-
tives of the input RDF graph. A novel bidirectional-GCN
(bi-GCN) encoder is used to explicitly model the local struc-
ture information between the intra-triple relationships, while
a new bidirectional Graph-based Meta-Paths (bi-GMP) en-
coder mainly focuses on modeling global long-range depen-
dency between the inter-triple relationships.

We highlight our main contributions as follows:
• We propose a novel graph-augmented structural neural

encoders model by combining a new bi-GCN encoder
and a new bi-GMP encoder for explicitly modeling the
global and local structure information of the input RDF
triples.
• We further present separated attentions on each of graph

encoders and fuse their corresponding context vectors to
better decode the descriptive text.
• The experimental results on two WebNLG datasets (a

challenge dataset and a supplementary dataset) corrob-
orate the advantages of our model over state-of-the-art
models in BLEU, METEOR and TER metrics.

2 Related Work
Our approach is highly related with existing works in struc-
tured data to text generation and graph neural networks.

2.1 RDF-to-Text Generation
RDF-to-text generation aims to generate a grammatically cor-
rect, fluent, informative and faithful description for graph
structured input data. Early attempts for Web Ontology
Language to text generation were done by [Bontcheva and
Wilks, 2004] and verbalizing a knowledge base [Banik et al.,
2012]. Pipeline approach is generally used to solve these
data-to-text generation tasks, which includes two main steps:
(1) content selection [Barzilay and Lapata, 2005] defines
what contents should be described in the generated text; (2)
surface realization [Deemter et al., 2005] implements the
generation process word by word. In the past few years,
diverse NLG tasks have achieved promising performance
by using Seq2Seq model with attention mechanism [Bah-
danau et al., 2014] and copy mechanism [Gu et al., 2016;
See et al., 2017]. As shown in [Gardent et al., 2017b;
Jagfeld et al., 2018], Seq2Seq model and its variants per-
form promisingly on RDF-to-text generation by concatenat-
ing RDF triple elements into a sequence. To reduce the prob-
ability of generating low-quality sentences, Zhu et al. pro-
posed a framework based on Seq2Seq, which optimizes the
inverse Kullback-Leibler (KL) divergence between the distri-
butions of the real and generated sentences. By combining

the pipeline system and neural networks, Moryossef et al.
presented a method for matching reference texts to their cor-
responding text plans to train a plan-to-text generator.

2.2 Graph Neural Networks for Text Generation
Recently, there has been a surge of interests to exploit graph-
based neural networks for graph-structured data to text gen-
eration. Researchers employed a bidirectional graph encoder
to embed an input graph to a sequence of node embeddings
and then used an attention-based LSTM method to decode
the target sequence from these vectors [Xu et al., 2018;
Chen et al., 2020; Gao et al., 2019]. Song et al. applied an
LSTM over the state transitions of the graph-based encoder
outputs to capture longer-range dependencies. Marcheg-
giani and Perez-Beltrachini exploited relational graph convo-
lutional networks, introduced and extended in [Bruna et al.,
2013; Defferrard et al., 2016; Kipf and Welling, 2016], to
encode a node in a relational graph with its neighbor nodes,
edge labels and edge directions at the same time. Although
these graph neural networks consider different perspectives
of graph structure information, none of graph-based encoders
could fully capture both global and local dependencies in a
knowledge graph.

3 Problem Definition
Formally, the RDF-to-text generation task is defined as fol-
lows. The input contains a set of RDF triples, denoted as
S = {t1, t2, ...tn} where ti is a triple consisting of subject,
relationship and object. All the input triples are represented
as directed graphs. The aim is to generate a natural language
descriptive text Y = 〈w1, w2, ...wT 〉 that represents the cor-
rect and concise semantics of entities and their relationships
in the given RDF triple inputs. In this study, the bi-GMP
encoder consumes input graph G1 = (V1, E1), where V1 rep-
resents all of the entity nodes and E1 denotes original rela-
tionships between these entity nodes. Differently, the bi-GCN
encoder consumes input graphG2 = (V2, E2), where V2 con-
tains entity nodes and relationship nodes since relationships
are regarded as additional nodes instead of edges. E2 refers
to a newly defined set of edges that describe the relationship
between entity nodes and relationship nodes, or between mul-
tiple words of a node.

