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Abstract
Efficient exploration is a major challenge in Rein-
forcement Learning (RL) and has been studied ex-
tensively. However, for a new task existing meth-
ods explore either by taking actions that maxi-
mize task agnostic objectives (such as informa-
tion gain) or applying a simple dithering strategy
(such as noise injection), which might not be effec-
tive enough. In this paper, we investigate whether
previous learning experiences can be leveraged to
guide exploration of current new task. To this end,
we propose a novel Exploration with Structured
Noise in Parameter Space (ESNPS) approach. ES-
NPS utilizes meta-learning and directly uses meta-
policy parameters, which contain prior knowledge,
as structured noises to perturb the base model for
effective exploration in new tasks. Experimental
results on four groups of tasks: cheetah veloc-
ity, cheetah direction, ant velocity and ant direc-
tion demonstrate the superiority of ESNPS against
a number of competitive baselines.

1 Introduction
Reinforcement Learning (RL) has achieved great success in
various applications. In RL, the agent improves its future re-
wards by exploring insufficiently understood states and ac-
tions so that preventing premature convergence. Prior works
have proposed a wealth of strategies, e.g., exploration by in-
jecting random noise in the action space [Sutton and Barto,
2018], following task-agnostic criteria such as state visita-
tion counts [Bellemare et al., 2016; Kearns and Singh, 2002;
Tang et al., 2017], information gain [Houthooft et al., 2016]
and curiosity [Sun et al., 2011; Pathak et al., 2017], and ex-
ploration by sampling and ensemble of models [Osband et al.,
2016]. These techniques are task agnostic and do not contain
any prior information on the way to better explore the task.
∗This work was primarily done during the author’s internship at

Tencent Robotics X.
†Contact Author: Jie Shao.

In practice, agents are often supposed to be able to handle
distinct but related tasks. This leads to meta-RL. To utilize
previous learning experiences. Model Agnostic Meta Learn-
ing (MAML) [Finn et al., 2017] propose to learn a meta-
policy which contains common structures of various tasks.
The agent can then adapt agilely to a new task from the
learned meta-policy. Meta learning decouples the common
structures and task-specific information of the tasks so that
it can be utilized to acquire efficient and guided exploration
for a specific task. Gupta et al. [2018] proposed Model Ag-
nostic Exploration with Structured Noise (MAESN), which
learns a task-specific latent variable z. z ∼ N (µ, σ2) con-
taining the task-specific knowledge, is then concatenated to
the states and used as structured prior noise for efficient and
guided exploration. MAESN obtains an impressive explo-
ration behavior in sparse reward tasks. However, computing
dataset level features is always difficult and MAESN does not
yield a better result than the original MAML in dense reward
cases.

Inspired by MAESN, we propose a novel Exploration with
Structured Noise in Parameter Space (ESNPS) approach by
injecting structured noise directly in the policy parameter
space. Different from MAESN which uses the task-specific
latent variable as noise, we show that meta-policies trained
on different partitions of meta-train tasks, containing diverse
prior knowledge, can be used as additive structured noise up
to a scaling factor. Besides the bonuses of prior guided ex-
ploration, training with parameter noise in high-dimensional
neural network parameter space [Plappert et al., 2018; For-
tunato et al., 2018] helps to escape local optima [Jin et al.,
2017] in complex non-convex problems. To ensure consis-
tency in actions and temporally coherent stochasticity, the
policy network is perturbed only at the beginning of an
episode.

Traditional parameter space noise injection techniques,
however, are not directly applicable for meta-RL. In Plappert
et al. [2018] and Fortunato et al. [2018], policy parame-
ters are perturbed and updated with reparameterization trick
[Kingma and Welling, 2014]. This optimization requires sub-
stantial gradient steps to avoid unpredictable high variance,
but Meta-RL enjoys fast adaptation and converges in a few
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gradient steps on a new task. Instead of optimizing the origi-
nal policy parameters, we directly adapt the perturbed policy
parameters. Among the fine-tuned models perturbed by dif-
ferent structured noise containing different prior knowledge,
the best performing one is picked.

