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Abstract
Multi-view, Multi-instance, and Multi-label Learn-
ing (M3L) can model complex objects (bags), which
are represented with different feature views, made of
diverse instances, and annotated with discrete non-
exclusive labels. Existing M3L approaches assume
a complete correspondence between bags and views,
and also assume a complete annotation for training.
However, in practice, neither the correspondence be-
tween bags, nor the bags’ annotations are complete.
To tackle such a weakly-supervised M3L task, a so-
lution called WSM3L is introduced. WSM3L adapts
multimodal dictionary learning to learn a shared dic-
tionary (representational space) across views and
individual encoding vectors of bags for each view.
The label similarity and feature similarity of encod-
ed bags are jointly used to match bags across views.
In addition, it replenishes the annotations of a bag
based on the annotations of its neighborhood bags,
and introduces a dispatch and aggregation term to
dispatch bag-level annotations to instances and to re-
versely aggregate instance-level annotations to bags.
WSM3L unifies these objectives and processes in a
joint objective function to predict the instance-level
and bag-level annotations in a coordinated fashion,
and it further introduces an alternative solution for
the objective function optimization. Extensive ex-
perimental results show the effectiveness of WSM3L
on benchmark datasets.

1 Introduction
Multi-view Multi-instance Multi-label (M3) objects (or bags)
are characterized by heterogeneous feature views, including
diverse instances, and are simultaneously annotated with non-
exclusive labels. For example, in Figure 1, a video is rep-
resented by text and image views, where each text (image)
bag includes diverse instances (paragraphs or animals) and
is annotated with several semantic labels (e.g., seagull, wa-
ter, and sky). Multi-view Multi-instance Multi-label Learn-
ing (M3L) [Nguyen et al., 2013] can simultaneously mod-
el bags, instances of bags, and their non-exclusive labels to
∗Corresponding author, guoxian85@gmail.com. This work is
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learn a predictive model to project multiple views of bags
(and instances) into the label space, which reflects the se-
mantic meaning of the bags (instances). Due to its capa-
bility of modeling complex objects in the real-world, M3L
has attracted increasing research interest [Yang et al., 2018;
Xing et al., 2019].

Traditional M3L approaches typically assume that the en-
tire data is mapped across views, and the label annotation
of objects is complete. Both assumptions are often violat-
ed in practical M3L tasks. As an example, in Figure 1, the
mapping of a given bag across different views is only par-
tially given. Moreover, the bags have missing annotations,
and the number of bags in two views is different. In fact,
such weakly-supervised multi-view data are universal in many
domains. For example, for medicine development, the rela-
tion of a pill and its compounds with the therapy (adverse)
effects is typically partially known. However, to the best of
our knowledge, none of the existing M3L methods has stud-
ied the partial correspondence of M3 data. The incomplete
annotation problem [Xu and Zhou, 2017; Tan et al., 2018;
Xing et al., 2018] has also not been investigated. We term
these two types of information as weakly-supervised informa-
tion, which restricts the effectiveness and application, or even
the adaption, of existing M3L approaches.

To address the weakly-supervised M3 problem, we intro-
duce a weakly-supervised M3L approach (WSM3L) based on
multimodal dictionary learning [Mandal and Biswas, 2016;
Liu et al., 2018a]. WSM3L introduces a unified objective
function to seek the matches between bags across multiple
views and to predict labels of bags. It uses the heterogeneous
features of bags to learn a multi-view coordinated dictionary
(representation space) and individual encoding vectors of bags
for each view. Then the feature similarity derived from the
encoding vectors and label similarity of bags are leveraged to
seek matches between bags across views. Besides, it jointly
replenishes the labels of a bag using the labels of its neigh-
borhood bags, distributes the labels of bags to instances, and
reversely aggregates the labels of instances to their originating
bags. In this way, WSM3L can predict the labels of bags, and
also the labels of instances in a coherent fashion. The main
contributions of this work are as follows:

(i) WSM3L can handle not only weakly-paired (or even
completely-unpaired) bags across views, but also partially
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Figure 1: An example of a weakly-supervised multi-view multi-
instance multi-label learning scenario. Each bag (video) is represent-
ed by an image view and a text view. The red solid (dotted) lines
indicate the known (unknown) paired information of bags across
views, and the labels highlighted in red with question marks ’?’ de-
note the missing annotations of bags. Unpaired bags across views
have their own labels, but from the same label space.

