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Abstract

In this paper, we introduce Transformer to the time-
domain methods for single-channel speech separa-
tion. Transformer has the potential to boost speech
separation performance because of its strong se-
quence modeling capability. However, its computa-
tional complexity, which grows quadratically with
the sequence length, has made it largely inapplica-
ble to speech applications. To tackle this issue, we
propose a novel variation of Transformer, named
multi-scale group Transformer (MSGT). The key
ideas are group self-attention, which significantly
reduces the complexity, and multi-scale fusion,
which retains Transform’s ability to capture long-
term dependency. We implement two versions of
MSGT with different complexities, and apply them
to a well-known time-domain speech separation
method called Conv-TasNet. By simply replac-
ing the original temporal convolutional network
(TCN) with MSGT, our approach called MSGT-
TasNet achieves a large gain over Conv-TasNet on
both WSJ0-2mix and WHAM! benchmarks. With-
out bells and whistles, the performance of MSGT-
TasNet is already on par with the SOTA methods.

1 Introduction

Speech separation is a fundamental task in acoustic signal
processing with a wide range of applications [Wang and
Chen, 2018]. The goal of speech separation is to separate
target speech from interfering speech, non-speech noise, or
both. Thanks to the success of deep learning, the perfor-
mance of single-channel speech separation system have been
dramatically improved in recent years [Hershey et al., 2016;
Kolbzk et al., 2017]. In particular, a new category of speech
separation methods called time-domain methods [Luo and
Mesgarani, 2018; Luo and Mesgarani, 2019] begin to emerge.
These methods take the sampled data points from raw wave-
form as input, use a learnable neural network layer as en-
coder, and adopt a sequence modeling tool for feature sepa-
ration before the separated feature is converted back to time
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Figure 1: A schematic diagram of the proposed MSGT with three
scales. The cylinders represent group Transformers.

domain by a learnable decoder. The time-domain methods
have been shown to surpass ideal time-frequency (T-F) mag-
nitude masking methods for speech separation.

Recently, several investigations [Heitkaemper et al., 2019]
reveal that the performance of time-domain methods is highly
dependent on using short frame length in the encoder, which
produces extremely long sequence. For example, the frame
length used in Conv-TasNet [Luo and Mesgarani, 2019] is
2ms, producing 4000 frames for a 4-second audio segment
with 1ms overlap. Such a long sequence is difficult to model
using the conventional recurrent neural network (RNN) or
temporal convolutional network (TCN)[Bai er al., 2018] as
both of them have a long path before connecting all positions
[Vaswani et al., 2017].

Transformer [Vaswani et al., 2017] have recently shown
its strong capability for sequence modeling in many natu-
ral language processing tasks [Devlin ef al., 2018]. Com-
pared to RNN or TCN, Transformer uses self-attention (SA)
to compute correlations between any input positions in par-
allel, which can effectively capture global dependencies in
addition to the local dependencies. Introducing Transformer
to speech separation has the potential to model the long-range
dependencies displayed in speech signals. But the main ob-
stacle is the complexity. The computational complexity of
Transformer grows quadratically with the sequence length,
which is not affordable when the sequence length is on the
order of thousands.

In order to solve this issue, we propose a novel architecture
called multi-scale group Transformer (MSGT). We divide the
input sequence into groups and use group self-attention to
calculate correlations within each group. The complexity re-
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Figure 2: A schematic diagram of a deep-learning-based speech sep-
aration system.

mains tractable as long as the group size is not too large. As
we down-sample the features, the group size in group Trans-
former is kept constant, so correlations in a longer range can
be captured. On the lowest scale, all data points are contained
in a single group. As such, both local and global dependen-
cies are captured and retained. Besides, this structure pays
more attention to local dependencies, which aligns with the
physical characteristics of acoustic signals.

We implement two versions of MSGT with different com-
plexities and apply them to the Conv-TasNet speech sepa-
ration system. In particular, we replace TCN with MSGT
for sequence modeling. Experimental results show that the
MSGT-based system, which we call MSGT-TasNet, achieves
significant performance gain over Conv-TasNet in both noise-
free speech separation on WSJ0O-2mix dataset [Hershey et
al., 2016] and noisy speech separation on WHAM! dataset
[Wichern et al., 2019].