Extensive experiments are conducted on cheetah velocity,
cheetah direction, ant velocity and ant direction. The results
show that our proposed ESNPS effectively explores testing
tasks, outperforming a set of competitive baselines. The main
contributions of our work are as follows:

• We propose ESNPS, which effectively utilizes previous
search experiences as structured noise for directed effi-
cient exploration in a new task. Specifically, to the best
of our knowledge, this is the first time to use the meta
parameters of policy networks as parameter space struc-
tured noise.

• We consider the high variance problem caused by inject-
ing noise in parameter space in meta-RL and propose a
new optimization strategy suitable for fast adaptation in
meta-learning.

• Extensive experiments demonstrate the effectiveness of
the constructed structured noise in directed exploration
for a specific task as well as the superiority of our pro-
posed method against a set of competitive baselines.

2 Related Work
A crucial problem of reinforcement learning is how to explore
effectively, and prior works have made great efforts for it.
State visitation methods [Kearns and Singh, 2002; Brafman
and Tennenholtz, 2001] are based on optimism in the face
of uncertainty, which is yet constrained by small state-action
space. The concept of curiosity [Sun et al., 2011] is beneficial
to the exploration. The information gain [Houthooft et al.,
2016] and parameter space exploration [Plappert et al., 2018;
Fortunato et al., 2018] are also used for exploration strate-
gies. Additionally, Plappert et al. [2018] and Fortunato et al.
[2018] use noise to perturb the policy network in parameter
space. This ensures consistency in actions and temporally co-
herent stochasticity. However, these exploration strategies are
largely task-agnostic, in that they aim to explore without ex-
ploiting the particular structure of the tasks. This approach
using the samples from the perturbed policy to update the
non-perturbed network is not suitable for fast adaptive meta-
learning method. In this paper, we investigate whether pre-
vious learning experiences can be leveraged to guide explo-
ration of the current new task. This is achieved by incorpo-
rating the idea of meta-learning.

Meta-learning is also known as learning-to-learn [Mitchell
and Thrun, 1992; Vilalta and Drissi, 2002; Lemke et al.,
2015], where a model extracts common structures of related
but distinguished tasks so that a similar and previously un-
seen task can be efficiently solved with the prior knowl-
edge. Various meta-learning methods have been proposed
[Hochreiter et al., 2001; Vinyals et al., 2016; Mishra et al.,
2017] and the most relevant is the Model-Agnostic Meta-
Learning (MAML) [Finn et al., 2017]. MAML and its ex-
tensions [Finn et al., 2018; Yoon et al., 2018; Li et al., 2017;

Grant et al., 2018; Nichol et al., 2018] learn a set of meta-
weights as initialization from where a few gradient steps
yield good performance on a previously unseen task. Meta-
learning decouples the common structures and task-specific
information of the tasks so it can naturally be utilized to
acquire efficient and guided exploration for a specific task.
Closer to ours is MAESN [Gupta et al., 2018], which uti-
lizes MAML and additionally learns a latent variable z ∼
N (µ, σ2), containing the task-specific knowledge as a struc-
tured noise for exploration. MAESN obtains an impressive
exploration behavior in sparse reward tasks. However, in
dense reward cases, MAESN does not yield better results
than vanilla MAML. Compared with MAESN, Our ESNPS
does not explicitly compute the task representation z, which
is always difficult. Besides, as a parameter space exploration
method, ESNPS enjoys the bonus of training with noised pa-
rameters, which helps to escape local optima.

3 Preliminaries
Suppose that a number of tasks {T } are sampled from a task
distribution p(T ). Each task Ti is a Markov Decision Process
(MDP) and is denoted as Ti = {S,A,Pi,Ri, γ, ρi}, where S
is the state space,A is the action space, Pi : pi (st+1|st, at) is
a transition probability distribution,Ri : S×A → R is the re-
ward function, ρi the initial state distribution and γ ∈ (0, 1) is
the discount factor. Policy parametrized by θ is denoted as πθ.
For each task Ti, we collect a trajectory τij = {st, at, rt}H−1

t=0
where H is the actual trajectory horizon for the task, and the
trajectory discounted return of the task R(τij) =

∑H−1
t=0 γrt.

