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Abstract
In this paper, we present a technique of definite-
ly addressing the pairwise constraints in the semi-
supervised clustering. Our method contributes to
formulating the cannot-link relations and propagat-
ing them over the affinity graph flexibly. The pair-
wise constrained instances are provably guaranteed
to be in the same or different connected compo-
nents of the graph. Combined with the Lapla-
cian rank constraint, the proposed model learns
a Pairwise Constrained structured Optimal Graph
(PCOG), from which the specified c clusters sup-
porting the known pairwise constraints are direct-
ly obtained. An efficient algorithm invoked by the
label propagation is designed to solve the formu-
lation. Additionally, we also provide a compact
criterion to acquire the key pairwise constraints
for prompting the semi-supervised graph cluster-
ing. Substantial experimental results show that the
proposed method achieves the significant improve-
ments by using a few prior pairwise constraints.

1 Introduction
Traditional clustering targets at grouping instances according
to their inherent similarities without any supervision. Howev-
er, the attributes of each cluster obtained from unsupervised
clustering are mostly unpredictable (e.g., Figure 1). In light
of this, semi-supervised clustering attracts lots of interests,
which not only guides the clustering results according to pref-
erence, but also improves the clustering performance signif-
icantly. Semi-supervised clustering frequently uses the prior
information of pairwise constraints, including must-link con-
straints (ML, specify that the pair of instances must be in the
same cluster), and the cannot-link constraints (CL, specify
that the pair of instances must be in different clusters), since
the pairwise constraints are much easier to acquire and more
flexible than labels in practice when the cluster number is un-
available. For instance, to distinguish portraits, the images of
one person are must linked, whereas the images of differen-
t persons are cannot linked. A lot of researches on pairwise
constrained clustering have been made and implemented in
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many applications, such as medical diagnosis [Thangavel and
Mohideen, 2010], image segmentation [Saha et al., 2016],
and information networks [Li et al., 2017], etc.

Graph based clustering is always an important branch in
the clustering and attracts more and more attentions in re-
cent years, due to the high tractability of graph represen-
tations of data, such as the well-known normalized cut (N-
cut) [Ng et al., 2002; Shi and Malik, 2000], and ratio cut [Ha-
gen and Kahng, 1992]. The performance of graph cluster-
ing depends on a given graph where the pairwise relations of
samples are depicted by an affinity matrix, thus it is natural
to incorporate pairwise constraints into graphs. Many con-
strained graph clustering [Lu and Carreira-Perpinan, 2008;
Kulis et al., 2009; Śmieja et al., 2018] were raised according-
ly that first refined the affinity matrix by given pairwise con-
straints, then performed spectral clustering on the modified
graph. However, due to the cannot-link’s non-transitive prop-
erty, they only dealt with the must-link constraints effectively.
Instead of modifying graphs, Wang et al. [Wang et al., 2014]
solved a constrained spectral clustering under the constraint
that the number of satisfied pairwise constraints was greater
than a threshold value. Later, Cucuringu [Cucuringu et al.,
2016] put forward that traditional spectral clustering was a
special case of constrained clustering with implicit pairwise
constraints, and they modified the denominator of Ncut’s ob-
jective function to be the graph Laplacians associated with the
defined cannot-link matrix, such that the pairwise constraints
were considered into partitioning.

Nevertheless, existing approaches still encounter two ma-
jor issues: i) the cannot-link problem, how to provably en-
sure the instances under the cannot-link constraint to be in
different clusters; ii) the multi-class problem, how to flexi-
bly incorporate pairwise constraints into the affinity matrix
for direct multi-class clustering. In other words, how to per-
form the multi-clustering task under the provably valid
supervision of cannot-link constraints remains a crucial
challenge.

In this paper, we simultaneously address the cannot-link
problem as well as the multi-class problem in the constrained
graph clustering. To be specific, we contribute to
• presenting a novel cannot-link graph regularization that

provably guarantees each cannot-link constrained in-
stance to be in different clusters, as demonstrated in The-
orem 1 and illustrated in Figure 2(a);
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Figure 1: Grouping images into two clusters: from the view of ag-
gressivity, the three left columns form a cluster, and the rest columns
form the other cluster; from biology, each row is more like a cluster.