To summarize, our work makes three main contributions:
(1) To the best of our knowledge, we are the first to inves-
tigate Transformer for sequence modeling in speech separa-
tion. (2) We propose multi-scale group Transformer which
reduces the complexity of the standard Transformer without
losing its capability to model global dependencies. (3) We
implement two versions of MSGT and use them to build a
speech separation system MSGT-TasNet. Without bells and
whistles, the performance of MSGT-TasNet is already on par
with the state-of-the-art (SOTA) methods.

2 Related Work

In this section, we provide the background of the speech sep-
aration task and briefly review several variations of Trans-
former for long sequence modeling.

2.1 Speech Separation

The goal of speech separation is to separate target speech
from interference including interfering speech, non-speech
noise, or both. As shown in Fig.2, a deep learning-based
speech separation system is composed of three modules. Be-
fore the pioneering work named TasNet [Luo and Mesgarani,
2018], researchers have been using fixed transformation, such
as STFT and ISTFT, for the encoder and the decoder [Hershey
et al., 2016; Kolbak er al., 2017; Shi et al., 2018]. The sep-
aration is conducted on the two-dimensional time-frequency
features. However, the success of TasNet has ignited the in-
terest of time-domain approaches, which directly take data
samples from time-domain raw waveform as input, and con-
duct separation in a latent one-dimensional domain.

One typical feature of time-domain approaches is that
their success rely on the effectiveness in modeling long
sequences [Heitkaemper et al., 2019; Luo and Mesgarani,
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2019]. For Conv-TasNet, it is discovered that shorter frame
length achieves better performance than longer ones. There-
fore, a frame length of 2ms is suggested for high perfor-
mance. This length is an order of magnitude smaller than the
length used by conventional encoders. Given a fixed-length
audio input, such a short frame length also produces an ex-
tremely long sequence, which is difficult to model.

In Conv-TasNet [Luo and Mesgarani, 2019], the authors
used a temporal convolution network to model long-range
dependencies. However, it has been shown [Vaswani er al.,
2017] that convolution is not as efficient as Transformer in
sequence modeling, as the latter is capable of capturing both
local and global dependencies. This has been the motivation
of our work. More recently, FurcaNeXt [Zhang erf al., 2020]
introduced gated activation and ensemble learning into the
framework to improve performance. However, they are still
using TCN for sequence modeling.

2.2 Transformer

Transformer is a strong sequence modeling tool but it is not
readily applicable to long sequences due to its quadratically
growing computational complexity with the sequence length.
Several pieces of work [Dai et al., 2019; Liu and Lapata,
2019; Shen et al., 2018; Miculicich et al., 2018] in natural
language processing area have tried to tackle this limitation,
so that Transformer can be applied to document-level tasks
or having a higher efficiency. The main idea is to divide the
sequence into a few conceptually meaningful sets or blocks,
such as sentences and paragraphs, and then adopt a hierar-
chical architecture to explore the intra-set and inter-set cor-
relations. To be more specific, local dependencies are cap-
tured within each set, and global dependencies are computed
through cross-set attention.

[Shen er al., 2018] presents a bi-directional block self-
attention network (SAN) that divides a sequence into blocks
and sequentially applies intra-block SAN to each block and
inter-block SAN across blocks. [Miculicich et al., 2018] uses
a hierarchical attention network structure for document-level
machine translation and [Liu and Lapata, 2019] uses a hi-
erarchical Transformer for multi-document summarization.
Transformer-XL [Dai et al., 2019] introduces a segment-level
recurrence mechanism that enables Transformer to learn de-
pendencies beyond a fixed length.

The main difference between these hierarchical SAN and
our work is that we do not calculate set-level dependencies.
NLP tasks involve semantic units such as sentence, para-
graph, and document. However, speech separation is a low-
level task without multiple semantic units. For such input
data, our model uses multi-scale fusion architecture to calcu-
late element-level dependencies at different resolutions.

