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Abstract

This paper aims to learn multi-agent cooperation
where each agent performs its actions in a decen-
tralized way. In this case, it is very challenging
to learn decentralized policies when the rewards
are global and sparse. Recently, learning from
demonstrations (LfD) provides a promising way to
handle this challenge. However, in many practi-
cal tasks, the available demonstrations are often
sub-optimal. To learn better policies from these
sub-optimal demonstrations, this paper follows a
centralized learning and decentralized execution
framework and proposes a novel hybrid learning
method based on multi-agent actor-critic. At first,
the expert trajectory returns generated from demon-
stration actions are used to pre-train the central-
ized critic network. Then, multi-agent decisions are
made by best response dynamics based on the critic
and used to train the decentralized actor networks.
Finally, the demonstrations are updated by the ac-
tor networks, and the critic and actor networks are
learned jointly by running the above two steps allit-
eratively. We evaluate the proposed approach on
a real-time strategy combat game. Experimental
results show that the approach outperforms many
competing demonstration-based methods.

1 Introduction

Decentralized partially observable Markov decision pro-
cesses (Dec-POMDPs) [Olichoek and Amato, 2016] are
applicable to many multi-agent cooperative tasks such as
multi-agent robotics [Chen et al., 2017], taxi fleet optimiza-
tion [Nguyen ef al., 2018], and combat games [Foerster et
al., 2018]. In these applications, a team of agents coordinates
their behavior while acting in a decentralized way and aims
to achieve a unified goal or the largest team utility. However,
since the joint state-action space can be huge, it is very chal-
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lenging to learn effective decentralized policies, especially in
environments where the reward signals are sparse.

A widely used approach to sparse-reward reinforcement
learning (RL) problems is learning from demonstrations
(LfD) [Schaal, 1996]: task replays performed by experts
available for access. One straightforward method is to recover
experts’ policies from available demonstrations [Pomerleau,
1991; Ross et al., 2011; Sun et al., 2017; Ho and Ermon,
2016; Song erf al., 2018]. These works assume that experts
perform well, and agents will perform well by mimicking ex-
perts’ actions. However, due to the huge state action space
of multi-agent systems, it is hard to obtain the best policy
even for experts. The available demonstrations are often sub-
optimal. Another type of LfD method, termed as inverse re-
inforcement learning [Ng and Russell, 2000], formulates the
task as solving an inverse problem and strives to infer the
hidden reward function from demonstrations. However, the
rewards are global and shared by all agents in cooperative
tasks. Multi-agent credit assignment poses a challenge as the
joint actions generate a global (or collective) reward that may
not be decomposable among agents. One agent’s best pol-
icy depends on other agents’ policies, which makes learning
complicated and unstable.

In this work, we consider a problem setting in the central-
ized learning and decentralized execution framework [Lowe
et al., 2017], where learning takes place in a domain simula-
tor, and multiple agents execute their actions, respectively.
It proposes a hybrid learning approach from sub-optimal
demonstrations. Fig. 1 plots its learning flowchart with three
main steps: 1) the centralized critic network is trained us-
ing the expert demonstrations which are not optimal; 2) given
the centralized critic, the joint decisions of multiple agents at
each state are modeled as a combinatorial optimization prob-
lem and learned in a decentralized manner; and 3) the ac-
tor networks are regarded as new expert policies and used
to update demonstrations. The critic and actor networks are
learned jointly by performing the above two steps alterna-
tively. As the worst-case complexity of finding the global
optimal solution in the second step grows exponentially for
the number of agents, this work introduces a best response
dynamics algorithm to find the joint local optimal policies
alternatively, where each agent’ action is a best response to
others’ actions. Each agent action’s advantage function is es-
timated by calculating its contribution in the joint local opti-
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Figure 1: The flowchart of the approach. The training is centralized,
while only the actor networks (in the dashed) are executed.

mal policies, and it is proved (see Sec. 4.2) that this advantage
function is effective to guide agents’ actor networks to learn
better policies than demonstration actions.

The proposed approach is evaluated on Real-Time Strategy
(RTS) combat game [Churchill ez al., 2012]. Experimental re-
sults show that it significantly improves over demonstrations
and outperforms many demonstration-based methods. For ex-
ample, other competing methods improve the mean win rate
from 0.19 in demonstrations to 0.57, while the proposed ap-
proach achieves 0.80 in mean win rate.

