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Abstract

Hierarchical reinforcement learning (HRL) is a
promising approach to solve tasks with long time
horizons and sparse rewards. It is often imple-
mented as a high-level policy assigning subgoals
to a low-level policy. However, it suffers the
high-level non-stationarity problem since the low-
level policy is constantly changing. The non-
stationarity also leads to the data efficiency prob-
lem: policies need more data at non-stationary
states to stabilize training. To address these is-
sues, we propose a novel HRL method: Inter-
active Influence-based Hierarchical Reinforcement
Learning (I*'HRL). First, inspired by agent mod-
eling, we enable the interaction between the low-
level and high-level policies, i.e., the low-level
policy sends its policy representation to the high-
level policy. The high-level policy makes deci-
sions conditioned on the received low-level pol-
icy representation as well as the state of the en-
vironment. Second, we stabilize the training of
the high-level policy via an information-theoretic
regularization with minimal dependence on the
changing low-level policy. Third, we propose
the influence-based exploration to more frequently
visit the non-stationary states where more transition
data is needed. We experimentally validate the ef-
fectiveness of the proposed solution in several tasks
in MuJoCo domains by demonstrating that our ap-
proach can significantly boost the learning perfor-
mance and accelerate learning compared with state-
of-the-art HRL methods.

1 Introduction

Reinforcement Learning (RL) methods have recently yielded
a plethora of positive results, including playing games like
Go [Silver et al., 2016] and Atari [Mnih et al., 2013], as well
as controlling robots [Lillicrap er al., 2015]. However, it is
still challenging to learn policies in complex environments
with large time horizons and sparse rewards. A promising
method to address these issues is Hierarchical RL (HRL) that
learns to operate at different temporal abstraction levels si-
multaneously. Recent end-to-end HRL methods, where the
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high-level policy periodically assigns subgoals for the low-
level policy to pursue, have shown greatly improved perfor-
mance in sparse reward problems.

Unfortunately, current HRL methods are subject to the
non-stationarity problem [Nachum et al., 2018; Levy et al.,
2019]. Namely, as the lower-level policy continues to change,
a high-level action taken at the same state, but at different
steps, may result in critically different state transitions and re-
wards. This negatively impacts policy exploration, since poli-
cies need more data at non-stationary states to stabilize train-
ing, i.e., an already visited non-stationary state may warrant
further exploration. Yet, common exploration approaches in
RL, such as count-based exploration [Bellemare et al., 2016],
re-focus agents on less-visited states, which makes them ill-
suited to support HRL. Though some remedies to HRL’s non-
stationarity issue were proposed, e.g., off-policy experience
correction [Nachum et al., 2018], or pre-training and freez-
ing the low-level policy [Eysenbach et al., 2018], they require
additional manual configuration. This either breeds more hy-
perparameters or breaks the end-to-end scheme entirely.

To address these issues, we develop a novel HRL ap-
proach named Interactive Influence-based Hierarchical Re-
inforcement Learning (I?’HRL). Our contributions are three-
fold. First, we introduce a feedback loop from the process of
low-level policy learning to the high-level policy. The latter
can now condition its decisions on the features of the low-
level behaviour policy. Second, we propose an influence-
based framework and introduce information-theoretic regu-
larization to control the dependency of the high-level policy
on the changes in the low-level behaviour. This stabilises the
high-level policy training. Finally, we propose an influence-
based exploration method for the high-level policy that im-
proves sample efficiency. Intuitively, if a state, where the de-
pendency of the high-level policy on the low-level behaviour
is stronger, is a potential failure point due to the changing
low-level policy and should be explored more.

We compare our method with state-of-the-art HRL algo-
rithms on several continuous controlling tasks in the MuJoCo
domain [Duan et al., 2016]. Experimental results show that
our method significantly outperforms existing algorithms.
Bi-directional communication/interaction with the influence-
based framework can accelerate the learning process, allevi-
ate non-stationarity issues and improve data efficiency.
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2 Related Work