Now, the likelihood of a trajectory induced by policy πθ is
given by p(τij |θ) = ρi (s0)

∏H−1
t=0 pi (st+1|st, at)πθ (at|st).

Meta-RL considers how to utilize previous learning experi-
ences for efficient search on a new task. To find a proce-
dure that can generate a good policy to adapt to the new task
Ti though a few gradient steps, Finn et al. [2017] proposed
Model Agnostic Meta-Learning (MAML), which maintains a
meta-policy πθ, from where a few gradient descent steps can
lead to a significant increase of performance on previously
unseen tasks Ti. The fast task adaptation is performed by:

φi = θ + βEπθ

[∑
t

Ri (st)∇θ log πθ (at|st, pTi)

]
, (1)

where β is the adaptation learning rate of policy and R is the
trajectory discounted reward. The meta policy is updated by
solving the following problem:

max
θ

∑
Ti

Eπφi

[∑
t

Ri (st)

]
. (2)

The model learns the meta-policy πθ as good initializa-
tion for adaptation when Equation (2) converges. By solving
Equation (2) and getting the meta-policy, the agent can reach
high reward with limited examples on a previously unseen
task.

4 Our Method
To better explore a new task in the meta-RL setting, we pro-
pose Exploration with Structured Noise in Parameter Space
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Figure 1: The framework of ESNPS has two phases: meta-training and meta-testing. In meta-training, we split the task set into J + 1
partitions, and then train J + 1 MAML models on these partitions. In meta-testing, we first fine-tune the J + 1 models on the specific task,
and put them into the fine-tuned model collection. The number of gradient steps k for fine-tuning is always set to 4. We set model θ0 trained
on the whole training set S0 = T as the base model, and other models as structured noises. Then, we iteratively perturb the base model θ0
to generate perturbed models. Finally, we fine-tune each perturbed model θ̃j , (j ∈ 1, 2, · · · , J), and pick the best performing model as an
output.

(ESNPS), whose framework is presented in Figure 1. ESNPS
uses meta-policies trained on different partitions of meta-
train, containing diverse prior knowledge, as additive struc-
tured noise for better exploration of a new task in the meta-
testing phase. Among the perturbed models, after fine-tuning,
the best performing one is picked. In the following, we first
analyze how to apply parameter space noise without causing
high variance problem in meta-RL setting. Then, we detail
ESNPS in how to construct effective structured noise with
meta-policies trained on different partitions of train tasks and
discuss the intuition behind it. Finally, we introduce an adap-
tive scaling module to automatically determine the noise scal-
ing factor for better performance.

4.1 Parameter Space Noise for Meta-RL
Injecting noise in high-dimensional neural network parameter
space helps to escape local optima [Jin et al., 2017]. Without
loss of generality, we use Gaussian noise to perturb the pa-
rameters of deep neural networks for effective exploration.
For our policy gradient RL case, parameter noise can be in-
corporated in gradient steps [Rückstieß et al., 2008]. Given
a policy πθ(a|s) parameterized by θ ∼ N (µ,Σ), with re-
parametrization trick [Kingma and Welling, 2014], the gradi-
ent can be:

∇µ,ΣEτ [R(τ)] = ∇µ,ΣEθ∼N (µ,Σ)[
∑
τ

p(τ |θ)Rt(τi)] (3)

≈ 1

N

∑
εi,τi

[
T−1∑
t=0

∇µ,Σlogπ(at|st;µ+ εiΣ
1
2 )Rt(τi)], (4)

where we consider N samples εi ∼ N (0, I), and τi ∼
(π
µ+εΣ

1
2
, p), where p is the transition probability. Re-

parameterization trick decouples the mean, variance value
and the stochasticity so that the original non-perturbed pol-
icy parameters can be updated with gradient steps. With this
re-parameterization trick Plappert et al. [2018] show impres-
sive exploration behavior on both high-dimensional discrete
action tasks and continuous control tasks.