4 Our Proposed Model
In this section, we present our graph-augmented structural
neural encoders including two graph-based encoders, and de-
scribe the approach to combine them for better capturing
global and local relationships between and within the triples.

4.1 Bidirectional Graph-based Meta-Paths
Encoder

In order to encode information according to different meta-
paths and capture long-range dependency in graph G1, we
present a new bidirectional Graph-based Meta-Paths encoder
(bi-GMP), which is an improved variant of GTR-LSTM triple
encoder [Trisedya et al., 2018]. Compared to GTR-LSTM,
the bi-GMP model applies hidden state masking between dif-
ferent meta-paths to keep the paths encoding non-interfering.
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Figure 2: The framework of the combined Graph-augmented Structural Neural Encoders Model.

Moreover, copy mechanism [See et al., 2017] is introduced
into our meta-paths encoder to improve the performance.

The meta-paths of graph G1 are calculated by a combi-
nation algorithm of topological sort and single-source short-
est path. We first calculate the nodes with zero in-degree
VIN and nodes with zero out-degree VOUT. Then, we cal-
culate a single-source shortest path using a node in VIN as
the source node and a node in VOUT as the destination node
with both the entity nodes and the relationships preserved in
the path. The graph G1 is transformed to a sequence com-
posed of a set of meta-paths Sp = {p1, p2, ...}, in which
pk = 〈wk,1, wk,2, ...wk,nk

〉.
Inspired by the advantages of BiLSTM over LSTM, the

proposed meta-paths encoder calculates the representation of
each token in each meta-path from two directions and fuse
them together in the final step. The hidden state ri is com-
puted as:

−→ri = f(−−→ri−1, wi) and ←−ri = g(←−−ri+1, wi) (1)

ri = CONCAT(−→ri ,←−ri ) (2)

where wi represents a token of entity node or relationship.
f(·) and g(·) are single LSTM units. Finally, the bi-GMP en-
coder generates a set of entity node representations R1. We
then use max pooling on R1 to compute the graph embed-
ding of graph G1:ZG1

= Wrmaxpool(R1), where Wr de-
notes weight matrices.

4.2 Bidirectional Graph Convolutional Networks
Encoder

For the graph G2 = (V2, E2), relationships are regarded as
additional graph nodes, so G2 contains entity nodes and re-
lationship nodes. Then, for the similar reason above, we
present the bi-GCN encoder calculating the vector represen-
tations H(l) = {h(l)v0 , h

(l)
v1 , ...} ∈ RD×V at layer l:

H
(l)
` = D̂`

−1/2
Â`D̂`

−1/2
H(l−1)W

(l−1)
1` (3)

H
(l)
a = D̂a

−1/2
ÂaD̂a

−1/2
H(l−1)W

(l−1)
1a (4)

H(l) = σ(CONCAT(H(l)
` , H

(l)
a )Wf ) (5)

where Â` = A`+ I and Âa = Aa+ I denote the source-to-
target and target-to-source adjacency matrices of the directed
graph G2 with inserted self-loops. I is an identity matrix and
D̂ii =

∑
j=0 Âij is a diagonal degree matrix. W (l−1)

1` and

W
(l−1)
1a are layer-specific trainable weight matrices. Wf de-

notes trainable weight matrix, and σ is a non-linearity func-
tion. H(0) is initialized with word embeddings. The bidi-
rectional node embeddings at layer l are concatenated and
inputed to a single-layer perceptron before input to the next
bi-GCN layer. Bi-GCN encoder is stacked to L layer and
R2 = H(L) is a set of entity and relationship node represen-
tations .

We then use average pooling on R2 to compute the graph
embedding of graph G2: ZG2

= ϕ(avgpool(R2)) , where
ϕ(·) is a single-layer perceptron.

4.3 Combining bi-GMP and bi-GCN Encoders
We propose a combination strategy to integrate the above bi-
GMP encoder and the bi-GCN encoder for the input RDF
triples, which aims to jointly learn the local and global struc-
ture information of the RDF triples input. The overall archi-
tecture of the combined encoders is depicted in Fig. 2.

