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Abstract
The density based clustering method Density-
Based Spatial Clustering of Applications with
Noise (DBSCAN) is a popular method for outlier
recognition and has received tremendous attention
from many different areas. A major issue of the
original DBSCAN is that the time complexity could
be as large as quadratic. Most of existing DB-
SCAN algorithms focus on developing efficient in-
dex structures to speed up the procedure in low-
dimensional Euclidean space. However, the re-
search of DBSCAN in high-dimensional Euclidean
space or general metric spaces is still quite lim-
ited, to the best of our knowledge. In this paper,
we consider the metric DBSCAN problem under
the assumption that the inliers (excluding the out-
liers) have a low doubling dimension. We apply
a novel randomized k-center clustering idea to re-
duce the complexity of range query, which is the
most time consuming step in the whole DBSCAN
procedure. Our proposed algorithms do not need to
build any complicated data structures and are easy
to implement in practice. The experimental results
show that our algorithms can significantly outper-
form the existing DBSCAN algorithms in terms of
running time.

1 Introduction
Density-based clustering is a fundamental topic in data anal-
ysis and has many applications in the areas, such as machine
learning, data mining, and computer vision [Tan et al., 2006].
Roughly speaking, the problem of density-based clustering
aims to partition given data set into clusters where each clus-
ter is a dense region in the space. The remaining data located
in sparse regions are recognized as “outliers”. Note that the
given data set can be a set of points in a Euclidean space or
any abstract metric space. DBSCAN (Density-Based Spatial
Clustering of Applications with Noise ) [Ester et al., 1996]
is one of the most popular density-based clustering methods
and has been implemented for solving many real-world prob-
lems. DBSCAN uses two parameters, “MinPts ≥ 1” and
“ε > 0”, to define the clusters (i.e., the dense regions): a
point p is a “core point” if it has at least MinPts neighbors

within distance ε; a cluster is formed by a set of “connected”
core points and some non-core points located in the bound-
ary (which are named “border points”). We will provide the
formal definition in Section 2.1.

A bottleneck of the original DBSCAN algorithm is that it
needs to perform a range query for each data item, i.e., com-
puting the number of neighbors within the distance ε, and
the overall time complexity can be as large as O(n2β) in the
worst case, where n is the number of data items and β indi-
cates the complexity for computing the distance between two
items. For example, if the given data is a set of points in RD,
we have β = O(D). When n or β is large, the procedure of
range query could make DBSCAN running very slowly.

Most existing DBSCAN algorithms focus on the case in
low-dimensional Euclidean space. To speed up the step of
range query, a natural idea is using some efficient index struc-
tures, such as R∗-tree [Beckmann et al., 1990], though the
overall complexity in the worst case is still O(n2) (β = O(1)
for low-dimensional Euclidean space). We refer the reader
to the recent articles that systematically discussed this is-
sue [Gan and Tao, 2015; Schubert et al., 2017].

Using novel techniques from computational geometry, the
running time of DBSCAN in R2 has been improved from
O(n2) to O(n log n) by [de Berg et al., 2017; Gunawan,
2013]. For the case in general D-dimensional Euclidean
space, [Chen et al., 2005] and [Gan and Tao, 2015] respec-
tively provided the algorithms achieving sub-quadratic run-
ning times, where their complexities are both in the form
of O(nf(D) · D) with f(D) being some function satisfying
limD→∞ f(D) = 2. Namely, when the dimensionality D is
high, their algorithms cannot gain a significant improvement
over the straightforward implementation that has the com-
plexity O(n2D). Recently, [Jang and Jiang, 2019] proposed
a sampling based method, called DBSCAN++, to compute
an approximate solution for DBSCAN; but their sample size
m ≈ nwhen the dimensionalityD is large (so there is no sig-
nificant difference in terms of the time complexity if running
the DBSCAN algorithm on the sample).