2 Related Work

Many real-world applications [Chen et al., 2017; Nguyen et
al., 2018] are modeled as cooperative multi-agent learning
tasks, which aim to learn decentralized polices from global
or collective rewards. The centralized learning and decen-
tralized execution framework [Oliehoek et al., 2008] is an
increasing paradigm for these problems and has recently at-
tracted attention in RL community [Foerster er al., 2018;
Rashid er al., 2018; Lowe et al., 2017; Nguyen et al., 2018],
which assumes that there is access to a domain simulator. The
learning takes place in the simulator where extra state infor-
mation is available, and agents can communicate freely. In
contrast, each agent selects its action conditioned only on its
observation during execution.

RL entails the knowledge of the reward function or obser-
vations of immediate rewards. However, it is challenging to
define the rewards of most states in many multi-agent sys-
tems because it needs to take the joint states of all agents
into account. By contrast, it is often quite natural to ex-
press a task goal as a sparse reward function [Vecerik et al.,
2017]. A typical example is multi-robot navigation [Chen et
al., 20171, where the rewards are only observed directly when
collisions occur, or robots reach their destinations. A widely
used approach to these problems is learning from demonstra-
tions (LfD) [Schaal, 1996]. The direct method is to recover
experts’ policies from demonstrations by supervised learn-
ing [Pomerleau, 1991; Ross et al., 2011; Sun et al., 2017]
or generative adversarial learning [Ho and Ermon, 2016;
Song et al., 2018], which make the learned policies close to
the expert policies.

Unfortunately, it is hard to collect high-quality demonstra-
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tions in many tasks, and the available demonstrations are of-
ten sub-optimal. To learn better policies from demonstra-
tions, several methods combine imitation learning and RL
together [Silver et al., 2016; Hu et al., 2018]. However,
AlphaGo [Silver et al., 2016] is designed for the two-agent
zero-sum competitive task, and OGTL [Hu er al., 2018] re-
lies on independent rewards and single-agent action explo-
ration. Both cannot be directly applied to cooperative tasks
with collective rewards. Recently, a few approaches [Vecerik
et al., 2017; Hester erf al., 2018] are proposed to explore the
sparse-reward environment by LfD. These methods are all de-
signed for single-agent tasks and try to find better policies by
exploring demonstration actions. However, the joint state-
action space of multiple agents is much larger, and the ex-
ploration may be inefficient. Besides, inverse reinforcement
learning (IRL) [Ng and Russell, 2000] is designed to infer the
hidden reward function from demonstrations. Most existing
multi-agent IRL approaches are designed for two-agent zero-
sum games or non-cooperative tasks [Lin ef al., 2018]. In a
cooperative setting, even if the hidden rewards are inferred, it
is still hard to learn the agent’s best policy as it relies on the
policies of other agents.

3 Problem Statement

A cooperative multi-agent task can be described as a Dec-
POMDP [Rashid et al., 2018] (S, G, A, P, O, r, N, \) which
contains: State space S is a finite set of distinct states
which can be visited. Agents G = {g1, g2, ..., gn } denotes
N agents. Action space A = {A},cq where A, de-
fines the set of candidate actions that can be performed by
agent g. We particularly consider the discrete action space
problem where A, is a finite set. State transition func-
tion Py = P(st11]84, A) is induced by performing joint
actions A = {ag}gecq at state s,. Observation function
O(s) = {O9(s)}4eg where O9(s) is the observation of agent
g at state s. The decentralized policy of g is defined as
{p4(a]O9(s)) }ac as corresponding to the probabilities of ac-
tions to perform. Reward r(s’, s, A) is a bounded function
which is used to measure the reward (or payoff) of the joint
state-action where s’ ~ P(s’|s, A). Itis collective and shared
by all agents in the cooperative setting. In our task, the re-
wards are sparse which are zero in most states. A € [0,1) is a
discount factor. Given any initial state s; € S. At each time
step ¢, each agent g selects an action a4 € A, simultaneously,
following joint policies 7 = [] geg Pg- All agents receive a
global reward r;, and the state is transited to s;4; according
to P. In an episodic problem, this process continues until the
state reaches a terminal state sp. The state value V7 (s) is
calculated by the cumulative rewards with \:

T, (1)

V(s) =E (thl

where E is the expectation. If V™ (s) > V™2(s) for any
s € S, then m is better than 75. According to the state value,
the state-action value Q™ (s, A) is defined as:

Q" (s,A)=E (7“(5'7 s, A) + AV”(S')) , 2)
where s’ ~P(s'|s, A). Demonstrations are defined as an

observation set {si, {ay(s)}geg } 5, which shows how ex-
perts have performed in different states. Here sy, is the visited
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state and {ag4(sk)}gecg are all agents’ actions performed by
experts. Similar to [Pomerleau, 1991; Ho and Ermon, 2016],
a parameterized state-action mapping A" (s)= {aggD tgeg is
used to clone the experts’ behaviors, and it is trained by min-
imizing the loss Hg):argmin(,szzlL(ag(sk), aq(sk)), where
L(-) = 0if ag(sk)=a4(sx) and positive otherwise.

A motivating application for the above Dec-POMDP is
playing a real-time strategy (RTS) combat game, where the
task is to coordinate multiple allied units to defeat their ene-
mies in real-time scenarios. Since the number of units is large
and uncertain, it is necessary to resort to decentralized polices
where each learning agent controls an allied unit [Hu ef al.,
2018; Foerster et al., 2018; Rashid et al., 2018]. The global
rewards are easily defined when the combat ends or attacks
happen, while it is hard to evaluate the combat situation when
the agents are only moving [Churchill er al., 2012]. The
human-designed heuristics are often sub-optimal [Churchill
et al., 2012]. In the paper, the heuristics are used to generate
demonstrations, and our goal is to learn effective decentral-
ized polices to control the allied units for higher win rates.

4 Method

As shown in Fig. 1, we follow the centralized training and de-
centralized execution framework. Two types of networks are
modeled containing a centralized critic network parameter-
ized by ¥ and N decentralized actor networks parameterized
by {07 }yec for each agent. The critic is used to model collec-
tive rewards to make the learned policies cooperative, and the
actor networks are used to model the decentralized policies.
In the proposed approach, the inputs of the actor networks and
the critic network are different. Therefore, different from the
single-agent actor-critic methods [Li, 2018], these two types
of networks have independent parameters. The critic network
and actor networks are both trained in the simulator, while
only the actor networks are used to execute.

4.1 Critic Network Learning

Although the available demonstrations are sub-optimal, it is
still reasonable to approximately evaluate the state value by
demonstration actions. Given any state s € S, initialize game
with s and all agents performs demonstration actions AgD (s)
simultaneously. Simulate the game until the state reaches a
terminal state s, the state value based on demonstration ac-
tions VP (s) can be calculated by Eq. (1). Then the state s is
regarded as a training sample, and its label is the simulated
VP (s), which is similar to expert trajectory return [Hester et
al., 2018]. After collecting enough samples, the critic net-
work is trained in a supervised manner:

6" = argmin, Z(V(S’ 0) —VP(s)), 3)

where V(s,0) is the output of the critic network. In an
episodic problem, the state value often involves the task goal.
Hence, the sparsity of the state values could be much less than
rewards, which makes it easier to train the critic network.

4.2 Actor Network Learning

According to the critic network, the centralized Q value of
any state-action pair (s, A) are estimated by Eq. (2), written

Algorithm 1: The best response dynamics algorithm.

Input: State s € S, agents G, critic network and
demonstration actions AP (s) = {al(s)}geq-
Output: {l(s) ={ay(s)}geq-
Initialize A(s) = AP(s).
for iter = 1,2, ..., Iterations do
for g € G do
Calculate the response for each action a by the
critic network: Q?(s,a, A_,).
Choose the action _
ay(s) = argmax,e 40 Q%(s,a, A_,).
Update A by a4(s) = ay(s).

as Q%(s, A). Then the joint multi-agent decisions are mod-
eled as a combinatorial optimization problem which aims to
maximize Q value:

A*(s) = argmax 4 4 Q°(s, A). 4)

As the worst-case complexity of Eq. (4) grows exponentially
concerning the number of agents, we alternatively solve a
joint local optimal solution A = {a, }4c Where each agent’s
action is its best response to others’ actions:

Q%(s,a9,A_g) < Q%(s, A), 5
where a, is any unilateral deviation and A_, = {dg/}g:;ég.
To solve Eq. (5), the best response dynamics algorithm is in-
troduced in Alg. 1. It can be proven that Alg. 1 converges to
a local optimum [Roughgarden, 2016]: In each iteration, the
centralized state-action value () increases. Since the state-
action value is bounded, hence Alg. 1 eventually halt.