There is also a work called Sparse Transformer [Child et
al., 2019] for long sequence generation. They factorized full
attention matrix by some sparse attention matrices to reduce
the complexity. Compared to our model, Sparse Transformer
relies on a highly optimized sparse matrix implementation
and the complexity of it is O(n+/n), which is higher than
ours for long sequences.
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Figure 3: Two implementations of MSGT. Dense-fusion MSGT employs multiple group Transformers (GT) on each scale while light-fusion

MSGT only uses one GT on each scale.

3 Multi-Scale Group Transformer

We intend to design a long-sequence modeling tool based on
Transformer. There are two design objectives. First, we shall
reduce the computational complexity of Transformer so that
it can scale with sequence length. Second, we shall maintain
Transformer’s ability to model both short-term and long-term
dependencies.

3.1 The Proposed Architecture

Fig. 1 presents the architecture of the proposed multi-scale
group Transformer (MSGT). The key innovations are the
group self-attention and the multi-scale fusion.

In the original Transformer design, correlations are com-
puted between any two positions in the input sequence. This
brings quadratic complexity with respect to the sequence
length. In contrast, the propose group self-attention restricts
the correlation computation within local regions. When the
group size is fixed at a constant, the number of groups grows
linearly with the sequence length, so does the computational
complexity of group self-attention.

However, group self-attention (GSA) does not consider
correlations across groups, losing the capability to capture
global dependencies. To retain this important capability and
to balance the computation resources allocated between lo-
cal and global dependencies, we propose the multi-scale ar-
chitecture. On the high-resolution (large) scale, GSA cap-
tures local dependencies, while on the low-resolution (small)
scale, GSA captures long-range dependencies. As sequences
in small scales are several times shorter than sequences in
large scales, more computation resources are thus allocated
to capture local dependencies. This is consistent with the in-
tuition that local correlations are stronger and more important
than global correlations in audio signals.

We implement MSGT using two basic modules: opera-
tion module and transition module. The operation module
conducts multi-scale feature transformation. It may conduct
different transformations, including group Transformer and
identity mapping, on different scales. The transition module
handles feature resizing and feature fusion.

Group Self-Attention

Given an input sequence X € R"™*? where d is the fea-
ture dimension and n is the sequence length, GSA first di-
vides the sequence into s equal-sized non-overlapped groups
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Figure 4: Illustration of feature fusion by transition modules. The
large, medium, and small scales are shown from left to right.

with group size g. Then, standard self-attention is calculated
within each group and the output of each group is concate-
nated. We formulate the above process as follows:

Group(X) :{X17X2,...,XS}7XZ- gRng (1)
GSA(X) = {SA(X1),SA(Xy),...SA(X,)}  (2)

The standard self-attention, which proposed in [Vaswani et
al., 2017] is computed as follows:

Q=XWCe K=XWEKVv=xw" (3)

QK"
Vd

where v/d is the scaling factor, W@, WX WV € R are
parameter matrices of different linear transformations.

For simplicity, here we only describe the formula of single-
head group self-attention. The extension to multi-head group
self-attention is straightforward.

SA(X) = softmax( 4 4)

Multi-Scale Fusion

Multi-scale fusion is conducted by the transition module. It
exchanges information across multi-scale features. Let us
take 3 scales as a example, which is illustrated in Figure 4.
For the largest scale, we first conduct up-sampling on two
smaller scales. Note we gradually up-sample the smallest
scale by using two sequential up-sampling networks. Then,
we have three features with the same size and use addition to
fuse them. For the medium scale, we up-sample the smallest
scale, down-sample the largest scale and then add them to-
gether. The operation on the smallest scale is similar. Note
that we do not have to fuse all scales in the transition module.
It is a design choice how many scales are fused. We imple-
ment two versions of MSGT with different complexities.
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Layer Type Complexity per Layer  Sequential Operations Maximum Path Length
Self-Attention O(n? - d) o(1) o(1)
Recurrent O(n - d?) O(n) O(n)
Convolutional O(k-n-d?) 0(1) O(logy(n))
MSG Self-Attention (Light) O(g-n-d) O(1) O(logy(n/g))
MSG Self-Attention (Dense) O(g-n-d-log(n/g)) 0o(1) O(logs(n/g))

Table 1: Per-layer complexity, minimum number of sequential operations and maximum path lengths for different layer types. The definition
of n, d and g follows Section 3.1 and k is the convolution kernel size. The complexity per layer for MSG self-attention is the total complexity
divided by the number of layers as different scales have different complexities. Part of this table is adopted from [Vaswani et al., 2017].