annotated training bags. To the best of our knowledge, none
of the existing M3L approaches can simultaneously make well
usage of these two types of weakly-supervising information.
(ii) A matching solution based on labels and features of bags is
introduced to discover their correspondence across views. We
also introduce a unified objective function to seek the match
between bags, to replenish missing labels of bags, to push the
bag-level labels to instances, and reversely aggregate the labels
of instances to their affiliated bags in a coordinated fashion.
(iii) WSM3L significantly outperforms state-of-the-art M3L
approaches [Nguyen et al., 2014; Li et al., 2017; Xing et al.,
2019], multi-instance multi-label weak-label learning [Yang et
al., 2013], and weakly-paired multi-modal learning [Lampert
and Krömer, 2010; Liu et al., 2018a] in different practical
settings. In addition, WSM3L can work in open settings (i.e.,
with different numbers of bags across views and with com-
pletely unpaired multi-view bags), in which the competitive
methods cannot be applied.

2 Related Work
Multi-instance multi-label learning (M2L) [Zhou et al., 2012;
Huang et al., 2019] deals with complex interrelations be-
tween bags, instances, and labels. M3L is more difficult,
and less well-studied, than M2L, due to the additional het-
erogeneous feature views and complicated correlations across
views. [Nguyen et al., 2013] introduced a Latent Dirichlet
Allocation [Blei et al., 2003] based M3L approach, which
separately explores the visual-label topics from the visu-
al view and the text-label topics from the text view, and
then performs prediction by forcing the label consistency be-
tween the two views. [Nguyen et al., 2014] proposed an
M3L approach (MIMLmix) that uses a hierarchical Bayesian
network and variational inference to leverage multiple fea-

ture views. [Li et al., 2017] developed a multi-view multi-
instance learning (M2IL) algorithm, which considers differ-
ent intrinsic structures between instances of a bag across
views, and exploits sparse representation [Rubinstein et al.,
2010] and multi-view dictionary learning [Wu et al., 2016;
Gao et al., 2015] for bag-level label prediction. [Yang et
al., 2018] introduced a deep neural network based approach,
which separately applies a deep network for each view, and
keeps the bag-level predictions across views consistent. Fur-
thermore, a semi-supervised deep M3L approach [Yang et al.,
2019] is introduced to leverage label correlation and unlabeled
instances for bag-level prediction. The aforementioned M3L
approaches only consider limited types of inter-relations and
intra-relations between bags, and between instances and labels,
which in fact carry important contextual information for M3L
to explore. [Xing et al., 2019] recently introduced a collabo-
rative matrix factorization based solution (M3Lcmf), which
first constructs multiple inter(intra)-relational data matrices of
bags, of instances, and of labels, to capture diverse intrinsic
relations among them, and then collaboratively factorizes the
matrices into low-rank ones to merge them and to coherently
predict the bag(instance)-label associations.

The above M3L solutions optimistically assume that bags
are completely paired across heterogeneous views, and are
also comprehensively annotated. However, these two assump-
tions are often violated in practical M3L scenarios. Our study
expands the flexibility and capability of M3L by designing a
weakly-supervised M3L approach (WSM3L).

3 Proposed Method
Without loss of generality, we assume bags (or instances)
have V feature views, and each view has nv bag sets X v =

{Xv
1,X

v
2, · · · ,Xv

nv
}. Xv

i = [xvi,j ]
mv

i
j=1, a matrix, denotes the

i-th bag in the v-th view includes mv
i ≥ 1 instances, where

xv ∈ Rdv (v = 1, 2, · · · , V ) is the feature space of instances
in the v-th view. Yv

i ∈ Rq encodes the currently known labels
of Xv

i . Yv
iq′ = 1 if Xv

i is annotated with the q′-th label,
Yv
iq′ = 0 otherwise. All bags belong to the same label space

and paired bags share a same subset of labels. For an M3
dataset with completely paired bags, {Yv}Vv=1 is identical
across all the views, but not so for an M3 dataset with weakly-
paired (completely-unpaired) bags. The task of M3L is to
learn a predictive function f({Xv}Vv=1, {Yv}Vv=1)→ Rq .

