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Abstract

Three-dimensional (3D) object classification is
widely involved in various computer vision appli-
cations, e.g., autonomous driving, simultaneous lo-
calization and mapping, which has attracted lots
of attention in the committee. However, solving
3D object classification by directly employing the
3D convolutional neural networks (CNNs) gener-
ally suffers from high computational cost. Besides,
existing view-based methods cannot better explore
the content relationships between views. To this
end, this work proposes a novel multi-view frame-
work by jointly using multiple 2D-CNNs to cap-
ture discriminative information with relationships
as well as a new multi-view loss fusion strategy, in
an end-to-end manner. Specifically, we utilize mul-
tiple 2D views of a 3D object as input and integrate
the intra-view and inter-view information of each
view through the view-specific 2D-CNN and a se-
ries of modules (outer product, view pair pooling,
1D convolution, and fully connected transforma-
tion). Furthermore, we design a novel view ensem-
ble mechanism that selects several discriminative
and informative views to jointly infer the category
of a 3D object. Extensive experiments demonstrate
that the proposed method is able to outperform cur-
rent state-of-the-art methods on 3D object classifi-
cation. More importantly, this work provides a new
way to improve 3D object classification from the
perspective of fully utilizing well-established 2D-
CNNs.

1 Introduction
Object classification is a critical task in computer vision ap-
plications. It is the task of classifying the objects in the re-
ceived images and can be helpful in future tasks such as object
detection and tracking. Traditional ways of object classifica-
tion extract features (such as HOG, SIFT, SURF) or descrip-
tors first and then use classifiers (e.g., SVM, Bayes model,
graph propagation) to classify objects.

∗Contact Author

The accuracy of object classification can be improved by
making good use of multiple different views of a target object
[Paletta and Pinz, 2000]. Recent significant advances in im-
age recognition and 3D object model collection make it possi-
ble to learn the multi-view representations of 3D objects. This
has greatly facilitated the rapid development of 3D object
classification, making it an important field in 3D computer
vision, with a variety of applications, e.g., autonomous driv-
ing, intelligent robots, and virtual reality. Inspired by the suc-
cess of deep learning in 2D visions, numerous deep learning-
based 3D object classification methods [Wu et al., 2015;
Su et al., 2015; Maturana and Scherer, 2015; Qi et al., 2016;
Brock et al., 2016; Qi et al., 2017; Yavartanoo et al., 2018]
are proposed recently, achieving significantly better per-
formance compared to traditional handcrafted feature-based
methods [Guo et al., 2013; Guo et al., 2016] and single
view object classification methods [Krizhevsky et al., 2012;
Simonyan and Zisserman, 2015].

Considering three kinds of inputs are generally used to
do the 3D object classification: multiple-view images, 3D
voxel grids, and point clouds, we briefly review the previ-
ous works from the view-based methods [Su et al., 2015;
Johns et al., 2016; Kanezaki et al., 2018; Feng et al., 2018;
Wang et al., 2019], the volume-based methods [Wu et al.,
2014; Maturana and Scherer, 2015; Brock et al., 2016; Ren
et al., 2017] and the pointset-based methods [Qi et al., 2017;
Klokov and Lempitsky, 2017; Li et al., 2018], respectively.

For the view-based methods, they project 3D objects into
multiple 2D views and then utilize the features extracted from
the 2D-CNN for classification. For example, MVCNN [Su
et al., 2015] utilizes multiple 2D views rendered by 3D ob-
jects as inputs for 2D-CNNs. A pairwise decomposition
method is proposed in [Johns et al., 2016], which outper-
forms MVCNN at the expense of increased training costs.
This pairwise decomposition method uses two CNNs for se-
lecting view pair and predicting pairwise label, respectively,
each of which uses a CNN-M [Chatfield et al., 2014] and
has to be trained separately. As an extension of MVCNN,
RotationNet [Kanezaki et al., 2018] explores multiple views
from different angles, takes a part of the entire multi-view
image of an object as input, and infers the category of the
object through the rotation. GVCNN [Feng et al., 2018] con-
siders the group information of multiple views and proposes
the group-view CNNs, which groups the view-level features
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together to generate a group-level feature, and then merges
the group-level features to obtain object-level features. The
recurrent clustering and pooling layer introduced in [Wang
et al., 2019] is designed to combine the multi-view features,
which provides more discriminative capabilities for 3D ob-
ject classification. This work only pools information across
similar views in contrast to MVCNN.