Here are some analyses about Alg. 1: Firstly, given the
critic network, the Q value is estimated using Eq. (2) which
is solved by one-step forward simulation. Besides, Alg. 1 re-
quires the full state and free communications of all agents.
Fortunately, Alg. 1 is only employed in training which is cen-
tralized and carried out in the simulator, and these require-
ments are fulfilled in many realistic simulators [Chen et al.,
2017; Tumer and Agogino, 2007]. Secondly, Alg. 1 needs
“Iterations x N ” computations where each computation
contains a one-step simulation and forwarding the critic net-
work once. That is, it is efficient with linear complexity con-
cerning the agents’ number. Thirdly, although Alg. 1 achieves
local optimum [Roughgarden, 2016] and there is no theoret-
ical guarantee of global optimality, yet it is still effective to
learn better policy from initial actions in practice. Due to the
strong fitting ability of deep neural networks, the fitting error
of Eq. (3) could be reduced by using enough training sam-
ples. Consider an ideal condition where the fitting error of
Eq. (3) is ignored, we can prove A is better than demonstra-
tion actions AP, thatis, V(s) > VP(s) for any s € S where
V and V2 are calculated by Eq. (1) by simulating Aand AP,
Proof: For any s € &S, consider an episode initialized by
s$1 = 8. Since Alg. 1 is initialized from AP and the state-
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Algorithm 2: The proposed learning algorithm.

Input: Demonstration actions AP (s) = {a(s)}eq-

Output: Critic network parameters #" and actor
networks parameters {07 } geg-

Generate training samples (s, V" (s)) by AP(s) and
store the samples to a data buffer B.

Update 8V by Eq. (3).

Initialize {07 } ycg randomly.

forep =1, ..., Episodes do

Initialize s; randomly.

fort=1,...do

if s; is terminal then
| Break;

Calculate A(s;) by Alg. 1.
for g € Gdo
Calculate advantage function by Eq. (7)
L and update 67 by Eq. (3).
Perform actions
{a9 = arg max, p(a|O9(s), 9;)}g€g and
| collect reward r;.
Calculate the state value V(s;) = >, _,
any s; and update B with {s;, V(s¢)}.
if ep mod Eypgate = 0 then
| Update 6V using B by Eq. (3).

Aty for

action value increases in every iteration of Alg. 1, we have:

VP(s1) = E (Q” (1,47 (1)) <E (Q(s1,A(51))

= E (r(s2,51, A(s1)) + AV (52) )

<E (r(s2, 51, A(s1)) + Ar(ss, 52, Als2)) + 2Q” (53, A(s2)) )
<E

(30 N (541,50, A1) = V(s):

t=1

(6)

In summary, A is a better policy than demonstration ac-
tions AP . Hence, it can be used to guide the actor networks.
Specifically, the advantage function of an agent action (ag4)
can be estimated by the Q value the agent can gain when per-
forming the action in A, that is:

A9(s,a9) = Q°(s,a9, A_g) —mingea, Q°(s,a’, A_g), (1)

where A9(s, a,) is the continuous form extended from Aand
ag(s) = argmaxg,ca, AI(s,ay). Generally speaking, an
action with higher A9(s, ay) should have a larger probability
to perform. Hence, the actor network 67 is updated as:

05 < 05 +n>_  Vorlogp(aglO(s),05)A% (s, ag), (8)
ag

where p(ay|O9(s),07) is the output of the actor network 07
and 7 is the learning rate.