The correspondence between bags in M3L is the basis for
multi-view data fusion. For weakly-paired M3 data, a sim-
ple bypass solution is to exclude unpaired bags and only use
the known paired bags across views to train the predictive
model. However, these excluded bags (and their member in-
stances) also convey important context information for the
task, and disregarding them may distort the underlying data
distribution. To make use of as many bags as possible, we
first seek matches between bags across views. Different tech-
niques [Zhang et al., 2015; Mandal and Biswas, 2016] can be
used to this end, and here we adopt multi-modal dictionary
learning [Monaci et al., 2007], which has been successfully
adopted to capture and correlate heterogeneous features across
modalities [Mandal and Biswas, 2016; Liu et al., 2018b]. The
multi-modal dictionary learning technique provides an effec-
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tive strategy to unify multi-modal data, since each view can be
generated from the shared dictionary with individual encod-
ing vectors. As such, the heterogeneous feature vectors are
reformulated as comparable encoding vectors. Multi-modal
dictionary learning on two feature views [Monaci et al., 2007;
Liu et al., 2018a] is formulated as follows:

argmin
D1,D2,E1,E2

‖ X1 −D1E1 ‖2F + ‖ X2 −D2E2 ‖2F +C(E1E2)

(1)
where D1 ∈ Rd1×d and D2 ∈ Rd2×d are the dictionaries, and
E1 ∈ Rd×n1 and E2 ∈ Rd×n2 are the coding matrices of the
two views, respectively. d is the dictionary size, which can be
specified by the designer. The constraint term C(E1E2) has
different forms [Mandal and Biswas, 2016], and it can be used
to incorporate inter(intra)-modal relations.

3.1 Matching Bags Across Views
To explore the complementary information across views and
the matches between bags, we first learn a shared dictionary for
bags across views, which also gives a unified representational
space for bags. In addition, we seek an encoding matrix of
bags per view. Since the same bag may have different number
of instances in different views, we first project the instances’
features of a bag onto a bag feature vector like [Zhou and
Zhang, 2007] for dictionary learning. Thus, Xv used in the
following equations is a matrix storing the projected features
of bags in the v-th view. To learn a shared dictionary, we
project the feature views onto the same dimensional space:
(Pv)

T
Xv, where Pv ∈ Rdv×s is the projection matrix of the

v-th view with Pv(Pv)
T

= I ∈ Rs×s. We then use (Pv)
T
Xv

to seek the shared dictionary and the encoding matrix of bags
for each view as follows:

min
D,Ev,Pv

L1 =
∑V

v=1
‖ (Pv)TXv −DEv ‖2F

+
∑V

v=1,w 6=v
‖ (Ev)T −Mvw(Ew)T ‖2F

s.t.‖ ds′ ‖2 ≤ 1(∀s′ ∈ {1, 2, · · · , s}),Pv(Pv)T = I

(2)

where D ∈ Rs×d is the shared dictionary of bags across views,
and ds′ ∈ Rd is the dictionary vector of D. Ev ∈ Rd×nv is
the coding matrix of bags (and instances therein) of the v-th
view. In this way, bags across different views are compara-
ble in the representational space, which is configured by the
shared dictionary. Mvw ∈ Rnv×nw records the mapping in-
formation between bags of the v-th view and w-th view. The
term

∑V
v=1,w 6=v ‖ (Ev)T −Mvw(Ew)T ‖2F is introduced to

force matched bags having similar encoding vectors.
Existing multi-modal learning methods match objects

across views solely using the features [Lampert and Krömer,
2010; Mandal and Biswas, 2016], or labels of objects [Liu et
al., 2018b]. In contrast, we leverage both label and feature
information to improve the matching process. To match bags
across views, we leverage the label and feature information of
pairwise bags (Xv

i and Xw
j ) as follows:

m(X
v
i ,X

w
j )=1− (1− fea(E

v
i ,E

w
j )(1− lab(Ỹv

i , Ỹ
w
j ) + ε))

fea(E
v
i ,E

w
j )=

(Ev
i )TEw

j

‖ Ev
i ‖‖ Ew

j ‖
, lab(Ỹ

v
i , Ỹ

w
j )=

(Ỹv
i )

T
Ỹw

j

‖ Ỹv
i ‖‖ Ỹw

j ‖

(3)

where fea(Ev
i ,E

w
j ) and lab(Ỹv

i , Ỹ
w
j ) are the feature-based

and label-based similarity between Xv
i and Xw

j , respectively.
Two bags may be annotated with the same set of labels, which
give a lab(Ỹv

i , Ỹ
w
j ) = 1 and result in a large match score

m(Xv
i ,X

w
j ). However, these two bags may not be the best

match, since they may have a moderate feature similarity.
Given that, we add a small constant ε = 0.01. The larger
the feature-based and label-based similarities, and the more
consistent between these two similarities, the more likely these
two bags will be matched. To quantify the label and feature
similarities between bags, we use the cosine similarity for its
simplicity and effectiveness, other similarity metrics can also
be used here. Since the feature and label vectors of our used
datasets are all nonnegative, thus our cosine similarity actually
locates in [0,1].