• optimizing the graph to support the given must-link as
well as cannot-link constraints and has the specified c
connected components for direct multi-class clustering,
as illustrated in Figure 2(b);

• providing a simple yet efficient pairwise constraints s-
election criterion that specifically for improving semi-
supervised graph clustering.

We further conduct substantial experiments and verify that
the proposed method reaches the excellent performance by
using a few key pairwise constraints.

Notations. Throughout the paper, Tr(M) denotes the trace
of a matrix M . ‖v‖2 is the `2-norm of a vector v. ‖M‖F
denotes the Frobenius norm of M . MT is the transpose of
M , and rank(M) is the rank of M .

2 Preliminary
The prevalent graph based spectral clustering is a two-step
process that first seeks the intrinsic low-dimensional embed-
ding from the pre-constructed affinity graph, and then per-
forms k-means on the embedding to obtain the cluster labels,
since the graphs built from the original feature subspace lack
of the explicit cluster structure. To deal with it, in this section,
we revisit a constrained Laplacian rank algorithm proposed
by [Nie et al., 2016] for direct multi-class graph clustering,
formulated as:

min
S
‖S −A‖2F ,

s.t. S � 0, S1 = 1, rank(LS) = n− c,
(1)

where 1 = [1, · · · , 1]T ∈ Rn. A ∈ Rn×n is the pre-
constructed affinity matrix of n data points, and S ∈ Rn×n is
the optimized affinity matrix. LS = DS − S is the Lapla-
cian matrix of S, and DS is the degree matrix of S with
dii =

∑
j sij . With inputting a rough similarity matrix A,

this model obtains a non-negative and normalized approxi-
mation S which possesses the exact c connected components.
As a result, the quality of original graph is improved by re-
moving excrescent connections and the instances are exactly
partitioned into c clusters. This formulation provides how to
achieve a c-connected graph. However, whether the incor-
rect connections are removed and the valid connections are
preserved is uncontrolled. In the next section, we elaborate
how to overcome this deficiency by tactically incorporating
the pairwise constraints and obtaining the desired clusters.

3 Methodology
3.1 Problem Formulation
Suppose an affinity matrix A = [aij ]n×n associated with the
dataset X = {x1, x2, · · · , xn}, where xi is a d-dimensional
data point, aij represents the similarity between i-th sam-
ple and j-th sample. We utilize a few pairwise constraints
to guide the partition of X , denoted as:

M = {(xi, xj)|∀i, ∀j > i, xi must link xj};
C = {(xi, xj)|∀i, ∀j > i, xi cannot link xj}. (2)

From the viewpoint of the graph connectivity, when the must-
link constrained instances locate in one connected component
while the cannot-link constrained instances locate in differ-
ent connect components, the constraints can be satisfied intu-
itively. Moreover, if the edge of must-linked instances exists,
they naturally belong to one connected component. However,
removing the connections between cannot-linked instances
does not work since they still probably connect to each oth-
er through intermediate nodes. To address it, we first put
forward a theorem to definitely isolate the cannot-link con-
strained instances from each other, as below.
Theorem 1. Suppose a nonnegative graph S, and there exists
a cannot-link constraint between xa and xb. y ∈ Rn is the
cannot-link indicator where ya = 1 and yb = −1. When

yTLSy = 0, (3)

xa and xb must be in different connected components of S.

Proof. By reduction to absurdity. If xa and xb are in the
same connected component of S, there is at least a path
P∗ = {xa, xk1 , · · · , xkt , xb} from xa to xb. Denote J =
yTLSy =

∑
i

∑
j(yi − yj)

2sij . We split J = J (P∗) +

J (P̃∗), where J (P∗) ≥ 0 is the objectives associated with
P∗ and J (P̃∗) ≥ 0 is the objectives of all paths apart from
P∗. When J = 0 is required, we have J (P∗) = 0 as well.
Since J (P∗) = (ya − yk1)2sak1 + · · · + (ykt − yb)

2sktb,
and sak1

> 0, · · · , sktb > 0, it is inferred that ya = yk1 =
· · · = ykt = yb, which is contradictory to the conditions of
ya = 1, yb = −1. As a result, xa and xb must be in different
connected components of S.