3.2 Two Implementations of MSGT

We present two concrete design instances of MSGT, namely
dense-fusion MSGT and light-fusion MSGT, in Fig. 3. The
fusion structures of these two implementations are inspired
by the HRNet [Sun er al., 2019] and the U-Net [Ronneberger
et al., 2015] in the computer vision area.

Dense-Fusion MSGT

The architecture of dense-fusion MSGT is illustrated in Fig.
3a. With dense fusion, multiple group Transformers are ap-
plied on each scale. For simplicity, we fuse only the adjacent
scale features in the transition module. In other words, an
input to the group Transformer is fused from no more than
three scales. The dense fusion has log-linear complexity with
sequence length.

Light-Fusion MSGT

As illustrated in Fig. 3b, the light fusion version only use one
GT on each scale, although each GT may contain multiple
layers of transformation. The transition module does not do
fusion as the features scale down. When the features scale
up, only features from two adjacent scales are fused together.
The light fusion has linear complexity with sequence length.

3.3 Analysis

The sequence modeling problem can be formulated as map-
ping one sequence {z1,22,...,Z,} to another sequence of
equal length {21, 22, ..., 2, }, where z;, z; € R? denote the
feature vector of a symbol in the sequence.

There are three desired properties for a sequence modeling
tool: 1) Parallel computing; 2) Capability to capture long-
range dependencies; 3) Low-order complexity which allows
it to scale to long sequences. The original Transformer paper
[Vaswani et al., 2017] introduced three metrics to measure
these desired properties. They are complexity per layer, min-
imum number of sequential operation required and the maxi-
mum path length between any two input and output position.

Table 1 provides a comparison of the tree metrics between
the proposed MSGT and other widely used sequence mod-
eling tools. A standard self-attention layer has complexity
of O(n? - d), which is too high for long sequences. The
multi-scale group self-attention have maximum path length
O(logy(n/g)) and complexity O(g - n - d) or O(g - n - d -
log (n/g)) depending on the fusion choices. We will em-
pirically show this improvement in Section 5.4. For com-
pleteness, we also include recurrent and convolutional layers
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in this table, but they are inferior to self-attention which has
been detailed in [Vaswani et al., 2017].

4 MSGT for Speech Separation

The goal of speech separation is to separate target speech
from a mixture signal. Following the convention, all the
speech signals appeared in the mixture are treated as target
speeches. The mixture can be denoted by a sequence y(t) in
the time domain. It can be decomposed as the summation of
K speech signals x(¢), and an additive noise n(t),

K
y(t) = zk(t) +n(t), (5)
k=1

where t is the time index.

Recent deep learning-based speech separation systems
consist of three main components, namely the encoder, the
decoder, and the separator. Fig.2 illustrates this framework.
The encoder processes time domain mixture signal y(t) by
first dividing it into n overlapping frames y; € R (G =
1...n), where L denotes frame length, and j is the frame in-
dex. Then, each frame is transformed into d-dimensional fea-
tures Y; € R'*?. Features of all the n frames are concate-
nated to form Y € R™*¢. The separator use some sequence
modeling tool to estimate multiplicative masks M, € R"*¢
for each signal and then multiply it on encoded features Y,

producing X as separated features. Finally, the decoder

transform X}, back to time domain and output the separated
signals ().

It is worth noting that it is not necessary for the separated
signals to have the same permutation as the ground-truth la-
bel. Utterance-level permutation invariant training (uPIT)
[Kolbzk er al., 2017] can be applied to address this problem.

We adopt the well-known speech separation framework
Conv-TasNet [Luo and Mesgarani, 2019] and replace the
original TCN with the proposed MSGT in its separator.
The encoder and the decoder are kept the same. Our sys-
tem is still a time-domain method, so we name it MSGT-
TasNet. We train MSTG-TasNet using the time domain scale-
invariant signal-to-distortion ratio (SI-SDR) as the training
target, which is defined as:

s ?