4.3 Joint Update

According to Eq. (6), the initial demonstration actions are
used to generate expert trajectory returns and train the critic
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Figure 2: Left: RTS combat game task where we control red units
against to the green units. Right: Traffic junction task where agent-
controlled cars (circles) pass through the junction without colliding.

network, then Alg. 1 finds a better policy than demonstra-
tion actions, which is used to learn actor networks. More-
over, the actor networks can also be used to generate action as
a’(s) = argmaxaea, p(alO9(s), 07 ), and these actions are
considered as new demonstration actions. An asynchronous
RL algorithm concludes this iterative learning procedure in
Alg. 2. In summary, the critic network is used to train the
actor networks by Eq. (8), then the actor networks update the
state values, and the updated state values will be used to train
the critic network by Eq. (3) alliteratively.

S Experiments
5.1 RTS Combat Game

As enemy units and the opponent’s strategy are modeled as
a part of environments, RTS combat game has been widely
utilized to test the multi-agent cooperative algorithms [Peng
et al., 2017; Lowe et al., 2017; Foerster et al., 2018; Rashid
et al., 2018]. Tt is a significant challenge because the state-
action space is extremely large and the time allowed for plan-
ning is on the order of milliseconds. Our approach is tested
using SparCraft [Churchill et al., 2012], which is a simulator
of the StarCraft local combat game and is widely adopted to
test AL algorithms [Churchill and Buro, 2013; Lelis, 2017,
Moraes and Lelis, 2018]. We choose it as the experimen-
tal platform because it implements several different heuristics
which can be regarded as demonstrations.

The action space of each agent contains three types
of discrete actions: noop, movel[l,...,directions] and
attack[1, ..., enemy_ids], where directions is set to 4 cor-
responding to left, right, up and down, and enemy_ids is the
number of enemy units at the initial game state. To an allied
unit, [1, ..., enemy_ids] is a list of its attack targets, and it is
arranged in ascending order of the remaining hit points (HP).
The reward is calculated when the terminal state is reached
or the attacks happen. It equals the HP change of all units
compared to the previous state. The rewards are normalized
by dividing the sum of all allied units’ HP at the initial state,
and are sparse when the units are only moving. The feature
vector of an agent’s observation consists of: the attributes
of the corresponding unit, the ten closest allied units and ten
closest enemy units. To make the feature vector unique and
identical to each state, the allied units and enemy units are ar-
ranged in ascending order of the distance to the corresponding
unit. If the numbers of allied and enemy units are less than
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10, then the attributes of allied and enemy units are filled with
0 respectively to make the length of feature vector identical at
any state. For the critic network, the global state feature con-
tains the statistical properties of all allied and enemy units,
respectively, such as the mean and variance of the current
HP, weapon cooldown, and positions. We employ the sta-
tistical properties as the feature of the critic network rather
than concatenating properties of all units because the low-
dimensional feature leads to less critic network parameters to
handle over-fitting. The actor and critic networks are both
composed of 4 fully connected (FC) layers, and three batch
normalization layers following the first 3 FC layers, respec-
tively. A softmax layer is used in the actor networks to out-
put the probability distribution. The widths of the FC layers
in the actor networks and critic network are 512, 256, 256,
directions + enemy_tds + 1 and 256, 128, 128, 1 respec-
tively. To recover actions from demonstrations, the network
architecture of 95 (Sec. 3) is the same as the actor network.
We use this simple architecture because the actor networks
need to make decisions in real-time. As suggested in [Gupta
et al., 2017], the homogeneous agents share the same actor
network parameters to make learning more efficient.

The iterations of Alg. 1, Eypdate of Alg. 2 and A are set to
7, 500 and 0.995, respectively. The mean win rates and termi-
nal hit points reward ! over 100 battles are used as evaluation
metrics. We utilize 2 rule-based heuristics as our demonstra-
tion policies, including: Attack-Closest (c) where agents at-
tack the closest enemy within weapon range, and any agent
not within the range of any enemy moves toward the closest
enemy, and Attack-Weakest (w) where agents attack the en-
emy with minimum remaining hit points. These two heuris-
tics are both sub-optimal. For example, they both ignore
multi-agent cooperation and make decisions for each agent
independently. We generate 10,000 observations by these two
heuristics as our demonstrations, and 100,000 trajectories are
simulated to pre-train the critic network in Alg. 2. All net-
works are optimized by SGD with learning rate 10~3. For
each combat scenario, two circular regions are chosen for al-
lied and enemy units, respectively, and each unit is randomly
born in the corresponding region. Our experiments are con-
ducted on cross-validation setting that the model learned from
¢ will fight with w and vice versa. The Marine (m) is chosen
as the tested unit type. The test combat scenarios differ in dif-
ferent scales and difficulties: a small scale combat “m5v5”, a
large scale combat “m30v30”, and two unbalanced combats
“m18v20” and “m24v30” where we control 18 (24) Marines
against 20 (30) Marines. These combats, especially the un-
balanced combats, require effective multi-agent cooperation
to defeat enemies. In test, the legal action with the maximum
probability according to the actor network is performed. The
models are trained on GeForce GTX 1080 and tested on a PC
with one 2.4 GHz CPU and 8G RAM.