According to Theorem 1, we present the cannot-link graph
regularization to learn the pairwise constrained structured op-
timal graph S ∈ Rn×n from the given affinity A under the
supervision of the pairwise constraints, formulated as:

min
S∈Ω,Y ∈Ψ

‖S −A‖2F + γ

p∑
k=1

yTk LSyk, (4)

where γ > 0 is a regularization parameter, and p is the num-
ber of the constraints in C. Ω = Ω† ∩ Ω‡ is the feasible zone
of the learned graph S, where Ω† inherits from model (1) and
Ω‡ is designed for addressing must-link constraints. Y ∈ Ψ
is the zone feasible of all yk equipped for the cannot-link reg-
ularization, i.e.,

Ω† : {S|S � 0, S1 = 1, rank(LS) = n− c},
Ω‡ : {S|∀(xi, xj) ∈M : sij = τ, sji = τ},
Ψ : {Y |∀(xik , xjk) ∈ C : yk(ik) = 1, yk(jk) = −1},

(5)
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Figure 2: The illustration to the proposed method. (a) The cannot-link graph regularization. Suppose a cannot-link constraint between xi
and xj . According to Theorem 1, when yTLSy = 0, the paths from xi to xj in the graph S are removed thoroughly; (b) The multi-class
clustering. Given three cannot-link constraints between {x1, x8}, {x3, x4} and {x5, x7}. By virtue of the Laplacian rank constraint and the
cannot-link graph regularization, the graph S learned from A would has three connected components satisfying cannot-link constraints.

Invoked by model (1), S ∈ Ω† compels that S has exact c
connected components. S ∈ Ω‡ sets the connections between
the must-linked instances by a small value τ (where τ = 0.1
simply). Y ∈ Ψ fixes yk(ik) = 1 and yk(jk) = −1 for each
yk to “label” the k-th couple of cannot-link constrained xik
and xjk . Benefited from label propagation [Zhu and Ghahra-
mani, 2002], the rest entries in yk are learned and thus the
cannot-link relations are propagated over the affinity graph,
as shown in Figure 2(a). According to Theorem 1, when γ is
large enough, minimizing the regularization term in model 4
makes the cannot-link constraints satisfied simultaneously.

By optimizing model (4), we can obtain the Pairwise Con-
strained Optimal Graph (PCOG) that directly indicates c clus-
ters, where the must-link constrained instances must be in the
same cluster and the cannot-link constrained instances must
be in different clusters (see Figure 2(b)). In this way, two
aforementioned problems of semi-supervised clustering are
addressed simultaneously. To our best knowledge, this is the
first work to provably address the cannot-linked instances.
Next, how to solve model (4) takes the first priority.

3.2 Optimization of Model (4)
Following the optimization of model (1), the non-convex rank
constraint in model (4) is tackled by solving its counterpart.
Denote the i-th smallest eigenvalue of LS as σi(LS). Since
LS is positive semi-definite, we have σi(LS) ≥ 0 for each
i. When the first c smallest σi(LS) equal zero, the constraint
rank(LS) = n−c is actually achieved. Based on this, model
(4) is transformed into:

min
S,Y
‖S −A‖2F + γ

p∑
k=1

yTk LSyk + λ
c∑
i=1

σi(LS),

s.t. S � 0, S1 = 1, S ∈ Ω‡, Y ∈ Ψ,

(6)

where λ is large enough, and
∑c
i=1 σi(LS) is minimized to

be zero. According to Ky Fan’s Theorem [Fan, 1950], prob-
lem (6) could be further equivalent to:

min
S,F,Y

‖S −A‖2F + γTr(Y TLSY ) + λTr(FTLSF ),

s.t. S � 0, S1T = 1, S ∈ Ω‡, FTF = I, Y ∈ Ψ,
(7)

where F = {f1, f2, · · · , fn} ∈ Rn×c is a manifold em-
bedding of data. Subsequently, we optimize three variables
{S, F, Y } in an iterative manner, known as block-coordinate
descent method [Tseng, 2001].