The volume-based approaches directly apply a 3D-CNN
on voxelized shapes. Specifically, 3DShapeNets [Wu et al.,
2014] proposes to use convolutional Deep Belief Network
(DBN) to describe the 3D geometry as a probability distri-
bution on a 3D voxel grid. VoxNet [Maturana and Scherer,
2015] extends the 2D convolutional kernels to the 3D convo-
lutional kernels. VRN Ensemble [Brock et al., 2016] presents
deep ConvNet architectures for modeling generative and dis-
criminative voxel and explores the challenging problems of
voxel-based representations. 3D-A-Nets [Ren et al., 2017]
develops a 3D adversarial network to solve the challenging
problems of processing 3D volume data efficiently. Never-
theless, these 3D convolution-based methods have high com-
putational complexity and GPU memory consumption.

The pointset-based methods directly take the unordered
point sets as input. PointNet [Qi et al., 2017] provides a uni-
fied framework to learn the global and local point features for
the 3D classification tasks on the raw point clouds without
any voxelization or rendering. Kd-Net [Klokov and Lempit-
sky, 2017] proposes a deep learning architecture that is capa-
ble of producing representations on point clouds working for
different 3D data recognition tasks. SO-Net [Li et al., 2018]
explicitly constructs the spatial distribution of the input points
and systematically adjusts the overlap of the receiving fields
to extract hierarchical features on the point clouds.

Among the above three kinds of methods, the view-based
methods usually perform better than the other two kinds
of methods [Qi et al., 2016; Feng et al., 2018]. For one
thing, the view-based methods can easily obtain more views
from the 3D CAD model compared to other methods. For
the other thing, the well-established 2D models (e.g., VGG,
GoogLeNet, and ResNet) can be exploited for the powerful
view representation. Therefore, in this paper, our work would
classify the 3D objects in a view-based manner with a 2D-
CNN architecture to achieve state-of-the-art results for multi-
view object classification.

One straightforward solution to multi-view 3D object clas-
sification using 2D-CNN would be to simply concatenate all
the views (represented as features) of an object as a single-
view input. However, this concatenated input may reduce the
interpretability of intra-view information of different views.
Although some existing methods perform 2D-CNNs on views
separately and aggregate them in a pooling layer, such pool-
ing methods usually ignore the content relationships among
views. To address these issues, we provide a novel idea for
learning the discriminative intra-view information simultane-
ously, capturing the content relationship among views (inter-
view information), and integrating these two kinds of infor-
mation using a new multi-view loss fusion strategy for classi-
fying 3D objects in an end-to-end way.

In this paper, we propose a novel multi-view framework
for classifying 3D objects. Specifically, for the intra-view in-

formation, we utilize multiple 2D images (views) of a 3D
object as input and extract the high-level intra-view infor-
mation using multiple 2D-CNNs separately. This is helpful
to explore the intrinsic attributed information for each view.
For the inter-view information, we utilize the intra-view in-
formation of one view and that of all other different views
to calculate the outer products, which obtains the correla-
tion matrices between different attributes of each view pair.
Then the enhanced correlation matrix is captured by the max-
imized operation at the corresponding locations of obtained
correlation matrices in the direction of different view pairs.
Furthermore, we apply 1D convolution and fully connected
(FC) transformation over the enhanced correlation matrix to
gain high-level inter-view information of each view, which
is helpful to describe the content relationship across views.
After obtaining the above information, we concatenate and
feed them into the view-specific FC layer, which obtains the
view-specific loss and label prediction. For the multi-view
loss fusion strategy, we formulate a `0 constrained optimiza-
tion problem with regard to the weights of multiple views and
obtain the optimal weight distribution. This is beneficial to
select some discriminative and informative views through the
high weights and utilize their corresponding predictions to
make a joint decision.

The main contributions of this work are summarized as fol-
lows:

• We propose a novel multi-view framework that captures
the discriminative information with relationships across
views for different views and designs a view ensem-
ble mechanism via a multi-view loss fusion strategy, for
classifying 3D objects in an end-to-end manner.

• We develop the discriminative information with relation-
ships by integrating the intra-view and inter-view infor-
mation, where the latter is generated by applying 1D
convolution and FC transformation over the enhanced
correlation matrix which is obtained by the outer prod-
uct and view pair pooling. In addition, we design a novel
multi-view loss fusion strategy by solving a `0 constraint
optimization to make a joint decision for inferring the
category.