Based on m(Xv
i ,X

w
j ), we can specify the matching matrix

Mvw between bags of the v-th and w-th views as follows:

Mvw
ij =

{
1,m(Xv

i,X
w
j )is the maximum or p(Xv

i,X
w
j )=1

0, otherwise (4)

where p encodes the previously known matched information
of bags across views, p(Xv

i ,X
w
j ) = 1 if Xv

i and Xw
j are

known paired; p(Xv
i ,X

w
j ) = 0, otherwise. The first condition

shows two matched cases of Xv
i and Xw

j : (i) Xv
i and Xw

j

are known matched in advance (i.e., p(Xv
i ,X

w
j ) = 1); (ii)

Xv
i and Xw

j are calculated to have the maximum value of
m(Xv

i ,X
w
j ). If Xv

i and Xw
j meet the first condition, we set

Mvw
ij = 1; Mvw

ij = 0, otherwise. As such, WSM3L can not
only incorporate the known paired bags to deal with weakly-
paired bags, but also deal with completely-unpaired bags, by
leveraging feature and label similarities of bags.

3.2 Replenishing Labels of Bags
Most existing M3L approaches typically assume complete
label annotations of bags, i.e., no missing labels. However,
in practice, the annotation is indeed incomplete. Since each
feature view has its distinctiveness and bags across views are
only partially paired, we first replenish the missing labels of
bags per view. We assume that missing labels of a bag can be
replenished based on the labels of its neighborhood bags as
follows:

min
Ỹv
L2 =

∑V

v=1
‖ AvYv − Ỹv ‖2F (5)

where Ỹv ∈ Rnv×q represents the replenished label sets of
bags in the v-th view. Av ∈ Rnv×nv is the adjacency matrix
of the k nearest neighborhood (kNN) graph of bags in the v-th
view, and it’s specified as follows:

Av(i, j)=

{
1/k, if Xv

i ∈ Nk(X
v
j ) or Xv

j ∈ Nk(X
v
i )

0, otherwise (6)

where Xv
i ∈ Nk(Xv

j ) is one of the k nearest neighbors of Xv
j ,

and the neighborhood relationship between bags is determined
by the cosine similarity.

3.3 Distribution and Aggregation of Labels
In multi-instance learning, a bag includes one or more in-
stances, and its label set depends on the labels of its instances
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[Zhou et al., 2012]. Multi-instance learning typically uses the
bag-instance relations to predict the labels of bags; some ap-
proaches can also identify the labels of instances [Carbonneau
et al., 2018]. To perform label prediction for both bags and
instances, we introduce a term to distribute the labels of bags
to instances, and reversely aggregate instance-level labels for
bags, as shown in the following:

min
Ỹv,Wv

L3 =
∑V

v=1,w 6=v
‖ Ỹv −ΛvMvwRwZw ‖2F

+
∑V

v=1
‖ Zv − FvWv ‖2F

(7)

where Ỹv are the replenished label sets of bags in the v-th view.
Unlike Eq. (6), the computation of Ỹv is coordinated with the
matched bags (via Mvw) from other views. Λv ∈ Rnv×nv is
a diagonal matrix with Λv(i, i) = 1/mb(v, i), where mb(v, i)
counts the number of matched bags of Xv

i , including itself.
Rw ∈ Rnw×mw stores the inter-associations between nw
bags and mw instances in the w-th view. Rw(i, j) = 1 if the
i-th bag includes the j-th instance; Rw(i, j) = 0, otherwise.
Fv ∈ Rmv×dv stores the feature vectors of instances of the v-
th view, and Wv ∈ Rdv×q is the projection matrix for the v-th
view, Zv ∈ Rmv×q is the predicted label matrix of instances in
the v-th view, which can be obtained by Fv and the optimized
Wv . As a result, our proposed WSM3L makes predictions for
instances, and also aggregates instance labels at the bag-label.
Meanwhile, it combines the replenished labels of bags across
views.