To speed up DBSCAN in practice, a number of approx-
imate and distributed DBSCAN algorithms have been pro-
posed, such as [Gan and Tao, 2015; Yang et al., 2019;
Lulli et al., 2016; Song and Lee, 2018; Jang and Jiang,
2019]. To the best of our knowledge, most of these algo-
rithms only consider instances in low-dimensional Euclidean
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space (rather than high-dimensional Euclidean space or ab-
stract metric space), except [Lulli et al., 2016; Yang et al.,
2019]. Lulli et al. presented an approximate, distributed algo-
rithm for DBSCAN, as long as the distance function d(·, ·) is
symmetric, that is, d(x, y) = d(y, x) for any two points x and
y. Very recently, Yang et al. showed an exact, distributed al-
gorithm for DBSCAN in any abstract metric space; however,
their method mainly focuses on how to ensure the load bal-
ancing and cut down the communication cost for distributed
systems, rather than reducing the computational complexity
of DBSCAN (actually, it directly uses the original DBSCAN
algorithm of Ester et al. on each local machine).

1.1 Our Main Results
In this paper, we consider developing efficient algorithm for
computing the exact solution of DBSCAN. As mentioned by
Yang et al., a wide range of real-world data cannot be repre-
sented in low-dimensional Euclidean space (e.g., textual and
image data can only be embedded into high-dimensional Eu-
clidean space). Moreover, as mentioned in [Schubert et al.,
2017], the original DBSCAN was designed for general met-
rics, as long as the distance function of data items can be
well defined. Thus it motivates us to consider the problem of
DBSCAN in high-dimensional Euclidean space and general
metric space.

We assume that the given data has a low “doubling dimen-
sion”, which is widely used for measuring the intrinsic di-
mensions of datasets [Talwar, 2004] (we provide the formal
definition in Section 2.2). The rationale behind this assump-
tion is that many real-world datasets manifest low intrinsic
dimensions [Belkin, 2003]. For example, image sets usually
can be represented by a low dimensional manifold though
the Euclidean dimension of the image vectors can be very
high. We also note that it might be too strict to assume that
the whole data set has a low doubling dimension, especially
when it contains outliers. To make the assumption more gen-
eral and capture a broader range of cases in practice, we only
assume that the set of inliers has a constant doubling dimen-
sion while the outliers can scatter arbitrarily in the space. The
assumption is formally stated in Definition 3. We focus on the
following key question:

Is there any efficient algorithm being able to reduce the
complexity of range query for DBSCAN, under such “low
doubling dimension assumption”?

We are aware of several index structures in doubling met-
rics, e.g., [Karger and Ruhl, 2002; Krauthgamer and Lee,
2004; Talwar, 2004]. However, these methods cannot han-
dle the case with outliers. Moreover, they usually need to
build very complicated data structures (e.g., hierarchically
well-separated trees) that are not quite efficient in practice.
The popular Locality Sensitive Hashing [Andoni and Indyk,
2008] is efficient for nearest neighbor search in high dimen-
sions, but not quite appropriate to solve the range query step
for DBSCAN (especially for exact DBSCAN).

We observe that the well-known k-center clustering pro-
cedure can be incorporated into the DBSCAN algorithm to
reduce the complexity of the range query procedure in dou-
bling metric. However, we cannot directly apply the ordinary

k-center clustering method (e.g., [Gonzalez, 1985]) since the
outliers may not satisfy the low doubling dimension condi-
tion. Instead, we show that a randomized k-center clustering
algorithm proposed by [Ding et al., 2019] can efficiently rem-
edy this issue, though we still need to develop some new ideas
to apply their algorithm to solve the problem of DBSCAN.

The rest of the paper is organized as follows. In Sec-
tion 2, we show the formal definitions of doubling dimension
and DBSCAN, and briefly introduce the randomized k-center
clustering algorithm from [Ding et al., 2019]. In Section 3,
we propose and analyze our algorithms for reducing the com-
plexity of range query in detail. Finally, we compare the ex-
perimental performances of our algorithms and several well-
known baseline DBSCAN algorithms on both synthetic and
real datasets.

2 Preliminaries
Throughout this paper, we use (X, d) to denote the metric
space where d(·, ·) is the distance function on X . Let |X| =
n. We also assume that it takes O(β) time to compute d(p, q)
for any p, q ∈ X . Let B(x, r) be the ball centered at point
x ∈ X with radius r ≥ 0 in the metric space.