5.2 Experimental Results

The compared methods are demonstration based ones: 1) The
demonstration policy (D), i.e, the corresponding heuristic; 2)
Heuristic-based search methods, including UCT [Churchill

!"The sum of the allied units’ HP minus those of all enemies.
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| m5v5 | m30v30 | ml8v20 | m24v30
Metrics | W R |W R |W R |W R
D_c 0.43 -0.02/10.75 0.180.32 -0.11]0.12 -0.26
UCT_.c [0.93 0.06(0.88 0.20]0.40 -0.14(0.13 -0.25

A-B.c [096 0.07 |0.85 0.21 [{0.36 -0.17|0.12 -0.24
Profile | 0.84 0.14 |0.99 0.33|0.61 0.06 |0.30 -0.11

BC.c [0.42 -0.04|0.76 0.19(0.28 -0.12]0.10 -0.29
DQfD_c | 0.85 0.16 [0.90 0.41 {0.47 -0.10|0.23 -0.20
OGTL_c [ 0.89 0.08 |0.93 0.46 |0.48 -0.07|0.26 -0.16

Ours_c | 0.98 0.18 [1.00 0.51|0.87 0.24 [0.76 0.19

D.w [0.61 0.020.13 -0.23|0.03 -0.36|0.00 -0.49
UCT_w [0.93 0.01 |0.73 0.09 |0.37 -0.19]0.00 -0.36
A-B.w 1092 0.02 |0.71 0.09 [0.34 -0.26|0.00 -0.38
Profile |0.91 0.16 |0.96 0.21 |0.39 -0.08]0.02 -0.29

BCw |0.60 0.02]0.13 -0.23]0.02 -0.37|0.01 -0.49
DQfD_w|0.89 0.08 |0.81 0.17 |0.30 -0.14|0.03 -0.37
OGTL_w|0.97 0.09 |0.78 0.15]0.36 -0.12]|0.06 -0.38

Ours_w |0.99 0.19 |0.91 0.22]0.71 0.16 [0.58 0.03

Table 1: A comparison with other demonstration based approaches
where “_¢” (“_w”) means the used demonstrator policy is ¢ (w). “W”
and “R” are mean win rates and terminal hit points rewards respec-
tively. The best result for the given scenario is in bold.

and Buro, 2013], Alpha-Beta (A-B) [Churchill et al., 2012],
and profile search [Churchill and Buro, 2013], which have
been implemented in SparCraft; 3) Demonstration-based
learning methods, including behavioral cloning (BC) [Pomer-
leau, 1991], DQfD [Hester et al., 2018], and OGTL [Hu et
al., 2018]. We choose these methods because they can learn
decentralized policies and are designed by totally different
principles. BC is a baseline of imitation learning [Ho and Er-
mon, 2016; Song et al., 2018], which aims to recover experts’
policies from demonstrations, DQfD utilizes demonstrations
to guide the exploration of RL in sparse reward problems,
and OGTL [Hu et al., 2018] pre-train the network by demon-
strations and refine the network by RL. All these methods are
re-implemented by the same setting and network architecture.
The only difference is that DQfD and OGTL need rewards of
single-agent action, which is same to [Hu et al., 2018].