SI-SDR = 101og, (6)

where § € R” and s € R are the estimated and original
clean signals, respectively. o = §7's/|s|? is the scaling factor.

|§ —as|?2”
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. SI-SDRi  SDRi
Separation Method (dB) (dB) PESQ
PSM 16.4 16.7 3.98
DPCL++ (2016) 10.8 - -
uPIT (2017) - 10.0 -
chimera++ (2018) 12.6 13.1 -
Sign Prediction Net (2019) 15.3 15.6 3.36
Deep CASA (2019) 17.7 18.0 3.51
Conv-TasNet (2019) 153 15.6 3.24
FurcaNeXt (2020) - 18.4 -
MSGT-TasNet (Light) 16.8 17.1 3.35
MSGT-TasNet (Dense) 17.0 17.3 3.30

Table 2: Performance comparison on WSJO-2mix. Methods are
grouped into ideal masks, T-F domain and time-domain methods.

S Experiments

5.1 Dataset and Evaluation Metric

We use two datasets for evaluation. The first is the widely-
used WSJO-2mix dataset [Hershey et al., 2016]. WSJ0O-2mix
contains 30 hours of training data, 10 hours of validation data
and 5 hours of testing data. The validation set contains utter-
ances of the same speakers as in the training set, while the
testing set contains utterances of different speakers. Each
mixture is artificially generated at a random signal-to-noise
ratio (SNR) between -5 and 5 dB. The second is the recently
proposed WHAM ! dataset [Wichern et al., 2019], which is an
extension of the original WSJO-2mix. The WHAM! dataset
consists of two speaker mixtures from the WSJO-2mix dataset
combined with real ambient noise samples. This is a more
challenging dataset compared to the noise-free WSJ0-2mix.
We use the scale-invariant signal-to-distortion ratio (SI-
SDR) improvement [Le Roux e al., 2019] and signal-to-
distortion ratio (SDR) [Vincent er al., 2006] improvement as
the main evaluation metrics. SI-SDR is also referred to as SI-
SNR in some work [Luo and Mesgarani, 2019]. We also re-
port perceptual evaluation of subjective quality (PESQ) [Rix
et al., 2001] to evaluate the quality of the separated mixtures.

5.2 Experiment Configuration

We train all models for 1M steps on 4-second segments with
sample rate of 8K Hz. We use Adam optimizer with warm-
up. The learning rate is initialized to 0.0003 and is adjusted
according to the following formula:

—-0.3

Ir = init_Ir - min(step , step - warmup,steps_l"q’) @)

We choose warmup_steps = 10000. We also use dropout to
relieve over-fitting.

In all experiments, we use frame length of 2 ms. We choose
group size of 1000 for noise-free speech separation and group
size of 500 for noisy speech separation. Following the nota-
tions in [Vaswani et al., 2017], the Transformer parameters
are dg = 1024, dmodel = 512, and h = 8. In the light fusion,
we use 8 layers of transformation for the GT in the smallest
scale and 2 layers for the GT in the other scales. In the dense
fusion, we use 3 layers of transformation for GT in all the
scales. The output feature dimension of the encoder is 1024.
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Separation Method SI-SDRi (dB)
IRM 12.8
IBM 134
PSM 16.8
chimera++ 9.9
Conv-TasNet* 12.0
MSGT-TasNet (Light) 12.3
MSGT-TasNet (Dense) 13.1

Table 3: Performance comparison on WHAM!. The three results on
top are performance of different ideal masks. Conv-TasNet* is our
re-implementation.

5.3 Comparison with Other Methods

Previously, research on speech separation is more focused
on separating target speech from interfering speech [Luo and
Mesgarani, 2019; Liu and Wang, 2019]. In this paper, we use
the term noise-free speech separation to denote this conven-
tional setting while we use another term noisy speech separa-
tion to refer to the task of separating target speech from both
interfering speech and non-speech noise. The WSJ0-2mix
dataset is used for the former task while the WHAM! dataset
is used for the latter task.