2.1 DBSCAN
We introduce the formal definition of DBSCAN. Given two
parameters ε > 0 and MinPts ∈ Z+, DBSCAN divides the
points of X into three classes:

1. p is a core point, if |B(p, ε) ∩X| ≥ MinPts;
2. p is a border point, if p is not a core point but p ∈

B(q, ε) of some core point q;
3. all the other points are outliers.
To define a cluster of DBSCAN, we need the following

concept.
Definition 1 (Density-reachable). We say a point p ∈ X is
density-reachable from a core point q, if there exists a se-
quence of points p1, p2, · · · , pt ∈ X such that:
• p1 = q and pt = p;
• p1, · · · , pt−1 are all core points;
• pi+1 ∈ B(pi, ε) for each i = 1, 2, · · · , t− 1.
If one arbitrarily picks a core point q, then the correspond-

ing DBSCAN cluster defined by q is

{p | p ∈ X and p is density-reachable from q}. (1)

Actually, we can imagine that the set X form a directed
graph: any two points p and p′ ∈ P are connected by a di-
rected edge p→ p′, if p is a core point and p′ ∈ B(p, ε). From
(1), we know that the cluster is the maximal subset contain-
ing the points who are density-reachable from q. The clus-
ter may contain both core and border points. It is easy to
know that for any two core point q and q′, they define exactly
the same cluster if they are density-reachable from each other
(i.e., there exists a path from q to q′ and vice versa). There-
fore, a cluster of DBSCAN is uniquely defined by any of its
core points. Moreover, a border point could belong to multi-
ple clusters and an outlier cannot belong to any cluster. The
goal of DBSCAN is to discover these clusters and outliers.
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For convenience, we use Xin and Xout to denote the sets
of inliers (including the core points and border points) and
outliers, respectively.

2.2 Doubling Metrics
Definition 2 (Doubling Dimension). The doubling dimension
of a metric space (X, d) is the smallest number ρ > 0, such
that for any p ∈ X and r ≥ 0,X∩B(p, 2r) is always covered
by the union of at most 2ρ balls with radius r.

Roughly speaking, the doubling dimension describes the
expansion rate of the metric space. We have the fol-
lowing property of doubling metrics from [Talwar, 2004;
Krauthgamer and Lee, 2004] that can be proved by recur-
sively applying Definition 2.
Proposition 1. Let (X, d) be a metric space with a doubling
dimension ρ > 0. If Y ⊆ X and its aspect ratio is α =
maxy,y′∈Y d(y,y

′)

miny,y′∈Y d(y,y
′) , then |Y | ≤ 2ρdlogαe.

For our DBSCAN problem, we adopt the following as-
sumption from [Ding et al., 2019].
Definition 3 (Low Doubling Dimension Assumption). Given
an instance (X, ε, MinPts) of DBSCAN, we assume that the
metric space (Xin, d), i.e., the metric space formed by the
set of core points and border points, has a constant doubling
dimension ρ > 0. The set Xout of outliers can scatter arbi-
trarily in the space.

2.3 The Randomized Gonzalez’s Algorithm
k-center clustering is one of the most fundamental cluster-
ing problems [Gonzalez, 1985]. Given a metric space (X, d)
with |X| = n, the problem of k-center clustering is to find
k balls to cover the whole X and minimize the maximum
radius. For the sake of completeness, let us briefly intro-
duce the algorithm of [Gonzalez, 1985] for k-center cluster-
ing first. Initially, it arbitrarily selects a point from X , and
iteratively selects the following k− 1 points, where each j-th
step (2 ≤ j ≤ k) chooses the point having the largest min-
imum distance to the already selected j − 1 points; finally,
each point of X is assigned to its nearest neighbor of these
selected k points. It can be proved that this greedy strategy
yields a 2-approximation of k-center clustering (i.e., the max-
imum radius of the obtained k balls is at most twice as large
as the optimal radius).

[Ding et al., 2019] presented a randomized version of the
Gonzalez’s algorithm for solving k-center clustering with
outliers. Let z ≥ 1 be the pre-specified number of outliers,
and the problem of k-center with outliers is to find k balls
to cover n − z points of X and minimize the maximum ra-
dius. This problem is much more challenging than the ordi-
nary k-center clustering, since we do not know which points
are the outliers in advance and there are an exponentially large
number

(
n
z

)
of different possible cases. Note that other algo-

rithms for k-center clustering with outliers, such as [Charikar
et al., 2001; Chakrabarty et al., 2016], take at least quadratic
time complexity. The key idea of [Ding et al., 2019] is to re-
place each step of Gonzalez’s algorithm, choosing the farthest
point to the set of already selected points, by taking a random
sample from the farthest (1 + δ)z points, where δ > 0 is

Algorithm 1 The Randomized Gonzalez’s algorithm

Input: An instance (X, d) of k-center clustering with z
outliers, and |X| = n; the parameters δ > 0, η ∈ (0, 1),
and t ∈ Z+.