3.4 The Unified Objective Function
To coordinate the match between bags across views and la-
bel replenishment, and to coherently dispatch the bag-level
labels to instances and aggregate the instance-level labels onto
bags, let Ω = {D,Ev,Pv, Ỹv,Wv}, we formulate a unified
objective function as follows:

min
Ω
L1 + α(L2 + L3) (8)

where L1 aims to control the data fidelity and to explore match
across bags. L2 andL3 target to replenish and predict the label-
s of bags at bag-level and instance-level, respectively. Notice
that L1 and L3 share the same match information. The param-
eter α balances the importance of L1 and the latter two terms.
Eq. (8) makes the potential match between bags across views,
label replenishment, bag-level and instance-level label predic-
tion in a coordinated fashion. Thus, both the weakly-paired
bags and incomplete labels of weakly-supervised learning on
M3 data are jointly accounted for.

To compute D, Ev, Pv, Ỹv and Wv, we adopt an alter-
native optimization technique following the idea of the alter-
nating direction method of multipliers (ADMM) [Boyd and
Vandenberghe, 2004]. Since directly optimizing the discrete
indicator match matrix Mvw is NP-hard, we update it based
on the updated Ev , Ỹv in each iteration. Suppose t is the max-
imum number of iterations, the time complexity of our model
is O(tV [sdnv +V d(nv)

2 +d2nv +mvq+V (nv)
2mv]). Our

preliminary study shows that WSM3L generally converges
within 50 iterations on the used datasets. We give the opti-
mization procedure as a supplementary file.

Dataset #bag #instance #label avgBI avgBL
Pyrococcus furiosus 425 1321 321 3.1 4.5
Caenorhabditis elegans 2512 8509 940 3.4 6.1
Drosophila melanogaster 2605 9146 1035 3.5 6.0
Saccharomyces cerevisiae 3509 6533 1566 1.9 5.9
Isoform 2000 7907 258 4.0 3.9
Letter Frost 144 565 26 3.9 3.6
Letter Carroll 166 717 26 4.3 3.9
MSRC v2 591 1758 23 3.0 2.5
Birds 548 10232 13 18.7 2.1

Table 1: Statistics of datasets used for experiments. #bag, #instance
and #label are the number of bags, instances and labels, respectively.
avgBI/avgBL is the average number of instances/labels per bag.

To this end, WSM3L predicts the labels of a new bag Xh

by integrating the aggregated labels from its instances and the
known labels of it neighborhood training bags across views (if
any) as follows:

f(Xh) =
1

|V(Xh)|
∑

v∈V(Xh)

(
1

mv
h

mv
h∑

j=1

x
v
h,jW

v
+

1

k

∑
Xv

j
∈Nk(Xv

h
)

Ỹ
v
j ) (9)

where V(Xh) collects the observed views of Xh, xvh,j repre-
sents the j-th instance feature vector of Xv

h, and Wv is the
optimized coefficient matrix for instance-label prediction in
the v-th view. The first term targets to aggregate the prediction
from instance-level, and the second term aims to integrate the
prediction from neighborhood training bags across views.

4 Experiments
4.1 Experimental Setup
We design experiments to study the performance of WS-
M3L on completely-paired bags, weakly-paired bags and
completely-unpaired bags across views, respectively. We col-
lect eight publicly available multi-instance multi-label datasets
and one real M3 dataset from different domains for the ex-
periments. The details of these datasets are listed in Table 1.
The first four datasets1 and Isoform dataset [Yu et al., 2020]
are used to evaluate the predicted labels of bags, since bag-
level labels are available one. The last four datasets have
instance-level labels for evaluation [Briggs et al., 2012].

To evaluate the effectiveness of the proposed WSM3L, four
widely-used multi-label evaluation metrics are adopted to e-
valuate the performance from different perspectives, including
Hamming Loss (HL), Ranking Loss (RL), Average Precision
(AP), and macro AUC (Area Under receiver operating Curve)
(mAUC). Due to the page limit, the formal definition of these
metrics is omitted here and can be found in [Zhang and Zhou,
2014]. The smaller the values of HL and RL, the better the
performance is. As such, to be consistent with the other evalu-
ation metrics, we report 1-RL and 1-HL instead. For the latter
metrics, larger values indicate better performance.