HRL has been shown to be effective in dealing with long-
horizon and sparse reward problems. Intuitively, HRL is
(at least) a bi-level approach, where the high-level policy
breaks down a problem into sub-tasks and learns to sequence
them, while the low-level learns to resolve the sub-tasks ef-
ficiently. The specifics of the break-down, and how exactly
the high-level communicates to the low-level, varies among
methods. The signal sent to the low-level can thus be some
discrete values for selection of options [Bacon et al., 2017]
or skills [Konidaris and Barto, 2009], or it can be continu-
ous vectors to set a subgoal in the state space [Nachum et
al., 2018] or latent space [Vezhnevets er al., 2017]. Gener-
ally, off-policy HRL algorithms [Levy e al., 2019; Nachum
et al., 2018] are more efficient than on-policy algorithms [Ba-
con et al., 2017; Vezhnevets et al., 2017]. However, the off-
policy scheme creates non-stationarity for the high-level pol-
icy, since the low-level policy is constantly changing. Vari-
ous solutions to this issue were recently proposed, e.g., Hi-
erarchical reinforcement learning with off-policy correction
(HIRO) [Nachum et al., 2018] uses joint training and an off-
policy correction, which modifies old transitions into new
ones that agree with the current low-level policy. Unfortu-
nately, this means that the higher level may need to wait until
the lower level policy converges before it can learn a mean-
ingful policy itself. Hierarchical Actor-Critic (HAC) [Levy
et al., 2019] introduces hindsight action transitions, which
simulate a transition function using the optimal lower-level
policy hierarchy, to train the high-level policy. Also, these
transitions need carefully designed domain specific rewards.
Other methods [Florensa et al., 2017; Heess et al., 2016;
Eysenbach e al., 2018] break down the end-to-end manner by
pre-training and fixing the low-level policy. The frozen low-
level skills require a well-designed pre-training environment
and cannot be adapted to all tasks. In contrast, we propose an
efficient end-to-end solution by enabling bi-directional com-
munication among HRL levels. Furthermore, by regularizing
the dependency of the high-level on the low-level policy we
stabilize our method against non-stationarity.

Now, one of HRL promised benefits is structured explo-
ration, i.e., explore with sub-task policies rather than prim-
itive actions. However, the exploration/sample efficiency
still matters [Nachum ef al., 2019]. Majority of HRL meth-
ods directly use single-agent exploration methods at the low-
level, such as e—greedy or intrinsic motivation [Kulkarni
et al., 2016; Rafati and Noelle, 2019]. Nonetheless, some
works do focus on the high-level policy exploration, e.g.,
the diversity concept is often utilized to drive the variabil-
ity in the high-level policy choices [Eysenbach et al., 2018;
Florensa et al., 2017]. The prerequisite, or course, is that a
diverse set of low-level skills exists, which also requires well-
designed pre-training environments. Moreover, the diversity
guidance does not consider the interaction between the two
levels. In this paper, we propose to guide the high-level ex-
ploration by the low-level policy influence. Intuitively, in a
state, where the high-level action choice is less influenced by
the particulars of the low-level policy, the high-level transi-
tion is near-stationary, and needs less exploration data.
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Overall, our method can be best intuited if HRL is in-
terpreted as a form of multi-agent reinforcement learning
(MARL). After all, agent modeling and communication are
feasible solutions for addressing non-stationarity in MARL
[Papoudakis er al., 2019]. By modelling the intentions and
policies of others, agents can stabilize their training process.
Training stabilization is also achieved through communica-
tion, where agents exchange information about their obser-
vations, actions and intentions. In our methods, considering
the nature of cooperation between two levels of HRL, the
low-level policy directly sends its policy representation to the
high-level policy. To our knowledge, no prior work has con-
nected these multi-agent solutions to HRL.

3 Preliminaries

In this section, we present some fundamental background of
the RL as well as HRL.

3.1 Reinforcement Learing

An RL problem is generally studied as a Markov de-
cision process (MDP), defined by the tuple: MDP =
(S, A, P,r,v,T), where S C R"™ is an n-dimensional state
space, A C R™ an m-dimensional action space, P : S x
A x § — R atransition probability function, r : S — R a
bounded reward function, v € (0, 1] a discount factor and T" a
time horizon. In MDP, an agent receives the current state s; €
S from the environment and performs an action a; € A. The
agent’s actions are often defined by a policy 7y : S — A pa-
rameterized by 6. The objective of the agent is to learn an op-