• Extensive experimental results show that our proposed
method can achieve better classification accuracy than
most of the existing state-of-the-art methods on the
ModelNet40 dataset.

2 Related Work
In recent years, deep CNNs have captured the most signifi-
cant advance, especially for image classification, which clas-
sifies millions of images into thousands of categories. In con-
trast to the above single-view deep CNNs, multi-view CNNs
considers learning convolutional representations in the set-
ting where multiple views of data are available. It attempts
to integrate discriminative information from different views,
which generates more comprehensive representations for sub-
sequent learning.

For example, in MVCNN [Su et al., 2015], multi-view im-
ages obtained by the 3D rotations are passed through a shared
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Figure 1: The architecture of our method. All branches in the first part of the network (i.e., CNN and fconv(Γ(·))) capture the intra-view and
inter-view information of each view. The remaining part of the network (i.e., FC) is used to obtain the corresponding loss and label prediction
of each view separately. The constrained optimization problem with regard to α is formulated to obtain the optimal weight distribution and
select discriminative predictions of views to make a joint decision.

CNN separately, fusing at a view-pooling layer and feeding
into another CNN. However, the drawback of MVCNN is
that its pooling layer ignores the divergence between differ-
ent views, where some of the views are distinctive whereas
others have common information.

GVCNN [Feng et al., 2018] introduces the view, the
group, and the shape level descriptor and provides a group-
ing scheme to divide the views in terms of the discrimination
scores. However, the setting of the thresholds of grouping
weight in the grouping module is unable to be guided by more
discriminative information.

3 The Proposed Method
In this section, we illustrate the proposed method in detail,
which is a joint multi-view 2D-CNNs learning framework to
integrate the intra-view and inter-view information of the 3D
objects by the multi-view convolutional representation with
multi-loss fusion.

3.1 Formulation
Multiple Intra-view Information Extraction
The input data of the proposed method is rendered by multi-
ple 2D views of a 3D object, which belongs to the view-based
method. According to the previous works [Su et al., 2015;
Johns et al., 2016; Feng et al., 2018], 12 rendered views are
created by placing 12 virtual cameras around the mesh every
30 degrees. The reason for rendering from such more view-
points is that we do not exactly know which one can yield
good representative views of an object. We make use of mul-
tiple 2D views to describe a 3D object, one 2D image per
view. It is found that the multi-view representation contains
rich information of 3D objects and can be applied to various
practical tasks.

For the CNN features, we use the ResNet-18 [He et al.,
2016] as the base architecture which consists of 17 convo-
lutional layers followed by one fully connected (FC) layer,
to capture the intra-view information for each view. The
ResNet-18 is pre-trained on ImageNet images from 1000 cat-
egories and then is fine-tuned on all 2D views of 3D objects in
the training set. The CNN features can capture the high-level
information for each view, which yields better performance
on classification compared with some previous descriptors
[Kazhdan et al., 2003].

Multiple Inter-view Information Calculation
Based on the above subsection, given a 3D object, we first
take a set of 2D input images captured from different angles,
and each image is passed through a 2D-CNN to get the high-
level representation in the view level.

Supposed that xv∈RH×W×D and xvintra =fcnn(xv)∈RDintra

are the input image and the learned features before FC layer
by CNN from the v-th view, respectively, where H , W , and
D denote the height, width, and channel. For the v-th view,
we define a set Sv which contains different view pairs with
respect to the v-th view, that is,

Sv|Mv=1 = {(v, v̄)}v̄={1,··· ,M}\v|Mv=1, (1)

where M is the number of 2D input images and (v, v̄) =
(v̄, v). Therefore, the proposed ‘inter-view’ information for
the v-th view xvinter across views can be calculated by using
the outer product, view-pair pooling, and 1D convolution.
That is:

xv,v̄en = xvintra ⊗ xv̄intra (2)

xSven = {xv,v̄en }v̄={1,··· ,M}\v (3)

xvinter = fconv(Γ(xSven )) (4)
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where xv,v̄en ∈RDintra×Dintra denotes the outer product of a view
pair (v, v̄), which captures correlations by multiplying each
element of xvintra by each element of xv̄intra. Extending to all
the view pairs of the v-th view, xSven ∈RDintra×Dintra×(M−1) col-
lects the correlation information of the v-th view with respect
to other M−1 views. Furthermore, Γ(xSven ) ∈ RDintra×Dintra

maximizes the correlations of M−1 view pairs in Sv along
the direction of different view pairs for the v-th view, where
Γ is the view pair pooling operation. Finally, the high-level
inter-view information xvinter ∈ RDinter is generated by apply-
ing fconv over Γ(xSven ), which consists of two steps that trans-
forming each row of Γ(xSven ) into a K-dimension vector by
applying a 1D convolution (kernel size=1) and concatenating
Dintra K-dimension vectors to project into a Dinter-dimension
vector (i.e., xvinter) through an FC layer.