1. Let γ = z/n and initialize a set E = ∅.
2. Initially, j = 1; randomly select 1

1−γ log 1
η points

from X and add them to E.
3. Run the following steps until j = t:

(a) j = j+1 and letQj be the farthest (1+δ)z points
of X to E (for each point p ∈ X , its distance to
E is minq∈E d(p, q)).

(b) Randomly select 1+δ
δ log 1

η points from Qj and
add them to E.

Output E.

a small parameter; after O(k) steps, with constant probabil-
ity, the algorithm yields a set of O(kδ ) balls covering at least
n − (1 + δ)z points of X and the resulting radius is at most
twice as large as the optimal radius. For example, if we set
δ = 1, the algorithm will yield O(k) balls covering at least
n − 2z points. The formal result is presented in Theorem 1.
We omit the detailed proof from [Ding et al., 2019].

Theorem 1. Let ropt be the optimal radius of the instance
(X, d) of k-center clustering with z outliers. If we set t =
k+
√
k

1−η in Algorithm 1, with probability at least (1 − η)(1 −
e−

1−η
4 ), the union of the balls

∪c∈EB
(
c, 2ropt

)
(2)

covers at least n− (1 + δ)z points of X .

If 1
η and 1

1−γ are constant numbers, the number of balls
(i.e., |E|) is O(kδ ) and the success probability is constant. In
each round of Step 3, there are 1+δ

δ log 1
η = O( 1

δ ) new points
added toE, thus it takesO( 1

δnβ) time to update the distances
from the points of X to E; to select the set Qj , we can apply
the linear time selection algorithm [Blum et al., 1973]. Over-
all, the running time of Algorithm 1 is O(kδnβ). If the given
instance is in RD, the running time will be O(kδnD).

3 Our Algorithms and Theoretical Analysis
In this section, we present two efficient algorithms for solving
DBSCAN under the assumption of Definition 3.

3.1 The First DBSCAN Algorithm
Our first DBSCAN algorithm (Algorithm 2) contains two
parts. To better understand our algorithm, we briefly intro-
duce the high-level idea below. For convenience, we use
d(U, V ) to denote the minimum distance between two sets
U and V ⊂ X , i.e., min{d(u, v) | u ∈ U, v ∈ V }.
Part (i). First, we run Algorithm 1 to conduct a coarse parti-
tion on the given setX . We viewX as an instance of k-center
clustering with z outliers where z = |Xout| (recallXout is the
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set of outliers defined in Section 2.1). However, we cannot
directly run Algorithm 1 since the values of t and z are not
given. Actually, we can avoid to set the value of t via a slight
modification on Algorithm 1; we just need to iteratively run
Step 3 until d(Qj , E) ≤ r, where r is a parameter that will be
discussed in our experiments. For the parameter z, we cannot
obtain its exact value before running DBSCAN. In practice,
the number z is much smaller than n; so we assume that an
upper bound z̃ of z is available (e.g., we can estimate the up-
per bound of z by taking a small sample before running the
algorithm). In each round of Step 3 of Algorithm 1, we up-
date the distances from X to E. As a by-product, we can
store the following information after running Algorithm 1:

• the pairwise distances of E: {d(c, c′) | c, c′ ∈ E};
• for each p ∈ X , denote by cp its nearest neighbor in E.

If we simply set δ = 1 in Algorithm 1, Theorem 1 im-
plies that at least n− 2z̃ points of X are covered by the balls
∪c∈EB

(
c, r
)
. We denote the set of points outside the balls as

Xz̃ , and obviously |Xz̃| is no larger than 2z̃ by Theorem 1.