timal policy: 7y« := argmax,, Er, [Zf:o Vireyilse = s}

3.2 Hierarchical Reinforcement Learning

One drawback of the generic RL is its inability to effectively
handle long-term credit assignment problems, particularly in
the presence of sparse rewards. HRL proposes methods for
decomposing complex tasks into simpler subproblems that
can be more readily tackled by low-level action primitives.
We follow the two-level goal-conditioned off-policy hierar-
chy presented in HIRO [Nachum er al., 2018]. A high-level
policy 7, computes a state-space subgoal g; ~ 7, (s¢) every
k time steps (g; is also written as ay, in the rest of paper). Then
a low-level policy 7; takes as an input the current state s, and
the assigned subgoal g, and is encouraged to perform an ac-
tion a; ~ m; (8¢, g¢) that satisfies its subgoal via a low-level
intrinsic reward function 7; (S, g¢, S¢+1). Finally, the high-

level policy receives cumulative rewards 7, = Zle 7 (St4i)-
The low-level reward function is set as: r; (8¢, g¢, St41) =
—|Is¢ + g+ — St411/,, and the subgoal-transition function is
set as gry1 = 7 (8¢), if t mod k = 0, or otherwise using a
fixed goal transition function h (¢, g¢, St+1) = St + gt — St41.

4 Interactive Influence-based HRL

In this section, we present our framework for learning hi-
erarchical policies with bi-direction communication and the
high-level exploration. First, we make use of the low-level
policy modeling and pass it to the high-level policy. In addi-
tion, we minimize the influence of the low-level policy which
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Figure 1: Overview of I?’HRL, which consists of the interaction between the low-level and high-level policies, as well as an influence-based
framework. At the high-level decision step ¢, the high-level policy receives the worker’s previous message m:—1 and state s; and sends a
goal g+ = mp(st, me—1). During the high-level decision interval {¢ + 1,¢ 4+ 2,--- ;¢ + k — 1}, the subgoal follows the transition function

git+i = h(st+i,1,gt+i,1, St+i). The messages {mt, M1,

,Myt+k—1} sent by the low-level policy are used to compute the high-level

intrinsic rewards. The rewards for the high-level policy: 7}, = 3=, _, 5 . o (r (se45) + Tin(8t45,Me+5))

is quantified by the mutual information between the subgoals
assigned by the high-level policy and the low-level policy rep-
resentation. Lastly, we introduce the influence-based explo-
ration with intrinsic rewards for the high-level policy.

We have two MDPs for the high-level policy and low-level
policy respectively:

MDPy, = (S, An, Ph, 1,7, T/k)
MDP; = (S, A;, Py, 71,7, k)

The non-stationarity emerges in the high-level policy tran-
sition. That is, at different steps, Pp, outputs different prob-
ability and rj, outputs different rewards given the same tran-
sition. The cause of non-stationary transition functions is the
change of the lower level policy. It is similar to the situation
in the multi-agent reinforcement learning: the state transition
function P and the reward function of each agent r; depend
on the actions of all agents. Each agent keeps changing to
adapt to other agents, thus breaking the Markov assumption
that governs most single-agent RL algorithms. It is natural
to view HRL as cooperative two-agent reinforcement learn-
ing with such characteristics: (1) unshared rewards, (2) one-
direction delayed communication and (3) fully observability.

4.1 Low-level Policy Modeling

Motivated by agent/opponent modeling, if the high-level pol-
icy can know or reason about the behaviors and the inten-
tions of the low-level policy, the coordination efficiency will
be improved and the training process of the agents might be
stabilized. Due to the cooperation between the low-level and
high-level policies, we propose the bi-direction communica-
tion where the low-level policy sends its policy representation
to the high-level policy.

The low-level policy determines what to communicate. It
is straight-forward to send the policy parameters m = 6; as
a complete representation of its own policy. However, it is
well-known that the low-level policy network is often over-
parameterized, which makes it hard to feed the parameters
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directly into the high-level policy. Also for agent modeling,
one agent only needs to know the desires, beliefs, and inten-
tions of others [Rabinowitz et al., 2018]. Consequently, it is
practical to encode the low-level policy m = f™(m(-,-)),
where the f™ is an encoder function as the representation
module.

In this work, we learn a representation function that
maps episodes from the low-level policy m; to a real-
valued vector embedding. In practice, we optimize the

parameters 6 of a function f" : & — R? where
& denotes the space of successive state-action transitions
(st,al, al, st altt it .o sthe alte alte) of size ¢

corresponding to the low-level policy and d is the dimen-
sion of the embedding. We propose a principle for learning
a good representation of a policy: predictive representation.
The representation should be accurate for predicting the low-
level policy actions given states.