Multi-view Loss Fusion Strategy with `0 Constraint
After that, we combine xvintra and xvinter by a concatenated op-
eration and then feed it into an FC layer to obtain the corre-
sponding loss and label prediction of each view. That is,

xvcon = fcat(x
v
intra,x

v
inter) (5)

zv = ffc(x
v
con) (6)

where xvcon ∈R(Dintra+Dinter) denotes the comprehensive infor-
mation of each view and zv ∈RC is produced by ffc with in-
put xvcon, indicating the probability distribution over the pos-
sible classes for each view, andC is the number of categories.

Next, we propose a novel adaptive-weighting loss fu-
sion strategy with proper sparseness for multiple predictions
zv|Mv=1 to make a joint decision and implement the multi-
view 3D object classification, which can be described as,

min
α>1=1,α≥0,‖α‖0=s

M∑
v=1

αγvLv(zv, y) (7)

where

Lv(zv, y) = − log

(
exp(zvy)∑C
o=1 exp(zvo )

)
, (8)

where α ∈ RM is a weight vector corresponding to multiple
views, y ∈ R denotes the common label information of all the
views for an object, and Lv(zv, y) ∈ R is the cross-entropy
loss of the v-th view. γ > 1 is the power exponent param-
eter of the weight αv , which adjusts the weight distribution
of different views flexibly and avoids the trivial solution of
α during the classification. ‖α‖0 = s is used to constrain
the sparseness of the weight vector α, where s ∈ N+ denotes
the number of nonzero elements in α. Crucially, the `0-norm
constraint is able to capture the global relations among dif-
ferent views and is able to achieve view-wise sparseness such
that only a few discriminative and informative views are se-
lected during the optimization to make decisions.

In summary, we design a novel multi-view framework
based on multiple 2D-CNNs, shown in Figure 1. Each view
of the 3D object is passed through CNN separately to obtain
the intra-view information. Then, the intra-view information
of different views can generate the corresponding high-level
inter-view information by a series of operations, i.e., outer

product, view pair pooling, and 1D convolution as well as
FC transformation. All branches of the network, i.e., CNNs,
share the same parameters. After that, the intra-view and
inter-view information of each view are concatenated and fed
into the FC layer, to obtain the corresponding loss and pre-
diction. In addition, we formulate a constrained optimization
problem with regard to the weights for multiple views, which
can obtain the optimal weight distribution. Furthermore, the
optimal weight distribution learned in the training stage is
used to guide the testing stage, which can make a joint de-
cision in the class pooling by the views with high weights.

3.2 Optimizing Weights of Multiple Views
Learning the weight αv of each view assigns the discrimina-
tive and informative view with a higher weight. Therefore,
we optimize α by solving problem (7).

We define a function P(·) on the loss vector L(z, y),

P(L(z, y)) = L(z, y)P (9)

where L(z, y) = [L1(z1, y), · · · ,LM (zM , y)] and P is a
permutation matrix which results in the elements of L(z, y)
along the ascending order, i.e., LP(1)(zP(1), y) ≤ · · · ≤
LP(M)(zP(M), y). Through the equation (9) and PP>= I ,
we apply the same P to αγ> and rewrite the objective func-
tion of problem (7) as:
M∑
v=1

αγvLv(zv, y) =L(z, y)αγ =L(z, y)P (αγ>P )>

=
M∑
v=1

αγP(v)L
P(v)(zP(v), y)

(10)

Based on equation (10), we select first s smallest elements
and optimize their corresponding weights αP(v)|sv=1, mean-
while, setting the rest M − s weights αP(v)|Mv=s+1 as ze-
ros. Therefore, the problem (7) is equivalent to the follow-
ing problem by absorbing the constraint ‖α‖0 = s into the
objective function:

min
αP(v)≥0,

∑s
v=1 αP(v)=1

s∑
v=1

αγP(v)L
P(v)(zP(v), y) (11)

Through the Lagrangian Multiplier method, taking the
derivatives of L(αP(v), λ) with respect to αP(v) and λ, re-
spectively, and setting them to zeros, there is:

αP(v) =
LP(v)(zP(v), y)

1
1−γ∑s

w=1 LP(w)(zP(w), y)
1

1−γ
, v=1, · · · , s (12)

where s is the sparsity ofα and αP(v) = 0 if v=s+1, · · · ,M .
According to the property of 1

1−γ in equation (12), when γ is
greater than or equal to a threshold, the weights of all the
views will approach 1

s , which leads to treating all the views
equally and is adverse to select some discriminative views.