Part (ii). For the second part, we check each point p ∈ X
and determine its label to be “core point”, “border point”,
or “outlier”. According to the formulation of DBSCAN, we
need to compute the size

∣∣X∩B(p, ε)
∣∣. In general, this proce-

dure will takeO(nβ) time and the whole running time will be
O(n2β). To reduce the time complexity, we can take advan-
tage of the information obtained in Part (i). Since |Xz̃| ≤ 2z̃
and z̃ usually is much smaller than n, we focus on the part
X \Xz̃ containing the majority of the points in X . Let p be
any point in X \Xz̃ and cp be its nearest neighbor in E. Let

Ap = {c | c ∈ E, d(c, cp) ≤ 2r + ε}, (3)

and we can quickly obtain the set Ap since the pairwise dis-
tances ofE are stored in Part (i). Lemma 1 guarantees that we
only need to check the local region, the balls

⋃
c∈Ap B(c, r)

and Xz̃ , instead of the whole X , for computing the size∣∣X ∩ B(p, ε)
∣∣; further, Lemma 2 shows that the size of Ap

is bounded. See Figure 1 for an illustration.

Lemma 1. If p ∈ X \ Xz̃ , we have X ∩ B(p, ε) ⊂(⋃
c∈Ap

(
X ∩ B(c, r)

))⋃
Xz̃ .

Proof. Let q be any point in X \Xz̃ . If d(cp, cq) > 2r + ε,
i.e., q ∈ ⋃c/∈Ap B(c, r), by using the triangle inequality, we
have

d(p, q) ≥ d(cp, cq)− d(p, cp)− d(q, cq)

> 2r + ε− r − r > ε. (4)

Therefore, q /∈ X ∩ B(p, ε). That is, X ∩ B(p, ε) ⊂

X \
( ⋃
c/∈Ap

B
(
c, r
))

=
( ⋃
c∈Ap

(
X ∩ B(c, r)

))⋃
Xz̃. (5)

So we complete the proof.

Now, we consider the size of Ap. Recall the construc-
tion process of E in Algorithm 1. Initially, Algorithm 1
adds 1

1−γ log 1
η points to E; in each round of Step 3, it adds

Algorithm 2 METRIC DBSCAN ALGORITHM

Input: An instance (X, d) of DBSCAN, and the parame-
ters ε, r > 0, MinPts, z̃ ∈ Z+.

1. Run Algorithm 1 with setting δ = 1, and terminate
the loop of Step 3 when d(Qj , E) ≤ r.

(a) Store the set DE = {d(c, c′) | c, c′ ∈ E}.
(b) For each p ∈ X , denote by cp its nearest neigh-

bor in E.
(c) If the instance is in Euclidean space: for each

c ∈ E we build a R∗-tree for the points inside
B(c, r) (if a point p is covered by multiple balls,
we assign it to the ball of the center cp).

2. For each p ∈ X , check whether it is a core point:

(a) if p ∈ Xz̃ , directly compute the set X ∩ B(p, ε)
by scanning X;

(b) else, obtain the set Ap = {c | c ∈ E, d(c, cp) ≤
2r + ε} from DE , and compute the set X ∩
B(p, ε) by checking the points in

(⋃
c∈Ap

(
X ∩

B(c, r)
))⋃

Xz̃ (inside each B(c, r), we use the
R∗-tree built in Step 1(c) if the instance is in Eu-
clidean space).

3. Join the core points into clusters by running the stan-
dard DBSCAN procedure [Schubert et al., 2017].

2 log 1
η points to E (since we set δ = 1). For convenience,

we let num = max{ 1
1−γ log 1

η , 2 log 1
η}. So we can imagine

that E consists of multiple “batches” where each batch con-
tains ≤ num points. Also, since we terminate Step 3 when
d(Qj , E) ≤ r, any two points from different batches should
have distance at least r. We consider the batches having non-
empty intersection with Ap. For ease of presentation, we de-
note these batches asB1, B2, · · · , Bm. Further, we label each
batch Bj by two colors for 1 ≤ j ≤ m:
• “red” if Bj ∩Ap ∩Xin 6= ∅;
• “blue” otherwise.