For satisfying the principle, we utilize an imitation func-
tion via supervised learning. Supervised learning does not re-
quire direct access to the reward signal, making it an attractive
task for reward-directed representation learning. Intuitively,
the imitation function attempts to mimic the low-level policy
based on the historical behaviours. Concretely, we utilize the
representation function fg,’;l : & = R?, as well as an imitation
function fy : S x A x R? — [0, 1] where ¢ are parameters of
this imitation function that maps the low-level policy observa-
tion and embedding to a distribution over the agent’s actions.
We propose the following negative cross entropy objective to
maximize with respect to ¢ and 6,,,:

E ¢ ~D\es [1ng¢ (az\S,ah,faTZ(eﬁ)} (1)
(s,an,a1)€ea~D;

where D is the replay buffer of the low-level policy. For
the low-level policy, the objective function samples two dis-
tinct trajectories e; and es (e; needs to be the history of es).
The state-action pairs from e; are used to learn an embed-
ding f4" (e1) that conditions the imitation function network
trained on state-action pairs from es.
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The imitation function is smaller than the low-level pol-
icy because it takes the low-level policy information as input.
Also, it is trained more frequently than the low-level policy.

4.2 High-level Policy: Influence-based Framework

One may argue that the source of non-stationarity moves from
the low-level policy to the low-level representation. That is,
the high-level policy has the low-level policy representation
but an out-of-date or inaccurate representation. We claim that
the training process of the high-level policy is more stable
with a representation than without a representation. Also,
we introduce an influence-based framework for the high-level
policy to extract useful information from the representation.

We expect the high-level policy to make decision with the
most useful information and minimal influence of the low-
level policy. In such situation, even if the low-level represen-
tation may be imprecise, the high-level policy can still make
good decisions.

Consequently, we measure the influence via a conditional
mutual information and regularize/minimize it for the high-
level policy:

p(s)p(an, m, s)

Ah,M|S (ah7 )p(m S)

ZZZp ap,m, s log

s m  ap
=2 p(5) 2 plm

=Enrp m [DKL [ﬂ'h(ah|57m)|ﬂ'h0(ah‘s)]]

an Who(ah|s)

@)
where Ay, is the high-level action; M is the low-level policy
representation; S is the state; 7, (ap|s, m) is the high-level
policy. Er, r, is an abbreviation of B, ,, 4, )~m,,x, Which
denotes an expectation over the trajectories (s, m,ap) gen-
erated by 7, m. Dky, is the Kullback-Leibler divergence.
mholan|s) = >, p(m)m(an|s, m) is a default high-level
policy without the low-level policy’s influence, although the
high-level policy never actually follows the default policy.
I(ap;ml|s) = 0 if and only if aj, and m are independent
given the state s. This mutual information can also be seen
as a measure of stationarity. When the mutual information
is small, whatever the low-level policy is, the high-level pol-
icy can always expect that a certain assignment of itself can
lead to a high reward. The high-level policy’s optimization
objective is:

J(0) =E [ Z 71 t+i

i=0,k,-
— BDxuy [mn(anls,m)|mho(anls)] | (3)

We now focus on the second term because the optimiza-
tion of the cumulative rewards term can be solved by standard
RL algorithms. 7, (an|s, m) is a deterministic policy, so we
cannot directly compute the mutual information term. So we
introduce an internal variable Z. Due to the data processing
inequality (DPI) [Cover and Thomas, 20121, I(Z; M|S) >
I(Ap; M|S). Therefore, minimizing I(Z; M|S) also mini-
mizes I(Ap; M|S). We parameterize the policy m(an|s, m
using an encoder pepnc(z|s, m) and a decoder pyec(apls, 2
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)S" m(anls, m) log Zelal%:m)

such that mp(anls,m) = >, Penc(2|s, M)Ddec(anls, 2).
Thus, we instead maximize this lower bound on .J (6}, ):

JO) 2By o 2 w;i“] B1(Z; M]S)
1=0,k,-
=By o[ 2 o D e el mlpe1s)]
1=0,k,-

(C))
where p(z|s) = > p(m)Penc(2|s,m) is the marginalized
encoding. In practice, performing this marginalization over
the representation may often be intractable since there may
be a continuous distribution of representation.