However, directly applying Gaussian noise and updating
with re-parametrization trick as in Plappert et al. [2018] and
Fortunato et al. [2018] requires lots of gradient steps to ac-
curately estimate the unperturbed policy parameters. While
in the meta-RL case, we focus on fast adaptation on new
tasks and only a few steps are allowed. Instead of optimiz-
ing the original un-perturbed policy parameters during adap-
tation, we treat the perturbed as a variable to be optimized and
directly fine-tune the perturbed models. The perturbed policy
parameters are now θ̃ = θ+εiΣ

1
2 and are updated as follows:

θ̃ = θ̃ + β∇θ̃Eτ∼πθ̃ [R(τ)]

= θ̃ + βEτ∼πθ̃ [
T−1∑
t=0

∇θ̃logπ(at|st; θ̃)Rt(τj)]

= θ̃ + β
1

M

M∑
j=1

[
T−1∑
t=0

∇θ̃logπ(at|st; θ̃)Rt(τj)],

(5)

where β is the gradient step size, and we collect M trajecto-
ries to estimate the policy gradient. Altogether we sample N
samples εi ∼ N (0, I) to conduct N perturbed policies and
fine-tune these policies according to Equation (5). Then, the
best performing model is picked from the N perturbed net-
works.
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4.2 Exploration with Structured Noise
For RL problems, compared with task-agnostic random noise,
structured noise containing prior knowledge of the underly-
ing task can help the learner better explore the insufficiently
understood states. This has been shown in MAESN [Gupta
et al., 2018], which learns a task-specific latent variable z.
z ∼ N (µ,Σ) containing the task-specific knowledge, is then
concatenated to the states and used as structured prior noise
for efficient and guided exploration. This also holds for pa-
rameter space noise. Hu et al. [2019] show that the parame-
ters need to elaborate noise with prior knowledge rather than
a task-agnostic random noise. In this part, we detail our Ex-
ploration with Structured Noise in Parameter Space (ESNPS)
algorithm and apply the perturbed policy optimization strat-
egy developed in Section 4.1.

In ESNPS, we partition meta-train tasks into J partitions
T =

⋃J
j=1 Sj and conduct meta-training on each parti-

tion separately, resulting in altogether J + 1 meta-policies
{πθj}Jj=1 (including one base model trained on the whole
meta-train set). The intuition behind this is that the exist-
ing meta-learning algorithms would force the model to learn
common structure (prior knowledge) from the training set
[Finn et al., 2018], but do not adequately model specific struc-
tures of different tasks [Lan et al., 2019]. By partitioning
the tasks and meta-train separately, meta-polices {πθj} con-
tain diverse prior knowledge. When used as structured noise,
they potentially provide more task-specific information, and
can be much more helpful for directed exploration on a new
testing task than plain spherical noise. Specifically, we use
the network meta-policy πθ0 as a base model θ(1)

0 , and other
meta-polices {πθj} as structured noise {θ(1)

j }. After adapted
policy with Equation 1 on a specific task, we obtain fine-tuned
models θ(2)

0 , θ(2)
j respectively. Then, we apply the following

noise injection scheme:

θ̃j = θ
(2)
0 + αθ

(2)
j , (6)

where θ̃i is the perturbed model, and α is a scaling factor
which will be discussed later. Then, as discussed in the pre-
vious part, we directly fine-tune the perturbed neural network
θ̃i with the help of structured noises for randomized but task-
aware exploration:

θ̃j ← θ̃j + β∇θ̃jE[R(τi)], (7)

where β is the gradient step size. Besides the bonus of
directed exploration based on the information contained in
the structured noise, perturbing by parameter noise equals to
changing the parameter position of policy parameter in the
high-dimensional parameter space, and such a perturbation
may help to escape the local minimum or saddle point in com-
plex none-convex optimization problems [Jin et al., 2017].