4.2 Results on Completely Paired Multi-view Data
We randomly select 70% of the bags of a dataset to train the
model, and use the remaining 30% for testing. For the eight
multi-instance multi-label datasets, we randomly divide the
original features of each bag into two sets of equal size, each
providing one view. We then randomly mask 30% of the label

1http://lamda.nju.edu.cn/CH.Data.ashx
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Metric MIMLmix M2IL M3Lcmf MIMLwel WSM3L WSM3L(cL)
Pyrococcus furiosus

1-HL 0.904• 0.974• 0.966• 0.630• 0.987 0.987
1-RL 0.527• 0.647• 0.740◦ 0.649• 0.697 0.718
AP 0.061• 0.148• 0.237 0.269◦ 0.244 0.281

mAUC 0.503• 0.525• 0.530• 0.563◦ 0.562 0.584
Caenorhabditis elegans

1-HL 0.914• 0.985◦ 0.982◦ 0.631• 0.978 0.981
1-RL 0.641• 0.525• 0.773• 0.783• 0.801 0.819
AP 0.087• 0.089• 0.219• 0.393◦ 0.270 0.267

mAUC 0.562• 0.518• 0.561• 0.674◦ 0.669 0.685
Drosophila melanogaster

1-HL 0.917• 0.993◦ 0.978 0.635• 0.978 0.981
1-RL 0.658• 0.423• 0.779• 0.781• 0.808 0.820
AP 0.089• 0.087• 0.179• 0.375◦ 0.245 0.253

mAUC 0.510• 0.516• 0.546• 0.689◦ 0.669 0.698
Saccharomyces cerevisiae

1-HL 0.926• 0.989 0.989 0.650• 0.991 0.993
1-RL 0.666• 0.382• 0.752• 0.662• 0.782 0.783
AP 0.063• 0.063• 0.133• 0.155• 0.173 0.186

mAUC 0.556◦ 0.505• 0.528• 0.572◦ 0.552 0.568
Isoform

1-HL 0.933• 0.980 0.664• 0.527• 0.981 0.980
1-RL 0.568• 0.450• 0.655• 0.535• 0.676 0.679
AP 0.074• 0.033• 0.100◦ 0.075• 0.097 0.108

mAUC 0.546◦ 0.505• 0.505• 0.503• 0.533 0.543

Table 2: Results of bag-level label prediction with completely paired
bags on different datasets. •/◦ indicates whether WSM3L is statis-
tically (pairwise t-test at 95% significance level) superior/inferior
to the other method. Unlike other compared methods, WSM3L(cL)
operates on training data with ‘complete labels’ (or no label missed).

information of each bag in the training set, to study the perfor-
mance of WSM3L on bags annotated with incomplete labels.
For multi-view methods (i.e., MIMLmix [Nguyen et al., 2014],
M2IL[Li et al., 2017] and M3Lcmf[Xing et al., 2019]), we
use the same datasets as our method, and for MIMLwel[Yang
et al., 2013], we directly use the collected datsets. Besides,
the input parameters of all comparing methods used in this
paper are specified (or optimized) as suggested by the authors
in their papers or shared codes. For reference, we also report
the results of WSM3L(cL), which does not mask any label but
uses complete labels. The input parameters of WSM3L are
set as follows: d = 160, s = 150, k = 30 and α = 1. Tables
2 and 3 report the results of the comparing methods on bag-
level and instance-level label prediction, respectively. Only
MIMLmix and M3Lcmf can make instance-level prediction,
so Table 3 does not report results of other compared methods.

Our proposed WSM3L generally outperforms the compar-
ing methods across different datasets and evaluation metrics,
on both the bag-level and instance-level label prediction tasks.
We used the signed-rank test [Demšar, 2006] to check the
significance of the results between WSM3L and the other
methods, and all the p-values are smaller than 0.037. WSM3L
frequently outperforms other M3L methods, which shows the
effectiveness of WSM3L on completely paired multi-view
datasets. Both M2IL and WSM3L learn a shared dictionary
across views, and WSM3L performs much better than M2IL.
This observation shows that WSM3L can learn a more adaptive
dictionary. WSM3L outperforms MIMLwel which demon-
strates the effectiveness of WSM3L on replenishing the labels
of bags. WSM3L obtains a slightly lower performance than
WSM3L(cL), which indicates the effectiveness of WSM3L
on replenishing labels and also suggests WSM3L is not so
sensitive to missing labels of training bags.