Inspired by the information bottleneck principle and
variation information bottleneck [Tishby and Zaslavsky,
2015; Alemi et al., 2016], we use a Gaussian approxima-
tion ¢(z|s) of the marginalized encoding p(z|s). Since
Dicilp(z|s)lla(zls)] > 0, that is, Y2 p(zls)log p(zls) >

Y. p(z|s)logq(z|s), instead, we get its variational upper
bound:

I(Z; M‘S) = Eﬂ'gh’ﬂl [DKL [perm(z|s7 m)|p(z|s)]]
=> (s Zp

- Zp )2 pCels

<> pls) Y p(m)

= ]Eﬂ_g,h ,7rl [DKL [penc(2|s7 m)|q(z|s)]]

Zpenc (z]s,m) log penc(z]s, m)

)log p(z|s)

z|lm, s) lo pienC(Z\s,m)
szp( [m s)log == 73

(5)
This provides a lower bound of the objective in Eq. (3)

J(6) < J(6)) that we maximize:

j(@h E h ,wl [ Z ’Yl i /BDKL [penc(z|57m)|Q(Z|5)}:|
h i=0,k,-
(6)

4.3 Influence-based Adaptive Exploration

Exploration in HRL heavily relies on the high level policy
exploration [Nachum er al., 2019]. The non-stationarity of
high-level transition can lead to the inability of traditional
exploration methods. During the training process of HRL,
the non-stationary states instead of unvisited states need more
data to stabilize the low-level policy. We can roughly split the
HRL learning process into two phases with a vague bound-
ary: (1) non-stationary phase; (2) near-stationary phase. In
the first phase, i.e., at the beginning of the learning process,
the low-level policy is always changing. Every state should
be explored. In the second phase, the low-level policy is near-
optimal. Most states are stationary for the high-level policy,
thus the agent should pay more attention on the states which
still cause non-stationarity. Process between these two phases
can be seen as a mixture of both.

Consequently, we propose an influence-based reward for
high level exploration, which is quantified by the KL diver-
gence Dk1, [Penc(2]$, m)|q(2)]. Intuitively, if the KL diver-
gence is small, the agent visits a state which is less easily
influenced by the low-level policy. It means that the high-
level transition is near-stationary, i.e., less data is needed here
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Figure 2: Evaluation results in the AntMaze, AntGather, and AntPush.

other than other states. When the KL divergence is large, a
non-trivial influence of low-level policy is forced on the high-
level policy. It means that the high-level policy needs more
data to stabilize training.

During training, we utilize regularization mentioned in the
previous section to train the high-level policy every k steps.
Also, we calculate the KL divergence as the intrinsic reward
every step with penc and ¢(z) fixed:

7ty = DKL [Penc(2'[s", m' ™) q(z")] @)

Eventually, instead of optimizing the Eq. (6), we derive the
final objective for the high-level policy that we maximize:

TOn)=Ey [ S e8> )

L i=0,k, §=0,1,,k
~ BDxt [penc(zls,m)la(z1s)] | ®)

where (3, is a factor.

Even though the r;,, and Dy seem confusing since they
are in the same form, we notice that r;,,, as the reward signal,
will give credits to both penc(z|s, m) as well as pgec(anls, ),
while D is only used to update pen.. Moreover, they are
actually for adaptive exploration [Kim et al., 2019]. During
the first phase, visited states at the early training steps can
lead to similar high intrinsic rewards, thus contributing little
to making different intrinsic rewards among states. Hence,
the high-level policy explores a wide range of the state space.
Meanwhile, the KL term makes effort to force the pey. to
decrease the influence of the low-level policy at these vis-
ited states, so that in the future, the intrinsic rewards here
will be smaller and the states will be less visited. During the
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second phase, most states are stationary thus lead to similar
low intrinsic rewards. However, once some states leads to
non-stationarity and cause high intrinsic rewards, the overall
policy will visit them more. It results in a narrow range of
exploration with a focus on the non-stationary states.

S5 Experiments

We design the experiments to answer the following questions:
(1) How does I’HRL compare against other end-to-end HRL
algorithms? (2) Can influence-based framework stabilize the
high-level policy training? (3) Is the proposed high-level ex-
ploration efficient under the non-stationrity?