Like ordinary meta-learning algorithms, our ESNPS algo-
rithm has two phases: meta-training and meta-testing. The
architecture of ESNPS is depicted in Figure 1, and the al-
gorithm is summarized in Algorithm 1. In the meta-training
phase, we train J+1 MAML models on J+1 partitions {Si}
of the task set T . In the meta-testing phase, we first fine-tune

Algorithm 1 ESNPS algorithm

Require: J + 1 MAML models
{θ(1)

0 , θ
(1)
1 , θ

(1)
2 , θ

(1)
3 , · · · , θ(1)

J } trained from differ-
ent partitions Si of task set T , where T =

⋃J
j=1 Si and

θ0 trained on the whole task set S0T .
1: Initialize fine-tuned model collection C = ∅
2: Initialize perturbed model collection E = ∅
3: for all MAML model θ ∈
{θ(1)

0 , θ
(1)
1 , θ

(1)
2 , θ

(1)
3 , · · · , θ(1)

J } do
4: Fine-tune θ with k gradient steps and put it to fine-

tuned model collection C
5: end for
6: Set θ(2)

0 as the base model
7: for j = 1 to J do
8: Perturb the base model θ(2)

0 by structured noise θ(2)
i to

generate perturbed model, put the perturbed model θ̃i
into perturbed model collection E .

9: end for
10: for all model θ ∈ E do
11: Fine-tune θ with k gradient steps, put it into perturbed

model collection E
12: end for
13: return The best performing perturbed model θ̃ from the

perturbed model collection E

all the models with k gradient steps and put them into the
Fine-tuned model collection. The number of gradient steps k
for fine-tuning is always set to 4. We set model θ0 trained on
the whole training set S0 = T as the base model, and other J
models as structured noises. Then, we iteratively perturb the
base model θ0 by using structured noises to generate diverse
perturbed models. The parameters of perturbed models are
computed by Equation 6. After further fine-tuning, we take
the best performing perturbed model as a return. To the best
of our knowledge, this is the first study to use the parameters
of a learned neural network as structured noise.

4.3 Noise Scaling
The noise level plays an important role in RL exploration.
High-level noise encourages trials on insufficiently under-
stood areas but potentially incurs high variance in the agent
training. Noise level has been previously discussed in Plap-
pert et al. [2018], where task-agnostic Gaussian noise is con-
sidered. In this section, we introduce a heuristic scheme that
adaptively tunes the scaling factor α in our directed explo-
ration ESNPS. Compared with perturbation in action space,
injecting noise in parameter space is harder to depict. Let π
and π̃j denote the original policy and the policy perturbed by
noise model j. Following Plappert et al. [2018], we mea-
sure the distance between the two policies by the variance in
action space they induce:

d(π, π̃j) =

√√√√ 1

M

M∑
i=1

E[π(s)i − ˜πj(s)i]2 (8)

where we average on M trajectories to estimate the distance
between the two policies. As there are altogether J noise
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models, the averaged distance d(π, π̃) = 1
J

∑
J d(π, π̃j) is

used to measure the averaged noise level. The scaling factor α
then adaptively increases or decreases depending on whether
the distance is below or above a certain threshold:

α =

{
λα, if d(π, π̃) < δ
1
λα, otherwise

, (9)

where λ ∈ R+ is used to rescale α, which is set to 1.1 in
our experiments. δ is a threshold controlling the acceptable
change of actions due to noise injection.

With Equation (9), we change a policy parameter space
searching problem into an action space searching problem,
which can be much more easier to solve. In meta-RL, to get a
certain level of exploration or perturbation, the proper value
of scaling factor α can change rapidly for different tasks.
However, as the meta-test tasks are often quite similar to each
other, a certain level of exploration naturally requires a sim-
ilar level of change in actions for the tasks, which means a
shared threshold δ is enough for all the tasks.

This scaling factor searching scheme resembles the noise
level adaptation strategy proposed in Plappert et al. [2018] in
the formulation, but is for a different purpose and is carried
out differently. We apply Equation (9) at the beginning of
the policy gradient update of a specific task to get a proper
α for further guided exploration. The scaling factor is kept
unchanged during the latter exploration. In contrast, Plappert
et al. [2018] focuses on a single task and dynamically varies
the noise level during the whole exploration process.