Without loss of generality, we assume that the batches {Bj |
1 ≤ j ≤ m′} are red, and the batches {Bj | m′+1 ≤ j ≤ m}
are blue. To bound the size of Ap, we divide it to two parts
Ap \Xin and Ap ∩Xin. Recall Xin is the set of core points
and border points defined in Section 2.1. It is easy to know
that Ap \Xin ⊂ Xout, i.e.,

|Ap \Xin| ≤ |Xout| ≤ z̃. (6)

Also, Ap ∩Xin belongs to the union of the red batches, and
therefore |Ap ∩Xin| ≤ m′ × num. So we focus on the value
of m′ below.
Lemma 2. The number of red batches, m′, is at most
2ρdlogαe, where α = 4 + 2 εr . That is, |Ap ∩ Xin| ≤
2ρdlogαe × num. For simplicity, if we assume 1

η and 1
1−γ are

constant numbers in Algorithm 1, then

|Ap ∩Xin| ≤ O(2ρdlogαe).
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p

cpcp ≤ 2r + ǫ≤ 2r + ǫ

(a) (b) (c)

Figure 1: (a) indicates an instance of DBSCAN, where the blue points are inliers (including the core points and border points) and the red
points are outliers; (b) shows the balls obtained in Algorithm 1; (c) shows an example of computing the set X ∩ B(p, ε) for a point p, where
we just need to check the two neighbor balls of cp.

Proof. For each red batch Bj , we arbitrarily pick one point,
say cj , from Bj ∩Ap ∩Xin, and let

H = {cj | 1 ≤ j ≤ m′}. (7)

First, we know H ⊂ Xin. Second, because the minimum
pairwise distance of H is at least r (since any two points of
H come from different batches) and the maximum pairwise
distance of H

max
cj ,cj′∈H

d(cj , cj′) ≤ max
cj ,cj′∈H

(
d(cj , cp) + d(cp, cj′)

)
≤ 2(2r + ε) = 4r + 2ε, (8)

the aspect ratio of H is no larger than α = 4 + 2 εr . Note the
doubling dimension of (Xin, d) is ρ according to Definition 3.
Through Proposition 1, we have |H| ≤ 2ρdlogαe.

So the number of red batches m′ = |H| ≤ 2ρdlogαe;
each batch has size ≤ num. Overall, we have |Ap ∩ Xin| ≤
2ρdlogαe × num.

The overall complexity. Our goal is to reduce the search
region for each query step, e.g., we only need to consider a
local region as illustrated in Figure 1. If the points distribu-
tion within dense region is very imbalanced (that is unusual
in practice), the complexity could be as bad as quadratic. Ac-
tually, it is unlikely to design an exact DBSCAN algorithm
with linear or nearly linear complexity [Gan and Tao, 2015].

3.2 An Alternative Approach
In this section, we provide a modified version of our first DB-
SCAN algorithm. In Lemma 2, we cannot directly use Propo-
sition 1 to bound the size of Ap, because the points inside the
same batch could have pairwise distance less than r; there-
fore, we can only bound the number of red batches. To rem-
edy this issue, we perform the following “filtration” operation
when adding each batch to E in Algorithm 1.

Filtration. For each batch of E, we compute a connection
graph: each point of the batch represents a vertex, and any
two vertices are connected by an edge if their pairwise dis-
tance is smaller than r. Then, we compute a maximal inde-
pendent set (not necessary the maximum independent set) of
the graph, and only add this independent set to E instead of
the whole batch. See Figure 2 as an illustration.

Obviously, this filtration operation guarantees that the pair-
wise distance of any two points in E is at least r. Since
each batch has size num, it takes O

(
num2β

)
time to compute

Figure 2: The batch contains 7 points, and any two points are con-
nected by an edge if their distance is smaller than r; we can pick the
4 red points as the maximal independent set.

the maximal independent set. Moreover, since the set E has
fewer points, we need to modify the result stated in Theo-
rem 1. Let p be any point of X having distance no larger than
r to E in the original Algorithm 1. After performing the fil-
tration operation, we know d(p,E) ≤ 2r due to the triangle
inequality. As a consequence, the set X \ Xz̃ is covered by
the balls ∪c∈EB

(
c, 2r

)
(instead of ∪c∈EB

(
c, r
)
). Let

A′p = {c | c ∈ E, d(c, cp) ≤ 4r + ε}. (9)

The aspect ratio of A′p is no larger than 2(4r+ε)
r = 8 + 2 εr .

Using the similar ideas for proving Lemma 1 and 2, we obtain
the following results.
Lemma 3. If p ∈ X \ Xz̃ , we have X ∩ B(p, ε) ⊂(⋃

c∈A′p

(
X ∩ B(c, 2r)

))⋃
Xz̃ .