(i). When updating S with the fixed F and Y , problem
(7) is transformed into:

min
S
‖S −A‖2F + γTr(Y TLSY ) + λTr(FTLSF ),

s.t. S � 0, S1 = 1, S ∈ Ω‡.
(8)

To address problem above, we introduce an important equa-
tion in the spectral analysis [Ng et al., 2002], described as:

Tr(Y TLSY ) =
1

2

∑
i,j

∥∥yi − yj∥∥2

2
sij . (9)

Then, we could reformulate problem (8) as

min
S

∑
i,j

(sij − aij)2
+
∑
i,j

(
γ

2
dyij +

λ

2
dfij

)
sij ,

s.t. S � 0, S1 = 1, S ∈ Ω‡,

(10)

where dyij =
∥∥yi − yj∥∥2

2
and dfij =

∥∥f i − f j∥∥2

2
. Note that

the optimization of each column in S is independent, so we
decompose problem (10) into solving

min
si

∥∥∥∥si − (ai − 1

2
di

)∥∥∥∥2

2

,

s.t. si ≥ 0, sTi 1 = 1, ∀j, (xi, xj) ∈M : sij = τ,

(11)

where di = γdyi +λdfi . According toM, we denote the must-
linked objects of the i-th samples as κi = {j|(xi, xj) ∈M}.
Fix si,j:j∈κi = τ , sj:j∈κi,i = τ , and let s̃i = si,j:j /∈κi

, ãi =

ai,j:j /∈κi
, d̃i = di,j:j /∈κi

, then problem (11) could be trans-
formed into

min
s̃i

∥∥∥∥s̃i − (ãi − 1

2
d̃i

)∥∥∥∥2

2

, s.t. s̃i ≥ 0, s̃Ti 1 = 1− |κi|τ,

(12)
where |κi| denotes the number of elements in κi. Problem
(12) could be efficiently addressed by referring to problem
(9) in Reference [Nie et al., 2016].
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Algorithm 1 Algorithm to solve problem (4)

Require: the pairwise constraintsM and C, an affinity ma-
trix A, a constant value τ , the parameters λ and γ.

Ensure: the graph S with c connected components that sup-
ports the given constraints.
Initialize F ∈ Rn×c with the eigenvectors of LA =

DA − AT +A
2 corresponding to its c smallest eigenvalues;

Y ∈ Rn×p with a random matrix ranging in [−1, 1] and let
yk(ik) = 1, yk(jk) = −1 for k-th pair of cannot-linked
samples (xik , xjk) ∈ C; κi records the must-linked sam-
ples of i-th sample according to M; Let ãi = ai,j:j /∈κi

.

For each i, set si,j:j∈κi
= τ , sj:j∈κi,i = τ .

while not converge do
For each i, j, compute dij = γdyij + λdfij where dyij =∥∥yi − yj∥∥2

2
, dfij =

∥∥f i − f j∥∥2

2
;

For each i, update s̃i by solving problem (12);
For each k, update y(k)

u by solving problem (14);
Update F by solving problem (15);

end while

(ii). When updating Y with the fixed F and S, the
columns of Y in problem (7) are also independent to each
other and could be achieved by solving

min
yk

yTk LSyk,

s.t. ∀(xik , xjk) ∈ C : yk(ik) = 1, yk(jk) = −1.
(13)

As stated before, the optimization of yk could be regarded
as the label propagation process over the graph S [Zhu and
Ghahramani, 2002]. To be specific, we rearrange all sam-
ples as X (k) = {xik , xjk , x1, · · · , xn}. Accordingly, the re-
arranged yk is expressed as y(k) = [y

(k)
l , y

(k)
u ]T ∈ Rn, where

y
(k)
l = [1,−1]T . The similarity S is rearranged into S(k),

whose Laplacian matrix is L(k)
S . So, problem (13) is refor-

mulated as
min
y(k)

y(k)TL
(k)
S y(k),

s.t. y
(k)
l =

[
1
−1

]
, where L

(k)
S =

[
L

(k)
ll L

(k)
lu

L
(k)
ul L

(k)
uu

]
.