The results on instance-level prediction again expresses

Metric MIMLmix M3Lcmf WSM3L
Letter Frost

1-HL 0.656• 0.644• 0.962
1-RL 0.406• 0.732 0.740
AP 0.191• 0.261• 0.286

mAUC 0.688◦ 0.513• 0.535
Letter Carroll

1-HL 0.649• 0.648• 0.962
1-RL 0.441• 0.697 0.702
AP 0.237• 0.247• 0.257

mAUC 0.686◦ 0.516 0.516
MSRC v2

1-HL 0.693• 0.768• 0.957
1-RL 0.582• 0.603• 0.704
AP 0.305• 0.368• 0.395

mAUC 0.625• 0.546• 0.727
Birds

1-HL 0.539◦ 0.876◦ 0.471
1-RL 0.524◦ 0.530◦ 0.445
AP 0.271◦ 0.075• 0.241

mAUC 0.503• 0.506 0.513

Table 3: Results of instance-level prediction on different datasets. •/◦
indicates whether WSM3L is statistically (according to a pairwise
t-test at 95% significance level) superior/inferior to the other method.

the effectiveness of the proposed WSM3L in distributing the
bag-level labels to instances, which in turn boosts the accu-
racy of bag-level label prediction. WSM3L sometimes loses
to M3Lcmf and MIMLmix on the Birds dataset. The possi-
ble reason is that each bag in Birds has a large number of
instances, WSM3L does not concretely use the relations be-
tween instances or labels as these compared methods, which
boost the performance but result in a more complicated model.

4.3 Results on Weakly-paired Multi-view Data
Based on the previous 70-30% split, we simulate three settings
for weakly-supervised M3 data. In the first setting, we ran-
domly mask the correspondence between 30% of the training
bags, and then randomly remove 30% of the labels of the train-
ing bags. The second setting is the same as the previous one,
with the additional removal of 30% of the bags in one view, to
investigate the flexibility of WSM3L when different numbers
of bags are present across views. In the third setting, we com-
pletely mask all the mappings between bags across views. For
the last two settings, none of the comparing methods in Table
2 can be applied. We report the results of WSM3L(dB) and
WSM3L(uB) in the last two columns of Table 4. WSM3L(dB)
and WSM3L(uB) correspond to the case with different num-
bers of bags across views and to the case with completely
unpaired bags across views, respectively. For a comprehen-
sive comparison, two multi-view dictionary learning methods
for weakly-paired data, WMCA (weakly-paired maximum co-
variance analysis) [Lampert and Krömer, 2010] and MFCDL
(Multimodal Fusion via Common Dictionary Learning) [Liu et
al., 2018a] are also included for comparison in the first setting.
Since WMCA does not provide the label likelihoods as other
comparing methods, which are required by 1-RL and mAUC,
only the results of 1-HL and AP are reported in Table 4.

We have the following observations:
(i) In the first setting, all comparing methods use all the train-
ing bags, and WSM3L achieves the best performance and
holds comparable results with itself on completely paired bags
in Table 2. This observation shows the effectiveness of WS-
M3L on learning from weakly-paired M3 data. Both WSM3L,
WMCA and MFCDL can work on weakly-paired multi-view
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Metric MIMLmix M2IL M3Lcmf WMCA MFCDL WSM3L WSM3L
(dB)

WSM3L
(uB)

Pyrococcus furiosus
1-HL 0.899• 0.971• 0.969• 0.502• 0.929• 0.987 0.980 0.964
1-R 0.512• 0.661• 0.738◦ −− 0.491• 0.698 0.669 0.695
AP 0.074• 0.122• 0.236◦ 0.093• 0.024• 0.235 0.226 0.232

mAUC 0.500• 0.513• 0.517• −− 0.509• 0.565 0.551 0.552
Drosophila melanogaster

1-HL 0.923• 0.992◦ 0.978 0.504• 0.953• 0.978 0.978 0.978
1-RL 0.648• 0.379• 0.776• −− 0.516• 0.808 0.783 0.808
AP 0.073• 0.115• 0.179• 0.058• 0.012• 0.240 0.259 0.238

mAUC 0.523• 0.508• 0.556• −− 0.501• 0.669 0.621 0.666
Saccharomyces cerevisiae

1-HL 0.929• 0.993◦ 0.988 0.509• 0.951• 0.990 0.990 0.990
1-RL 0.684• 0.265• 0.755• −− 0.488• 0.781 0.744 0.779
AP 0.064• 0.050• 0.131• 0.040• 0.008• 0.172 0.166 0.170

mAUC 0.535• 0.502• 0.561◦ −− 0.507• 0.548 0.542 0.548
Isoform

1-HL 0.935• 0.979 0.577• 0.523• 0.778• 0.981 0.981 0.981
1-RL 0.539• 0.465• 0.668 −− 0.167• 0.675 0.667 0.674
AP 0.053• 0.036• 0.104◦ 0.030• 0.033• 0.100 0.099 0.099

mAUC 0.580◦ 0.502• 0.500• −− 0.504• 0.536 0.529 0.535

Table 4: Results of bag-level prediction on weakly paired bags on
different datasets. •/◦ indicates whether WSM3L is statistically (pair-
wise t-test at 95% significance level) superior/inferior to the other
method. WSM3L(dB) and WSM3L(uB) respectively correspond to
the results under the setting of different numbers of bags across views
and the setting of completely-unpaired bags across views.