Both encoders generate a set of node representations. In
general, R2 = {h0, h1, h2...} captures the local structure
information within the RDF triples better, since each node
representation is directly modeled by all its one-hop neigh-
bors at one layer. To avoid overfitting, bi-GCN encoder is
stacked to 2 layers in this study. In this way, the output of
bi-GCN encoder hi preserves at most two-hop information
of the graph, which is limited to one or two triples. Whilst,
R1 = {r0, r1, r2, ...} mainly focuses on the global struc-
ture information between the RDF triples, since the bi-GMP
encoder computes hidden states following a traversal order
calculated by a combination of topological sort and single-
source shortest path algorithm over the whole graph. The out-
put of the bi-GMP encoder ri can preserve information from
one triple to seven triples (an input contains at most seven
triples in the WebNLG datasets) if there exists a meta-path.

Then, the combined graph embedding ZG is computed as
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ZG = ZG1 ⊕ ZG2 , where ⊕ is the component-wise addition.

4.4 Decoder
An attention-based LSTM decoder [Luong et al., 2015] is
used for text generation. However, the plain top-down at-
tention is not appropriate since we have two input graphs and
it can not fully exploit different semantic token information
from two quite different encoders. Therefore, we present sep-
arated attention mechanism on each of the graph encoders and
fuse their corresponding context vectors to better decode the
descriptive text.
ZG is fed into the decoder as initial hidden state. For each

time step t, the decoder feeds the concatenation of the em-
bedding of the current input (previously generated word) et
and previous step context vector ct−1 as new input and previ-
ous hidden state st−1 to update its hidden state st. Then, we
further apply the separate attentions by computing the align
weights vectors at decoding time step t as follows:

αt(i) =
exp(score(ri, st))∑M

k=1 exp(score(rk, st))
(6)

βt(j) =
exp(score(hj , st))∑V
k=1 exp(score(hk, st))

(7)

where ri ∈ R1 and hj ∈ R2. M = |R1| and V = |R2| are
the lengths of representations sequence. st is the hidden state
of decoder. The score(·) function estimates the similarity of
ri, hj and st.

Then, we compute bi-GMP level context vector cu and bi-
GCN level context vector cv respectively:

cu =
M∑
i=1

αt(i)ri and cv =
V∑

j=1

βt(j)hj (8)

Next, we concatenate cu, cv and decoder hidden state st to
compute final attentional hidden state at this time step as:

ct = CONCAT(cu, cv) (9)
s̃t = tanh(Wc · [ct; st] + bc) (10)

where ct is the concatenated context vector at time step t
and Wc and bc are learnable parameters. After calculat-
ing a sequence of attentional hidden states 〈s̃1, s̃2, ..., s̃T 〉
recurrently, the decoder generates an output sequence
〈y1, y2, ..., yT 〉. The output probability distribution over a vo-
cabulary at the current time step is calculated by:

P (yt|y1:t−1) = softmax(Wv s̃t + bv) (11)

where Wv and bv are learnable parameters. Finally, we em-
ploy the loss function with a negative log likelihood:

LG =
1

T

T∑
t=1

− logP (yt|y1:t−1) (12)

5 Entity Masking and Graph Constructions
In this section, we first discuss the importance of entity mask-
ing and then describe how to transform RDF triples set to in-
put graphs for two encoders.

Knowledge Graph
FOOD-1

FOOD-2

INGREDIENT

POPULATED 
PLACE

ADMINSTRATION 
COUNTY

PERSON

Input : RDF Triple Graph 
region

leaderName

county

dishVariation

ingredient 

Output : Generated Text 
PERSON is the leader of POPULATEDPLACE(in the 
county of ADMINSTRATIONCOUNTY) which is where 
FOOD-1 originates from.  A variation on the pudding 
is FOOD-2 which has INGREDIENT as an ingredient.

FOOD-1
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INGREDIENT

POPULATED 
PLACE

ADMINSTRATION 
COUNTY

PERSON

Input : RDF Triple Graph 
region

leaderName

county

dishVariation

ingredient 

FOOD-1

FOOD-2

INGREDIENT
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COUNTY

PERSON

region

leader- 
Name

countydishVariation

ingredient 

(a) RDF triplets graph (b) bi-GCN input graph

Relationship node

Entity node

Figure 3: Examples of two graph inputs.