Lemma 4. |A′p\Xin| ≤ z̃ and |A′p∩Xin| ≤ 2ρdlogαe, where
α = 8 + 2 εr .

Remark 1. Comparing with the size |Ap∩Xin| in Lemma 2,
we remove the hidden constant “num” but increase the value
of α from 4 + 2 εr to 8 + 2 εr . So, we cannot directly compare
the sizes |Ap ∩Xin| and |A′p ∩Xin| in general. In Section 4,
we implement the two algorithms, and investigate their exper-
imental performances.

4 Experiments
All the experimental results were obtained on a Windows 10
workstation equipped with an Intel core i5-8400 processor
and 8GB RAM. We compare the performances of the follow-
ing four DBSCAN algorithms in terms of running time:

• ORIGINAL: the original DBSCAN [Ester et al., 1996]
that uses R∗-tree as the index structure.
• GT15: the grid-based exact DBSCAN algorithm pro-

posed in [Gan and Tao, 2015].
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(a) SYNTHETIC (r = 100) (b) NEURIPS (r = 10) (c) USPSHW (r = 10) (d) MNIST (r = 15)

(e) SYNTHETIC (r = 100) (f) NEURIPS (r = 10) (g) USPSHW (r = 10) (h) MNIST (r = 15)

Figure 3: Running times with MinPts = 1
1000
· n (the first row) and MinPts = 2

1000
· n (the second row).

Dataset #Instances #Attributes Type

SYNTHETIC 20000 500-3000 Synthetic
NEURIPS 11463 5811 Text
USPSHW 7291 256 Image
MNIST 10000 784 Image

Table 1: The datasets.

• METRIC-1: our first DBSCAN algorithm proposed in
Section 3.1.
• METRIC-2: the alternative DBSCAN algorithm pro-

posed in Section 3.2.

For the first two algorithms, we use the implementations in
C++ from [Gan and Tao, 2015]. Our algorithms METRIC-1
and METRIC-2 are also implemented in C++. Note that all of
these four algorithms return the exact DBSCAN solution; we
do not consider the approximate DBSCAN algorithms that
are out of the scope of this paper.

We evaluated our methods on both synthetic and real
datasets where the details are shown in Table 1. We generated
6 synthetic datasets. For each synthetic dataset, we randomly
generate n = 20000 points in R2, and then locate them to a
higher dimensional space RD with some random noise; the
dimension D ranges from 500 to 3000. NEURIPS [Perrone
et al., 2017] contains n = 11463 word vectors of the full texts
of the NeurIPS conference papers published in 1987-2015.
USPSHW [Hull, 1994] contains n = 7291 16 × 16 pixel
handwritten letter images. MNIST [LeCun et al., 1998] con-
tains n = 10000 handwritten digit images from 0 to 9, where
each image is represented by a 784-dimensional vector.
The results. We validate the influence of the value of r to
the running times of METRIC-1 and METRIC-2. We focus
on the SYNTHETIC datasets. To determine the value of r, we

Figure 4: The running time in Part (i) and Part (ii).

first estimate the diameter ∆, the largest pairwise distance,
of the dataset. Obviously, it takes at least quadratic time
to achieve the exact value of ∆; instead, we just arbitrarily
select one point and pick its farthest point from the dataset,
where the obtained value ∆̃ is between ∆/2 and ∆. We set
z̃ = 200 (i.e., 1%n) and vary the ratio r/∆̃ in 0-0.5. The
running times with respect to Part (i) and Part (ii) (described
in Section 3.1) are shown in Figure 4 separately. As r/∆̃ in-
creases, the running time of Part (i) (resp., Part (ii)) decreases
(resp., increases). The overall running time (of the two parts)
reaches the lowest value when r/∆̃ is around 0.1.

Further, we set the value MinPts = 1
1000n and 2

1000n for
each dataset and show the running times in Figure 3. We can
see that our METRIC-2 achieves the lowest running times on
SYNTHETIC; the running times of METRIC-1 and METRIC-2
are very close on the three real datasets; our both algorithms
significantly outperform the two baseline algorithms in terms
of running time.

5 Future Work
In this paper, we consider the problem of DBSCAN with low
doubling dimension. A few directions deserve to be studied in
future work, such as other density based clustering and outlier
recognition problems under the assumption of Definition 3.
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