4 Experiments
In this section, we evaluate the proposed method on the Mod-
elNet40 dataset described in section 4.1 and make compar-
isons with several state-of-the-art methods.
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Figure 2: Example views generated by some categories of 3D ob-
jects in ModelNet40.

Method Classification (Accuracy)

MVCNN (VGG-M) 89.90%
MVCNN (ResNet-18) 93.20%
GVCNN (GoogLeNet) 92.60%
GVCNN (ResNet-18) 93.10%
Ours (ResNet-18) 94.16%

Table 1: Performance of the proposed method Ours, MVCNN,
and GVCNN based on different architectures on the ModelNet40
dataset.

4.1 Datasets
The classification in 3D is mainly based on the Computer-
Aided Design (CAD) model. One widely used dataset is
ModelNet [Wu et al., 2014] that has 127915 3D CAD mod-
els from 662 categories. ModelNet40 [Wu et al., 2015] pro-
vided on the Princeton ModelNet website 1 is a subset of
the ModelNet and has 12311 models from 40 common cat-
egories. Figure 2 selects 8 kinds of simple categories to intu-
itively show 12 2D views rendered from a 3D object, where
12 views are generated from 360 degrees with an interval of
30 degrees. For the classification task, all the works are dis-
cussed on the ModelNet40, referring to [Su et al., 2015] to
conduct the training/testing split.

4.2 Experimental Settings
We compare our proposed method with several state-of-the-
art methods for multi-view 3D object classification, includ-
ing three both view and volume-based methods (MVCNN-
MultiRes [Qi et al., 2016], FusionNet [Hegde and Zadeh,
2016], Minto [Minto et al., 2018]), two typical volume-based
methods (3DShapeNets [Wu et al., 2014], 3D-A-Nets [Ren
et al., 2017]), two typical pointset-based methods (PointNet
[Qi et al., 2017], SO-Net [Li et al., 2018]), and three typical
view-based methods (Pairwise [Johns et al., 2016], MVCNN
[Su et al., 2015], GVCNN [Feng et al., 2018]).

It is worth mentioning that ResNet-18 as the base archi-
tecture in our experiments is used to learn high-level in-

1http://modelnet.cs.princeton.edu/
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Figure 3: The parameters s and γ in our proposed method on Mod-
elNet40 dataset, where s denotes the number of nonzero elements in
α and γ is the power exponent of α.

Method Classification (Accuracy)

Ours (concatenation) 87.92%
Ours (α) 93.49%
Ours (s) 93.30%
Ours (α+ s) 93.58%
Ours (α+ s+inter) 94.16%

Table 2: Ablation study of our proposed method on ModelNet40
dataset.

formation. Considering the FLOPs of the deeper CNNs
(e.g., ResNet-50/152) and a better trade-off between accuracy
and memory cost compared to other classical CNNs (e.g.,
VGG, GoogLeNet), ResNet-18 is a good choice but not lim-
ited to this CNN architecture. To evaluate the base archi-
tectures, we compare the results of MVCNN and GVCNN
with ResNet-18, whose results are shown in Table 1. Ob-
viously, the use of ResNet-18 can improve the performance
of MVCNN and GVCNN. For example, MVCNN (ResNet-
18) with 12 views achieves 3.3% improvements compared
with MVCNN (VGG-M). Using the same base architecture,
GVCNN (ResNet-18) with 12 views achieves 0.5% gains
compared with GVCNN (GoogLeNet) in the classification
tasks.