5.1 Entity Masking
Entity masking can improve the generalization ability of our
model. We use the officially provided dictionary and DBpe-
dia lookup API to map the subjects and objects in the triples
set to corresponding entity types. Considering that multiple
entities in a set of triples may belong to the same type, we
assign an entity-id (eid) to each entity in the set. Therefore,
each entity is replaced with its eid and type. For example,
the entity “Bakewell pudding”, namely FOOD-1 in Fig. 3,
is replace by ENTITY-1 FOOD while the entity “Bakewell
tart”(FOOD-2) is replaced by ENTITY-2 FOOD.

5.2 RDF Triples to Meta-paths
In Fig. 3(a), we first choose a source node with zero in-degree
FOOD-1 and a destination node with zero out-degree PER-
SON. The shortest path from FOOD-1 to PERSON is FOOD-
1→region→ PLACE→leaderName→PERSON. Similarly,
the other two meta-paths are:

• FOOD-1→region→PLACE→county→COUNTY

• FOOD-1→dishVariation→FOOD-2→ingredient
→INGREDIENT

The meta-paths are concatenated to a sequence and then fed
to the bi-GMP encoder. The hidden state of the last token in
path pt is not forwarded to the first token in path pt+1, which
is depicted in Fig. 2.

5.3 RDF Triples to bi-GCN Graph
For bi-GCN encoder, we treat relationships as additional
nodes similar to [Marcheggiani and Titov, 2017] and the new
relationship node is connected to the subject and object by
two new directed edges, respectively. This graph construction
method makes the new bi-GCN graph (Fig. 3(b)) two times
larger than the original RDF triples graph (Fig. 3(a)) in hops,
making it more difficult to capture long-range dependency.
As shown in Fig. 3(b), the nodes in the graph are divided
into entity nodes and relationship nodes. The original triple
(FOOD-1, region, PLACE) is separated into two new triples
region→FOOD-1 and region→PLACE with “region” being
a node in the input graph. For nodes having more than one
word, each word is separated into an independent node that is
connected to the core node (usually the ”ENTITY-id” node)
with a new edge. In this way, the original entity “ENTITY-
1 FOOD INGREDIENTS” is separated into two new triples
ENTITY-1→FOOD and ENTITY-1→INGREDIENTS.
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Model multi-BLEU↑ METEOR ↑ TER↓
BiLSTM 53.69 40.5 43.7

MELBOURNE 54.52 41.0 40.0
PKUWRITER 51.23 37.0 45.0

DGCN 55.90 39.0 41.0
bi-GMP(copy) 55.32 41.1 41.7
bi-GCN(2L) 55.85 42.2 41.1
bi-GCN(3L) 55.32 41.8 41.0

bi-GCN(2L)+copy 55.71 40.9 40.9
biGCN(2L) +
bi-GMP(copy) 57.09 43.0 40.3

Table 1: Multi-BLEU, METEOR and TER on WebNLG 2017 chal-
lenge test dataset (seen entities).

Model multi-BLEU↑ METEOR ↑ TER↓
BiLSTM 51.23 36.6 45.8

bi-GMP(copy) 55.99 41.0 41.8
bi-GCN(2L) 56.06 40.5 41.9
bi-GCN(3L) 55.86 40.3 41.8

bi-GCN(2L)+copy 56.74 41.1 40.4
bi-GCN(2L) +
bi-GMP(copy) 57.76 41.4 39.4

Table 2: Multi-BLEU, METEOR and TER on WebNLG supple-
mentary test dataset (seen entities).