(14)
According to the label propagation algorithm [Zhu and
Ghahramani, 2002], the closed-form solution to problem (14)

is y(k)
u = −L(k)

uu

−1
L

(k)
ul y

(k)
l .

(iii). When updating F with the fixed S and Y , problem
(7) is equivalent to

min
F

Tr(FTLSF ), s.t. F TF = I. (15)

Problem (15) degrades to a spectral clustering problem [Ng
et al., 2002], whose solution consists of the eigenvectors of
LS corresponding to its c smallest eigenvalues.

3.3 Key Pairwise Constraints Selection
In semi-supervised clustering approaches, a compromised
way to acquire the pairwise constraints is to query pairs of

samples as much as possible. Since excessive constraints is
labor-intensive, many constraint selection approaches [Crae-
nendonck et al., 2017; Xiong et al., 2014] have been pro-
posed. Different from them, we put forward a compact
scheme specifically for semi-supervised graph clustering.
Considering that A is sparse that each sample only connects
to its k neighbors in the feature space, the rough “neighbors”
could be obtained easily. Based on this, we query pairwise
constraints following that: i) the must-link constraints are ob-
tained by querying the “non-neighbors” of the samples; ii) the
cannot-link constraints are obtained by querying the “neigh-
bors” of the samples. In this way, we can find the key pairwise
samples which are easily mis-linked or mis-unlinked in the o-
riginal feature space. Compared to the random querying, the
key querying simply makes the best of the pre-constructed
graph and has a great significance in prompting clustering.

3.4 Theoretical Analysis
Firstly, we discuss the computational complexity. Since A is
sparse and our algorithm only computes the k nonzero con-
nections of each row in A, updating S requires O(n2k). In
terms of solving yk, the inverse operation and the label propa-
gation in model (14) requires the complexity ofO((n−2)2k).
The optimization of F is an eigen-decomposition, requiring
O(n2c). Totally, the main computational complexity of our
algorithm is O(n2ct + (n − 2)2pt), where p is the number
of cannot-link constraints and t is the iteration number. Sec-
ondly, we talk about the effect of the parameters λ, τ and γ
respectively. Actually, τ is a constant that sets the edges be-
tween must-linked instances. Since we partition data points
according to the graph connectivity which is independent of
the intensity of edges, the value of τ does not effect the per-
formance of our algorithm. In terms of λ, as we said, a large
enough λ ensures that S possesses c connected components
exactly. However, how large λ should be is difficult to seek.
Thus, we adopt a widely used manner to determine λ heuristi-
cally [Nie et al., 2014]. Specifically, we first initialize λ with
a small value like 0.1, and update it according to the number
of eigenvalue zero of LS in the iterations. If this number is
smaller than c, λ is multiplied by 2; or if it is greater than
c + 1, λ is divided by 2, otherwise we terminate the itera-
tions. In terms of γ, when γ → ∞, the regularization term
infinitely approaches to zero and all of the cannot-link con-
straints would be satisfied. However, it cannot be neglect-
ed that when the cannot-link regularization is addressed too
seriously, it would cause meticulous cluster results, and the
clustering performance could be degraded. So, γ should be
appropriate that is neither too small nor too large.

4 Experiments
We conducted extensive experiments to validate the advan-
tages of the proposed PCOG and the proposed key pairwise
constraints selection strategy.