For our proposed method, we fine-tune the parameters of
ResNet-18 using the ModelNet40 dataset and use Adam with
learning rate=5∗10−6, β1 =0.9, β2 =0.999, weight decay=
0.001, batch size = 8, epoch = 30 for optimization. Fur-
thermore, there are two parameters s and γ in the proposed
method, where s denotes the number of nonzero elements in
α and γ is the power exponent of each element of α. For one
thing, we tune s in the range of [6, 12] with step 1 to select
a few discriminative and informative views to make a joint
decision during classification. For another thing, we vary γ
from 1.5 to 10 with a step of 1 to explore the influence on
different values of γ on classification accuracy. Based on the
proper parameters s=9 and γ=2.5, we can train an optimal
model to improve the performance of classifying 3D objects
significantly. The variations of s and γ in our method on the
ModelNet40 dataset are shown in Figure 3.
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Method Input #View Classification (Accuracy)

MVCNN-MultiRes [Qi et al., 2016] view+volume / 91.40%
FusionNet [Hegde and Zadeh, 2016] view+volume / 90.80%
Minto [Minto et al., 2018] view+volume / 89.30%
3DShapeNets [Wu et al., 2014] volume 1 77.00%
3D-A-Nets [Ren et al., 2017] volume 1 90.50%
PointNet [Qi et al., 2017] pointset 1 89.20%
SO-Net [Li et al., 2018] pointset 1 93.40%
Pairwise [Johns et al., 2016] view 12 90.70%
MVCNN [Su et al., 2015] view 12 89.90%
GVCNN [Feng et al., 2018] view 12 92.60%
Ours (α+ s+inter) view 12 94.16%

Table 3: Comparison of classification accuracy. The proposed method outperforms other state-of-the-art methods on ModelNet40 dataset.

0

0.05

0.1

0.15

1 2 3 4 5 6 7 8 9 10 11 12

W
ei

g
h
ts

Index of View

ModelNet40

Figure 4: The weights of 12 views learned by our proposed method
on ModelNet40 dataset, where the x-axis denotes the index of dif-
ferent views and the y-axis corresponds to the weight of each view.

4.3 Experimental Results
We evaluate the performance of different modules of the pro-
posed method and report the results in Table 2. The abla-
tion studies demonstrate that the weight distribution α, the
sparsity of multiple views s, and the inter-view information
for any different views play different roles during classify-
ing 3D objects. First, all the multi-view methods outperform
the single-view method (concatenating all the views as one
view and perform the single-view version of our method on
it), which verifies the advantages of multi-view representa-
tions. Second, the classification accuracy of Ours (α + s) is
better than that of Ours (α) and Ours (s), respectively. It is
obvious that considering the weight distribution and the spar-
sity of multiple views simultaneously is reasonable and effec-
tive. Finally, Ours (α + s+inter) obtains better performance
than any other method, which shows that inter-view informa-
tion across views also plays an important role.

The experimental results of different methods and their
comparisons are reported in Table 3. The proposed method
Ours (α + s+inter) with 12 views achieves the best classifi-
cation accuracy. Firstly, compared with the ‘view+volume’-
based methods, i.e., MVCNN-MultiRes, FusionNet, and
Minto, our proposed method gains 2.76%, 3.36%, and 4.86%
improvements, respectively. It is obvious that the inputs of

these methods contain both 2D and 3D information, how-
ever making them work well with each other needs to be im-
proved. Secondly, compared with the volume-based methods,
i.e., 3DShapeNets and 3D-A-Nets, our proposed method ob-
tains 17.16% and 3.66% improvements, respectively. It is
found that these volume-based methods also cannot address
3D volumetric data processing effectively. Thirdly, making
comparisons between the pointset-based methods (including
PointNet and SO-Net) and our proposed method, the perfor-
mance of classifying 3D objects can be achieved 4.96% and
0.76% improvements, respectively. However, the problem of
effectively modeling point clouds still needs to be solved. Fi-
nally, compared with other view-based methods, such as Pair-
wise, MVCNN, and GVCNN, our proposed method achieves
3.46%, 4.26%, and 1.56% improvements, respectively. This
verifies the superiority of our method at integrating the inter-
view information and a selective and adaptive weighting strat-
egy into a unified multi-view framework.

Figure 4 shows the learned weights of different views on
ModelNet40 dataset. The higher weight indicates that the
view provides more valuable information and makes more
contributions during the multi-view 3D object classification.

5 Conclusion
In this paper, we propose a novel 2D-CNNs based multi-view
framework for 3D object classification. We take the multi-
ple 2D images rendered from the 3D CAD model as the in-
puts and develop an end-to-end multi-view framework. It not
only integrates the discriminative information with relation-
ships among views but also provides a novel view ensemble
mechanism for fusing multiple views to jointly make a de-
cision for classifying 3D objects. The experimental results
verify the superiority and effectiveness of our method in 3D
object classification.
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