6 Experiments
6.1 Datasets
We use two different WebNLG datasets1 [Gardent et
al., 2017a] which are designed for the task of mapping
RDF triples to text. Each example is a 〈triples, text〉
pair. Here, one triple set may correspond to multi-
ple reference texts. Each RDF triple is represented as
〈subject, relationship, object〉, where the subject and
object are constants or entities. The first dataset is the
WebNLG 2017 challenge dataset, consisting of 18102 train-
ing pairs, 2268 validation pairs, and 2495 test pairs in
10 categories (Astronaut, Building, Monument, University,
SportsTeam, WrittenWork, etc.). The second supplemen-
tary dataset is extracted from an enriched version of the
WebNLG 2017 challenge dataset. The enriched dataset con-
sists of 31969 training pairs, 4030 validation pairs and 4222
test pairs. The second supplementary dataset contains 13867
training pairs, 1762 validation pairs, and 1727 test pairs,
which does not overlap the first dataset. The second supple-
mentary dataset belongs to 5 other categories (Athlete, Artist,
MeanOfTransportation, CelestialBody, Politician).

6.2 Experimental Settings and Evaluation Metrics
We build a vocabulary list based on the training set, which
is shared between the encoders and the decoder. For model
hyperparameters, we set 300-dimension source and target
word embeddings and 300-dimension hidden state for bi-
GCN encoder, meta-paths encoder and decoder. We use
Adam [Kingma and Ba, 2014] as the optimization method

1https://gitlab.com/shimorina

with an initial learning rate 0.001 and learnable parameters
are updated every 64 instances.

For our experiments, we adopt the standard evaluation met-
rics of the WebNLG challenge, including BLEU [Papineni et
al., 2002], METEOR [Denkowski and Lavie, 2011] and TER.
The metric of BLEU suggested by the WebNLG challenge is
multi-BLEU. For metrics BLEU and METEOR, the higher
the better, while for metric TER, the lower the better.

6.3 Baselines
We compared our model against the following baselines:
Sequential Model. Sequential model contains an attention-
based bidirectional LSTM encoder and an LSTM decoder.
The RDF triples are transformed into a sequence. More-
over, the results of MELBOURNE and PKUWRITER are both
sequential models, which are reported in [Gardent et al.,
2017b].
DGCN Model. We rerun the code of [Marcheggiani and
Perez-Beltrachini, 2018] to get the results of Deep Graph
Convolutional Encoder (DGCN).
Bi-GMP Model. Bi-GMP model consists of a meta-paths
encoder calculating the representation of each token in the
meta-paths from two directions and a one-layer LSTM de-
coder. Copy mechanism [Gu et al., 2016] is incorporated
into the model to improve the performance.
Bi-GCN Model. Bi-GCN model consists of a bi-GCN en-
coder (GCN with two layers) and a one-layer LSTM decoder.
We exploit bi-GCN with- and without- copy mechanism.

6.4 Experimental Results
As shown in Tables 1 and 2, our proposed model consis-
tently outperforms other baselines on all three evaluation met-
rics. For instance, our full model achieves about 1.0 multi-
BLEU points higher than those of the other baselines on
two WebNLG test datasets. This is because our full model
could better capture the global and local graph structure of
the RDF triples. In addition, Table 3 shows our proposed
model achieve higher scores on BLEU-1, BLEU-2, BLEU-3
and BLEU-4 compared to other baselines, indicating that our
full model can better encode multi-perspective information.
Our code is publicly available for research purpose. 2

6.5 Ablation Study
As shown in Table 1 and Table 2, there are three key fac-
tors in our proposed model that may affect the quality of
generated text. The first two are the bi-GCN and bi-GMP
encoders. Experimental results shows the model combining
graph-augmented structural neural encoders performs better
than the models with one single graph-based encoder. This re-
sult is expected, since it is difficult for one single graph-based
encoder to fully encode both global and local structure infor-
mation completely. The third factor is copy mechanism. We
only apply copy mechanism on the bi-GMP encoder in our
full model. Interestingly, we found that when applying copy
mechanism on both the bi-GMP encoder and the bi-GCN en-
coder, it actually leads to worse performance compared with
our full model.