Settings. The proposed PCOG is evaluated in two aspects:
one is the clustering performance, and the other is the abil-
ity of satisfying the given pairwise constraints. The cluster-
ing performance is calculated by clustering ACCuracy (ACC)
and the Normalized Mutual Information (NMI) [Strehl and
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Nam. Siz. Dim. Cla.

UCI
Datasets

Dermatology 366 34 6
Control 600 60 6
Monk1 432 6 2
Glass 214 9 6

Image
Datasets

ORL 400 1024 40
COIL20 1440 1024 20
UMIST 1400 1024 200
USPS 2007 256 10
YALE 165 1024 15

Table 1: The numerical introduction to real datasets.

Ghosh, 2003]. ACC computes the percentage of correctly
clustered samples. and NMI computes the mutual informa-
tion between cluster labels and real labels.
Datasets. The proposed PCOG along with the compared
approaches are tested on both toy data and real-world dataset-
s. The real world datasets include four UCI datasets [Dua
and Graff, 2017] (Dermatology, Control, Monk1 and Glass)
and five image datasets (ORL [Samaria and Harter, 1994],
COIL20 [Nene et al., 1996], UMIST [Graham and Allinson,
1998], USPS [Hull, 1994] and YALE [Minear and Park,
2004], as described in Table 1.
Comparisons. We compare PCOG with five representative
methods including three most related semi-supervised graph
clustering approaches (SSGCK, CSCAP and CSP) [Lu and
Carreira-Perpinan, 2008; Kulis et al., 2009; Wang et al.,
2014]; the unsupervised graph clustering via Laplacian rank
constraint (CLR) [Nie et al., 2016], and the classical spectral
clustering (Ncut) [Shi and Malik, 2000].

4.1 Experimental Results on Toy data
To verify the effectiveness of the proposed cannot-link graph
regularization in PCOG, the toy experiment was Figure 3(a)
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Figure 3: Clustering results on two-moon toy data: (a) original sam-
ples and pairwise constraints; (b) the given affinity graph A; (c) not
using pairwise constraints; (d) using pairwise constraints.
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Figure 4: Comparisons of clustering performance w.r.t. the number
of pairwise constraints on four UCI datasets .

illustrates the toy data distributed in the shape of two closed
half-moons as well as the used must-link constraints and
cannot-link constraints. Figure 3(b) illustrates the used graph
A constructed by PKN (k = 5) (i.e., a graph construction
manner proposed in CLR [Nie et al., 2016] on the original
feature space. Figure 3(c) and Figure 3(d) respectively rep-
resent the results of CLR and PCOG. It is concluded that 1)
the achieved pairwise constraints are between either easily
mis-linked points or easily mis-unlinked points as expected;
2) the input graph A constructed in the original feature space
cannot reflect any cluster structure; 3) by only using the o-
riginal features, the unsupervised graph clustering CLR fails
in partitioning the pairs of points who are close in the ge-
ometrical space but different in terms of labels; 4) via the
cannot-link graph regularization, the proposed PCOG ensures
each cannot-link constraint, making the associated points in-
to different clusters; 5) incorporated with the must-link con-
straints, PCOG dramatically enhances the clustering perfor-
mance where a mass of connected points in the ambiguous
areas could be correctly clustered.

4.2 Experimental Results on Real data
In this part, we firstly evaluate the clustering performance on
four UCI datasets w.r.t. the pairwise constraints, as shown in
Figure 4. We fix that a quarter of the total pairwise constraints
are CL constraints, and the rest are ML constraints. From the
results, it is observed that the proposed method outperform-
s other methods distinctly. As the number of the pairwise
constraints increasing, the clustering accuracy of PCOG and
CSCAP has remarkable improvement while CSP and SSGCK
are steady. This is because PCOG and CSCAP propagate the
cannot-link affinity in the graph, and thus they can achieve
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ACC
Method ORL COIL20 UMIST USPS YALE