data. WMCA adopts the maximum covariance analysis to
match bags. WSM3L achieves a better performance than WM-
CA. This observation shows the effectiveness of WSM3L on
handling multi-view weakly-paired data. Both WSM3L and
MFCDL learn a shared dictionary of multiple views, WSM3L
outperforms MFCDL, which facts the effectiveness of WS-
M3L on matching bags across views.
(ii) In the second setting, WSM3L(dB) operates with training
data where some bags are missing in one view. WSM3L(dB)
obtains a slightly lower performance compared to WSM3L in
the first setting. This result shows that WSM3L can also work
well in the case of bags with a different number of feature
views.
(iii) In the third setting, WSM3L(uB), which operates on com-
pletely unpaired bags, achieves a performance comparable
to the first setting. This shows that our strategy is reliable
in finding the matching between bags. Overall these results
prove the effectiveness of WSM3L on M3 data in different
open settings.

4.4 Ablation Study
Four variants of WSM3L are designed to further explore the
different contribution components of WSM3L with the setting
of 70/30% split of training/testing set, and 30% correspon-
dence between training bags randomly masked. The descrip-
tion of these variants is as follows:
(i) WSM3L(Bag): only uses neighbourhood information of
bags to replenish missing labels of bags.
(ii) WSM3L(Ins): only considers the aggregated instance pre-
dictions to predict the labels of bags.
(iii) WSM3L(nFea)): only uses the label similarity for bag
matching.
(iv) WSM3L(nMat): does not match bags across view.

From Figure 2, we observe that WSM3L outperforms it-
s variants, which separately disregard different components
of WSM3L. WSM3L(Bag) and WSMEL(Ins) are two com-
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Figure 2: 1-RL and mAUC of WSM3L variants on different
datasets (Pf: Pyrococcus furiosus, Ce: Caenorhabditis elegans, D-
m:Drosophila melanogaster, Sc: Saccharomyces cerevisiae).

ponents for label prediction of bags, they ignore the aggre-
gated label predictions from instances and the predictions
from neighbourhood bags, respectively. WSM3L outperform-
s them both. This observation suggests the significance of
integrating these two types of label predictions in WSM3L.
WSM3L(nMat) does not seek the matches between bags across
views, and WSM3L(nFea) ignores the feature similarity of
bags during the bag matching process. Both of them are outper-
formed by WSM3L, and WSM3L(nMat) achieves the lowest
performance. These observations manifest the necessity of
matching bags in M3L and the contribution of leveraging fea-
ture similarity and label similarity for matching bags. There is
a small margin between WSM3L(nFea) and WSM3L in 1-RL
for Drosophila melanogaster and Saccharomyces cerevisiae
datasets. The reason of such phenomenon is that these two
datasets have a relatively large label space, which causes a low
distinction of 1-RL.

From these results, we can safely say that these components
of WSM3L indeed deal with the multiplicity of learning on
weakly-supervised M3 data.

We further investigated the sensitivity of four input param-
eters (i.e., α, k, s and d). We run WSM3L with different
input values of α, k, combinations of s and d in the range of
[10−2, 103], [0, 100] and [50, 300], respectively. We summa-
rize the observations here: (i) α maintains a relatively stable
and good performance when α > 0.1, which suggests the im-
portance of label replenishment; (ii) WSM3L achieves the low-
est performance when k = 0, it then rises as k increases and
has a good performance when k is close to 30; (iii) WSM3L
achieves a stable performance under a wide range of combi-
nations of d and s, and it achieves a good performance with d
and s in [150, 250]. From these results, we can conclude that
WSM3L is relatively robust to α, k, s and d. These results are
given in the supplementary file(mlda.swu.edu.cn/WSM3L).

5 Conclusions
In this paper, we proposed a weakly-supervised multi-view
multi-instance multi-label learning approach (WSM3L), which
extends the flexibility of M3L on practical M3 data, whose
matches between bags across views are partially (or complete-
ly) unknown, and the labels of bags are incomplete. WSM3L
outperforms existing M3L algorithms under different practical
settings, some of which existing M3L methods cannot handle.
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