2https://github.com/Nicoleqwerty/RDF-to-Text.
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Model
Dataset/Metric WebNLG 2017 Challenge WebNLG Supplementary

BLEU1 BLEU2 BLEU3 BLEU4 BLEU1 BLEU2 BLEU3 BLEU4

BiLSTM 81.6 58.9 42.7 31.3 76.4 58.1 44.8 34.7
Meta-paths(copy) 83.0 63.5 48.4 37.2 81.4 63.1 49.3 38.8

GCN(2L) 84.6 64.0 48.4 37.1 81.9 63.6 49.4 38.4
GCN(2L)+copy 85.5 65.6 50.1 38.7 82.9 64.1 49.9 39.1

GCN(2L) +
Meta-paths(copy) 84.3 65.0 50.1 38.8 83.3 65.6 51.7 40.9

Table 3: Detailed BLEU scores of the baseline models we adopt and our proposed model for BLEU1, BLEU2, BLEU3 and BLEU4.

RDF Triples (Denmark, leaderName, Lars Løkke Rasmussen), (European University Association, headquarters, Brussels), (School
of Business and Social Sciences at the Aarhus University, country, Denmark), (Denmark, leaderTitle, Monarchy of
Denmark), (School of Business and Social Sciences at the Aarhus University, affiliation, European University
Association), (Denmark, religion, Church of Denmark)

Reference
Output

The school of business and social sciences at the Aarhus University in Denmark is affiliated with the European
University Association , which has its hq in Brussels . Denmark has a monarch ; its religion is the church of Denmark
and its leader is Lars Løkke Rasmussen .

bi-GCN Lars Løkke Rasmussen is the leader of Denmark which is led by the Monarchy of Denmark . The country is the
location of the European University Association which has its headquarters in Brussels . The school of business and
social sciences at the Aarhus University is located in the country .

bi-GMP The school of business and social sciences at the Aarhus University is located in Brussels , Denmark . The school is
affiliated with the European University Association and its religion is the Monarchy of Denmark . The leader of
Denmark is Lars Løkke Rasmussen and the religion is the Monarchy of Denmark .

Our Model Lars Løkke Rasmussen is the leader of Denmark . The country is the location of the school of business and social
sciences at the Aarhus University which is affiliated with the European University Association which has its
headquarters in Brussels . School of business and social sciences at the Aarhus university is located in Denmark .

Table 4: Sample outputs of different models. The bold tokens are error outputs.

Methods Grammar Informativity Conciseness
Reference 4.46 4.82 4.65
bi-GMP 4.26 4.09 4.27
bi-GCN 4.21 3.98 4.44

Our Full Model 4.55 4.24 4.57

Table 5: Human evaluation of WebNLG 2017 Challenge test
dataset. The higher the score is, the better the performance is.

6.6 Case Study
We further manually inspect the outputs of different models
and conduct case studies for better understanding the model
performances. As shown in Table 4, we find that the models
involving bi-GCN encoder perform better on covering correct
relationships between entities. This result is expected since
the bi-GCN encoder pays more attention to the local structure
information and can predict the intra-triple relationship more
accurately and effectively. Meanwhile, the bi-GMP encoder
mainly focuses on the inter-triple relationships, which helps
model long-range dependency with more context.

6.7 Human Evaluation
To further evaluate the quality of these generated text ex-
amples, we presented a number of original RDF triples and
corresponding generated text pairs to three human evaluators.
Three evaluators are shown 200 outputs, a quarter references,
a quarter generated by bi-GCN model, a quarter generated by
bi-GMP model and a quarter generated by full model. The
evaluators were asked to evaluate the generated texts from

three perspectives (each perspective scale from 1 to 5): I)
Grammatical rates each text sample with respect to the co-
herence, no redundancy, and no grammatical errors; II) Infor-
mativity (Global) scores based on how well the information in
input triples are covered; III) Conciseness (Local) evaluates
whether the entities and corresponding relationships appear-
ing in the generated sentence are accurate. We averaged the
results from three evaluators for all three tasks. Table 5 in-
dicates that text examples generated by our proposed model
are indeed improved on the respects of informativity (global
information) and conciseness (local information).

7 Conclusion
In this paper, we propose a novel approach via exploiting
graph-augmented structural neural encoders for RDF-to-text
generation. Our approach jointly learns structure information
locally and globally via the combination of a bidirectional
graph encoder and a bidirectional graph-based meta-paths en-
coder to learn intra-triple and inter-triple relationships. The
experimental results show that our proposed model outper-
forms the state-of-the-art baselines. One of the future works
is to further extend our proposed method to develop a knowl-
edge graph question answering system.
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