CLR 0.585 0.865 0.725 0.599 0.393
SSGCK 0.663 0.794 0.820 0.534 0.480
CSCAP 0.725 0.885 0.780 0.583 0.539

CSP 0.595 0.834 0.878 0.630 0.451
PCOG 0.835 1.000 0.930 0.710 0.600

NMI
Method ORL COIL20 UMIST USPS YALE

CLR 0.768 0.941 0.874 0.665 0.430
SSGCK 0.787 0.742 0.853 0.579 0.541
CSCAP 0.860 0.891 0.801 0.618 0.607

CSP 0.752 0.862 0.901 0.655 0.480
PCOG 0.925 1.000 0.957 0.730 0.750

Table 2: The clustering ACC and NMI on five image datasets.

the valid supervision via a few constraints. The methods like
CSP and SSGCK have to depend on a lot of given pairwise
constraints. Noting that despite an unsupervised manner, the
performance of CLR is dramatic compared to other semi-
supervised methods, showing the validity of Laplacian rank
constraint on the graph. Obviously, PCOG defeats CLR in
the real datasets as well.

Secondly, we evaluate the proposed PCOG in five image
datasets, covering the face images (i.e., ORL, UMIST and
YALE), the object images (i.e., COIL20) and also the hand-
written images (i.e., USPS). All of these algorithms use the
same key pairwise constraint sets consisting of 80 cannot-
link constraints and 240 must-link constraints, except for the
unsupervised CLR. The clustering ACC and NMI of differ-
ent approaches are recorded in Table 2. The best results are
highlighted and the second best results are underlined. It is
observed that the proposed PCOG outperforms all the com-
petitors. Moreover, the clustering results in terms of ACC
and NMI are improved about 10 percent compared to the sec-
ond best results, showing the dramatic performance of the
proposed algorithm. Additionally, to compare the ability of
algorithms in satisfying the given CL constraints, Figure 5(a)
recorded the number of violated cannot-link of four pairwise
constrained clustering approaches by using ORL. It is obvi-
ous that the performance of PCOG surpasses others distinctly.
Although CSCAP is the most well known affinity propagation
algorithm, its performance of guaranteeing the constraints is
very limited compared to the proposed method.
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Figure 5: (a) The number of the violated CLs w.r.t. the number of
total CLs on ORL. (b) The clustering accuracy of PCOG w.r.t. γ.
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Figure 6: The convergence demonstration of Algorithm 1.

4.3 Parameter Selection and Convergence Study
We have theoretically analyzed that γ intensively impacts our
clustering performance. So, we first seek γ in a large range of
{10−3, 10−2, 10−1, 100, 101, 102, 103}, and we find that our
algorithm works well in a small range [0.1, 1]. As a result,
we further search γ from 0.1 to 1 with the interval of 0.2, as
shown in Figure 5. The experimental curves obviously reflect
the consistent conclusion with the theoretical analysis before.
It is also shown that we can obtain the well performance in
the range of [0.3, 0.7], and thus we search γ from 0.3 to 0.7
to obtain the best results in other experiments. We fix λ as
a constant to investigate the convergence of Algorithm 1 ex-
perimentally. Figure 6 shows the objective value of model (7)
within twenty iterations on two datasets. From the results, we
observe that the proposed algorithm not only decreases the
objective value but also converges fast, which demonstrates
the high efficiency of the proposed algorithm.

5 Conclusion and Future Works
Pairwise constrained clustering is a vital technique in many
realistic tasks. However, how to make the best of the cannot-
link constraints is a long-term challenge since the cannot-link
constraints are difficult to transform and propagate efficiently.
In this paper, we present a method that addresses the cannot-
link constraints problem via a specific cannot-link graph reg-
ularization, provably tackling the cannot-link constraints in
the graph learning. We accordingly provide a matchable pair-
wise constraint selection for graph-based clustering methods.
The superiority of the proposed method is verified in both toy
data and nine real world datasets, improving the performance
of semi-supervised clustering significantly. In the future, the
research will proceed and we focus on two remained chal-
lenges: i) automatically determining γ in PCOG, releasing
the algorithm from parameters; ii) enhancing the efficiency,
such that the algorithm is applicable to large-scale data.
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