The result in Table 1 verifies: 1) Our approach outperforms
other methods as well as the demonstration policies signifi-
cantly in most testing scenarios. The advantage is evident in
unbalanced combats. For example, in m24v30 with demon-
stration w, the win rates of other methods are all bellow 0.10,
while our approach gets 0.58. 2) The search-based meth-
ods UCT and Alpha-Beta can improve demonstration poli-
cies clearly in balanced combats, while the improvement is
very limited in unbalanced combats. It is difficult to search
the effective multi-agent cooperative policies from the huge
game tree under real-time limitations. Profile search selects
the heuristic without additional exploration, and it is limited
when the candidate heuristics are both sub-optimal. Besides,
these methods rely on global state and free communication
among agents, while our method only requires agents’ ob-
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Figure 3: The terminal HP rewards of training episodes in m18v20
(Left) and m24v30 (Right) by c¢. “Random” means the network are
set randomly, and OGTL is pre-trained by imitation learning. The
shown reward is the mean value of the following 100 episodes.

servations in execution. 3) Fig. 3 indicates the terminal hit
points reward curve with different training episodes of some
learning-based methods. BC converges quickly, and the final
performance is close to the demonstrator policy. Compared
with BC, our method outperforms the demonstrator policy.
The reason is that we only utilize demonstrations to pre-
train the critic network, and Alg. 1 improves the initial pol-
icy effectively. DQfD constraints the learning policy close to
demonstrations, and it limits the model when the demonstra-
tions are sub-optimal. OGTL works well in balanced com-
bats while performs poorly in unbalanced combats because it
ignores multi-agent cooperation during learning, and the co-
operation is more critical in unbalanced combats.

5.3 Further Evaluation

To validate the generality of the proposed approach, an
additional experiment is conducted on the traffic junction
task [Sukhbaatar and Fergus, 2016]. As shown in Fig. 2, the
task consists of a 4-way junction on a 14 x 14 grid. New cars
enter the grid with probability P, ;. from each of the four
directions, and the total car number at any time step is lim-
ited to 10. Each car is randomly assigned to one of 3 possible
routes and keeps to the right-hand side of the road. Once a
car arrives at its destination (i.e., moves outside the junction
area), it will be removed. A collision happens when two cars
move to the same location. The episode is terminated after 40
steps and is viewed as a failure if one or more collisions have
occurred. A car is allowed to perform two types of actions
at each time step: advances by one cell while keeping on its
route or stay still at the current position.

A collision incurs a reward 7. = —5, and each car gets re-
ward of r, = 1 if it moves outside the junction area. Thus,
the global reward at time ¢ is N'r. + N’r, where N} and
N! are numbers of collisions and arrivals. The reward is
sparse and shared by all agents. Most hyper-parameters are
the same as the RTS combat task. The only differences are
Eypdate = 100, and 20,000 samples are generated to pre-
train the critic network in Alg. 2. Each car can only observe
other cars in its vision range (a surrounding 3 x 3 neighbor-
hood), and can communicate to all other cars in training. In
the test phase, the communication is unavailable. For the ac-
tor network, the feature vector is the observation of a car,
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Methods D BC Ours w/o D
FR (%) 0.72 0.72 0.35 0.19

Ours

Table 2: Experimental results on the traffic junction task. “FR”
means failure rate.

which is the same to [Sukhbaatar and Fergus, 2016]. For
the critic network, the representation of each car combines its
observation and action one-hot encoding. The feature vector
concatenates representations of all cars each way. For posi-
tions without a car, a nominal car whose representations are 0
is assigned to make the length of feature vector identical. The
network architectures are the same to the RTS combat task
except that the output node number is 2 in the actor network.

The comparative results are shown in Table 2. We do not
evaluate DQFD and OGTL in this task because the collisions
are related to multiple agents, and the reward cannot be de-
composed directly. The network architecture and features
used in BC are the same as the actor network for a fair com-
parison. BC can achieve very close results with “D” because
the used demonstrator policy is easy to imitate, and the net-
work needs to learn “forward” at any time. The proposed ap-
proach outperforms the demonstration and BC clearly, and it
indicates the proposed approach is general to different tasks.

6 Conclusion

This paper introduces a method to learn decentralized policies
by global rewards from sub-optimal demonstrations. It pro-
poses a new multi-agent actor-critic learning method to tackle
the challenges from the sub-optimality of the demonstrations
and multi-agent credit assignment challenge. Extensive ex-
perimental results on the RTS combat game demonstrate the
effectiveness of the proposed approach.
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