5.1 Environmental Settings

We evaluate and analyze our methods in the benchmarking hi-
erarchical tasks [Duan et al., 2016]. These environments were
all simulated using the MujoCo physics engine for model-
based control. The tasks are as follows:

Ant Gather. A quadrupedal ant is placed in a 20 x 20 space
with 8 apples and 8 bombs. The agent receives a reward of
+1 or collecting an apple and —1 for collecting a bomb; all
other actions yield a reward of 0. Results are reported over
the average of the past 100 episodes.

Ant Maze. The ant is placed in a U-shaped corridor and
initialized at position (0,0). It is assigned an (x,y) goal-
position that it is expected to reach (this (x,y) goal-position
is only included in the state of the high-level policy). The
agent is rewarded with its negative Lo distance from current
position to this goal position.
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Figure 3: Ablation study for the proposed interaction, the influence-based framework and rewards. I?’HRL represents our method with Eq.
(8); I’HRL w/o inf represents that the internal variable z is removed, and the concatenation of the low-level policy representation with the
state is feed into the high-level policy; I’HRL w/o 74, represents the Eq. (6). HIRO is as a baseline.

Ant Push. Th ant would move forward, unknowingly push-
ing the movable block until it blocks its path to the target. To
successfully reach the target, the ant must first move to the
left around the block and then push the block right, clearing
the path towards the target location

We choose three methods as baselines:

e Twin Delayed Deep Deterministic Policy Gradient
(TD3) [Fujimoto erf al., 2018]: a state-of-the-art flat RL
algorithm in continuous control domain to validate the
need for hierarchical models to solve these tasks.

e HIRO [Nachum et al., 2018]: a state-of-the-art HRL al-
gorithm which utilizes the off-policy correction to ad-
dress the non-stationarity problem.

e HAC [Levy et al., 2019]: a state-of-the-art HRL algo-
rithm which introduces hindsight action transitions to
address the non-stationarity problem.

Results are reported over 5 random seeds of the simulator
and the network initialization, and the time horizon is set to
500 steps. Both levels of I’HRL utilize TD3. The low-level
and high-level critic updates every single step and every 10
steps respectively. The low-level and high-level actor updates
every 2 steps and every 20 steps respectively. We use Adam
optimizer with learning rate of 3e — 4 for actor and critic of
both levels of policies. We set the high-level policy decision
interval k and the length of trajectories for low-level policy
represent ¢ as 10. Discount v = 0.99, replay buffer size
is 200, 000 for both levels of policies. The method-specific
hyper-parameters (8 and [3,) are fine-tuned for each tasks.
All methods are well fine-tuned.

5.2 Results

Comparison with Baselines. In the Ant Gather, the results
are the average external rewards of window size of 100. In
the Ant Maze, the results are reported as success rates which
are evaluated every 50,000 steps with the goal-position (16,
0), (16, 16), and (0, 16) respectively. The results, shown in
Fig. 2 and 2f, demonstrate the training performance from
scratch with I’HRL and other baselines. In the Fig. 2b, all
HRL methods reach a similar performance because it is easy
for the ant to reach a goal which is directly in front of the ant.
For the goal-position (16, 16) and (0, 16), agent is supposed
to learn to change its direction. In the Fig. 2c, we can see

that I?HRL as well as HAC can reach the (16,16) earlier than
HIRO, however, I?’HRL exceeds baselines by about 10% suc-
cess rate when converged. In the Fig. 2d, which shows the
success rate of algorithms in the most difficult task for ant,
I?HRL has a better performance than baselines on both the
final performance and the convergence. In the AntGather and
AntPush, I’HRL also has a higher average rewards than other
baselines. TD3 is non-hierarchical and not aimed for long-
horizon sparse reward problems. Additionally, TD3 uses the
Gaussian noise on the actions to explore, which serve as base-
line exploration strategy. The success rates of TD3 in all maze
tasks and the rewards in the gather task are almost zero. It
shows the inability of flat RL algorithms on such tasks.