5 Experiments
We evaluate the proposed ESNPS on four reinforcement
learning tasks with MuJoCo simulator [Todorov et al., 2012].
To show the effectiveness of guided search with structured
noise, we compare ESNPS with vanilla MAML and a com-
petitive parameter space task-agnostic noise model proposed
in Plappert et al. [2018]. We omit the comparison with
MAESN, which learns a task-specific latent variable for di-
rected task-specific search because MAESN does not yield
better performance in dense reward task.

5.1 Task Setup

Meta-RL tasks. To evaluate the proposed ESNPS algo-
rithm, we experiment on four tasks: cheetah velocity, cheetah
direction, ant velocity and ant direction. For all experiments,
we use a neural network policy with two hidden layers of size
100, and ReLU nonlinearities. For the velocity tasks, the re-
ward is the negative absolute value between the velocity given
by the agent and the goal velocity. For direction tasks, the re-
ward is the difference between the current direction and the
goal direction. The goals of cheetah and ant are sampled uni-
formly from 0.0 to 2.0 and from 0.0 to 3.0, respectively. The
horizon is set to H = 200, with 20 rollouts per gradient step
for all groups of tasks except the ant direction task. The ant
direction uses 40 rollouts. For each group of tasks, we con-
struct 40 new tasks as meta-test set. For all the experiments,
we exactly follow the protocol proposed in Finn et al. [2017].

Hierarchical partition. To acquire structured noise con-
taining diverse prior knowledge, we hierarchically partition
the meta-train tasks into J splits. T =

⋃J
j=1 Sj . As meta-

learning models exact common structures shared across meta-
train tasks, these partitions, used as meta-train sets, can pro-
vide different levels of abstraction and diverse prior knowl-
edge. Specifically, S0 = T , and we bi-partition all the meta-
train tasks into S1 and S2 according to the goal value of the
tasks. Then, we equally partition the meta-train set into 4
splits forming {S}6j=3 and finally 8 splits forming {S}14

j=7.
For instance, S1 of cheetah velocity contains tasks with goals
from U [0.0, 1.0) and S2 with goals from U [1.0, 2.0], where U
is the uniform distribution. Similarly, tasks with goals from
U [0.0, 0.5), U [0.5, 1.0), U [1.0, 1.5), U [1.5, 2.0] form {S}6j=3

respectively. Conducting meta-learning on {S}Jj=0 will re-
sult in meta-policies {πθj}Jj=0. We set model πθ0 as baseline
MAML and perturb on policy parameters. In all our exper-
iments, the fast adaptation Equation (1) is computed using
vanilla policy gradient, and the meta-training is carried out
with Trust Region Policy Optimization (TRPO) [Schulman et
al., 2015].

5.2 Performance Comparison
We get altogether 15 models after the hierarchical partition
and meta-training, including a base model θ0 trained on
the whole meta-train set. Parameters of the other 14 meta-
policies are used as structured noises to perturb the base
model. In this section, we compare ESNPS with vanilla
MAML and a parameter space Gaussian noise method [Plap-
pert et al., 2018] (denoted by PSNE). For a fair comparison,
in the Gaussian noise case, we follow a similar noise injection
and fine-tuning protocol: 14 random noises εi ∼ N (0, σ2)
are used to perturb the base model θ0, generating 14 perturbed
models and the one with the best reward after fine-tuning is
picked. Both structured noises (ESNPS) and Gaussian noises
(PSNE) perturb the neural network in the parameter space.
The perturbed policies are then updated as in Section 4.1. To
get better performance, we adapt the scaling factor α of ES-
NPS with Equation (9) and the shared threshold δ controlling
the change in action is set to be 1. For the Gaussian noise
baseline PSNE, we set the noise level to σ = 0.01. This is
a manually tuned noise level for PSNE. The properness of
this value will be shown in the ablation study discussing the
influence of noise level on final performance.

From Figure 2, we see that both ESNPS and PSNE improve
the performance on vanilla MAML, validating our hypothe-
sis that fine-tuning with parameter noise in high-dimensional
neural network parameter space helps to escape local op-
tima thus performing better exploration. While exploring
with task-agnostic Gaussian noises only improves marginally,
perturbing with the structured noise achieves significant im-
provement in all the four groups of tasks. Besides, we see that
during the final fine-tuning, injecting Gaussian noise intro-
duces large fluctuations while structured noise leads to much
more stable training. We own this to the informative directed
task-aware exploration in ESNPS.

In this experiment, every fine-tuning operation needs k = 4
gradient steps. Therefore, both the ESNPS and PSNE need
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Figure 2: Comparison of ESNPS with baseline methods vanilla MAML and PSNE. For ESNPS, altogether 15 models are considered. Model
θ0 (MAML) is used as the base model and the other 14 models provide structured parameter space noises. PSNE also uses θ0 as the base
model, but perturbs it with plain spherical Gaussian noise instead of the structured noise containing previous learning experiences. The
scaling factor α is obtained with a heuristic noise level adaptation scheme. The best reward is reported among the models perturbed by 14
different noises.

Figure 3: Effect of noise level. Left: ESNPS on cheetah and ant di-
rection tasks with different scaling factor α. Right: PSNE on chee-
tah and ant direction tasks with different variance σ.

15 ∗ 4 + 14 ∗ 4 = 116 gradient steps, including the 4 steps of
pre-adaptation for {θ(2)

j }Jj=0 and the 4 steps of final adapta-
tion of the perturbed model from {θ̃j}Jj=1. From Figure 2
we see that the final fine-tuning steps on the perturbed θ̃j
do not always yield further performance gain, so that these
fine-tuning steps are not always necessary. In this way, we
can simplify ESNPS by running only the 15 ∗ 4 = 60 pre-
adaptation gradient steps. From Figure 2 we see that even the
simplified ESNPS (corresponding to the step 0 reward) al-
ways significantly outperforms PSNE, no matter whether the
final fine-tuning steps are carried out or not. Compared with
the baseline vanilla MAML, ESNPS obtains a significant im-
provement. With this notable achievement, we believe it is
worthwhile even at the cost of more gradient steps.

5.3 Effect of Noise Level
Finally, we discuss how different noise levels will affect the
exploration performance with the tasks of cheetah direction
and ant direction. The other two groups of tasks are much
simpler and can easily achieve high performance. We test the

performance of ESNPS with different scaling factors α rang-
ing from 0.01 to 1.0 (for all tasks, α is shared). Similarly,
PSNE is evaluated with different variances σ ranging from
0.005 to 0.1. The results are shown in Figure 3. From Fig-
ure 3 we see that both ESNPS and PSNE are sensitive to the
noise level and thus careful tuning of scaling factor α or vari-
ance σ is critical. In most cases, perturbing with structured
noise shows far better exploration behavior than with Gaus-
sian noise.

One interesting phenomenon is that when relatively high-
level noise (e.g., α = 0.1) is applied, ESNPS still performs
comparably with vanilla MAML, indicating that the per-
turbed model still maintains the common structure of meta-
train tasks. On the contrary, high-level noise introduces de-
structive perturbation when task-agnostic noise is applied,
which validates the importance of task-specific guidance in
exploration. Finally, note that with noise level σ = 0.01, the
learner reaches the best performance in cheetah direction and
explores comparably well in ant direction among the testing
values, validating our setting of σ = 0.01 as the default vari-
ance level in Gaussian noise models in Section 4.2.

6 Conclusion and Future Work

In this paper, we introduce ESNPS to utilize previous search
experiences as structured noise for directed exploration in
new tasks. Experiments show the effectiveness of using di-
verse meta-policies as structured noise for exploration. Be-
sides, we also demonstrate that directly fine-tuning the per-
turbed model is a suitable method for fast adaptive meta-
learning methods like MAML. Although our method is
widely applicable, it has limitations. For instance, construct-
ing diverse structured noise is time-consuming. For future
work, we plan to construct more easy-to-get yet powerful
structured noises.
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