Ablations. To answer the question (2), we remove the inter-
nal variable z as well as the intrinsic reward, that is, directly
feed the concatenation of the low-level policy representation
and the state into the high-level policy. To answer the ques-
tion (3), we only drop out the intrinsic reward 7;,. In the
Fig. 3, we notice that I’HRL without influence-based frame-
work has similar performance as compared with baseline. It
demonstrates that the low-level policy representation can help
the high-level policy alleviate the non-stationarity problem.
However, we can also see that there are some drops and re-
bounds in both AntMaze and AntGather, like at the 2 million
steps in Fig. (3c) and at 1.2 million steps in Fig. (3d). While
I2HRL without rin does not have these drops and has better
performance. As we mentioned in section 4.2, the source of
non-stationarity moves from the low-level policy to the low-
level representation. When the low-level policy representa-
tion is not sufficient or accurate to represent the low-level
policy, the high-level policy makes bad decisions with bad
representations. As the training process going, the represen-
tation becomes stable, thus the high-level policy starts to cor-
rect its understanding of the low-level representation. Also in
the Fig. (3¢), I’HRL without r;,, reaches a higher success rate
from 1.5 million steps to 2 million steps than I?’HRL without
the influence-based framework. It demonstrates the effective-
ness of the proposed influence-based framework. The effi-
ciency of proposed influence-based exploration is also shown
in the Fig. (3). I’HRL has better performance than I?’HRL
without r;,, especially earlier to get the goal position and
reach a higher success rate. It shows that r;,, improves data
efficiency, thus accelerating the learning process.
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5.3 Visualization

Visualization of the low-level policy representation. We
visualize the low-level policy representations in terms of dif-
ferent phases. We get the low-level policy representation (8
dimensions) every 100k steps over 3 million steps. Then we
use t-SNE [Maaten and Hinton, 2008] to visualize the repre-
sentations as shown in Fig. 4. At the beginning of the training
process, the representation is sparse. While when the low-
level policy is near-optimal, the representation is more dense.

1.00

0.75 S ‘ 20
0.50

0.25 10
0.00 e e 0

0.0 0.5 1.0

Figure 4: Visualization of the low-level policy representation.

Visualization of non-stationary states. To backup our
claims in Section 4.3, we visualize the intrinsic rewards in
AntMaze with random target positions in terms of the dif-
ferent phases. Concretely, we split the training process into
three phases: initial phase, non-stationary phase, and near-
stationary phase. Since our method is end-to-end training, the
intrinsic rewards are inaccurate in the initial phase. Conse-
quently we pass the parameters of p.,,. of the near-stationary
phase to the parameters of the initial phase. At the beginning
of the training process, the ant only navigates its surround-
ings with relatively high intrinsic rewards. When the low-
level policy is near-optimal, the intrinsic rewards around goal
positions are lower than rewards in the non-stationary phase.

As stated in Section 4.3, if the intrinsic reward is small, the
agent visits a state which is less easily influenced by the low-
level policy. It means that the high-level transition is near-
stationary, i.e., less data is needed here other than other states.
The result shows that once the ant learns how to approach a
goal, the nearer it gets to the goal, the less data is needed.
Because the task is goal-oriented, the ant actually needs to
explore its surroundings when it does not know where to go,
i.e. far away from its goals. For example, a well-trained ad-
venturer is walking in a desert, looking for an oasis. When he
is far away from the oasis, he will walk around and explore to
determine a direction. When he is approaching to the oasis,
he will rush his goal without hesitation.

6 Conclusion and Future Work

In this work, we focus on the non-stationarity problem in the
end-to-end HRL. We propose the Interactive Influence-based
HRL (I?HRL). Concretely, we enable the interaction between
the high-level policy and the low-level policy. We propose the
influence-based framework to address the non-stationarity.
This framework provides an influence-based adaptive explo-
ration to help the agent to explore the more non-stationary
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Figure 5: Visualization of the intrinsic reward. Axes represent the
position of the ant. The red point is the goal position in AntMaze.
Colormap shows the magnitude of the intrinsic rewards. (a)(b) The
initial phase is at O step. (c)(d) The non-stationary phase is at 1
million steps. (e)(f) The near-stationary phase is at 3 million steps.

states. I?HRL outperforms state-of-the-art HRL baselines
and accelerate the learning process.

I?HRL splits the HRL into two parts: policy representa-
tion and communication. For the first one, more principles
can be proposed to learn a good representation, such as pre-
dicting the low-level policy values (value-based), or predict-
ing the state transitions and rewards (model-based). Various
agent/opponent modeling methods can be future works for
learning the low-level policy representation. For the second
part, the literature of multi-agent communication can also im-
prove the cooperation between the two levels in HRL, such as
centralized training or value decomposition.
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