Speech Separation Results on WSJ0-2mix

Table 2 shows speech separation results on WSJO-2mix.
DPCL++ [Isik et al., 2016], uPIT [Kolbzk et al., 2017],
chimera++ [Wang er al, 2018] and Sing Prediction Net
[Wang et al., 2019] are time-frequency (T-F) domain meth-
ods. Conv-TasNet [Luo and Mesgarani, 2019], FurcaNeXt
[Zhang et al., 2020] and our proposed MSG-TasNet are time-
domain methods. The fist row gives the performance of ideal
phase-sensitive mask (PSM), which is a reasonable upper
bound for all T-F domain methods.

Our proposed two versions of MSGT-TasNet outperform
Conv-TasNet by a large margin only by replacing TCN with
MSGT, showing that MSGT is a better sequence modeling
method for speech separation. The SI-SDRi performance of
the light version is 0.2dB lower than that of the dense version,
but it uses 2x fewer memory and runs 2.8x faster.

FurcaNeXt and Deep CASA achieve slightly higher SDRi
or SI-SDRi than MSGT-TasNet. But the innovations in
these two methods can also be applied to our framework and
can potentially improve the performance of MSGT-TasNet.
Specifically, FurcaNext adopts gated activation and Deep
CASA optimizes frame-level separation and speaker tracking
in turn. We plan to integrate these two innovations into our
model in the future.

Noisy Speech Separation Results on WHAM!
The WHAM! dataset is more realistic and challenging since
it contains noise. As this is a new dataset and only baseline
result is available, we add several idea masks to the compari-
son. The ideal masks provide performance upper bounds for
most T-F domain methods. Results are presented in Table 3.
In noisy speech separation, MSGT-TasNet (Light) and
MSGT-TasNet (Dense) get 0.3 dB and 1.1 dB SI-SDRi gain
over Conv-TasNet, respectively. This gain is smaller than
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Figure 5: Empirical computation cost of Transformer and MSGT. D
and L stand for dense and light, respectively. The number follows
indicates group size. One sample is a 4s audio segment.

what we get in noise-free speech separation, but the advan-
tage of the dense version to the light version becomes sig-
nificant. Both results are due to the fact that noisy speech
separation is a more difficult task than its noise-free counter-
part. Note that, in this difficult task, MSGT-TasNet (Dense)
is the first method that surpasses the ideal T-F mask IRM.

5.4 Efficiency for Long Sequence

MSGT reduces the time/space complexity from O(n? - d) to
O(g-n-d)orO(g-n-d-log(n/g)) in theory. We would like
to compare the empirical GPU memory cost and throughput
for speech separation under the same configuration. We use
4s audio segment and choose different frame lengths to con-
trol the actual sequence length used in group Transformer.
We choose group size g as a hyper-parameter. For different
sequence lengths, we keep the total number of group Trans-
formers the same for light fusion and we keep the number
of group Transformer in the largest scale the same for dense
fusion. This constraint yields models with similar size for
different sequence length.

As Fig.5a shows, the GPU memory usage in MSGT is sig-
nificantly smaller than in Transformer, and it grows slower
with the increase of sequence length. Under the same group
size, the light version requires less GPU memory than the
dense version. Within the same fusion model, the GPU mem-
ory cost grows with the group sizes g.

Fig.5b presents the throughput of different models. The
numbers are acquired on a single P100 GPU. MSGT (Dense)
has slightly lower throughput than Transformer for short se-
quence because more scales are involved in computation.
MSGT (Light) consistently achieves higher throughput than
Transformer.

5.5 Ablation Study

All ablation studies are carried out on the WSJO-2mix speech
separation dataset.

Comparison of different sequence modeling tools. As
shown in Table 4, using group Transformer without multi-
scale fusion significantly degrades the performance. The per-
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T SI-SDRi  Throughput
ype (dB) (samples/min)
TCN 15.3 276
Single-scale GT 13.5 528
MSGT (Light) 16.8 1066
MSGT (Dense) 17.0 375

Table 4: Comparison of different sequence modeling tools when
group size is 1000.

% 18 7’LightEDense ‘ .
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Figure 6: Influence of group size for MSGT-TasNet (Light) and
MSGT-TasNet (Dense).

formance of single-scale GT, which has only one scale and
uses the same number of layers as MSGT (Light), is even
worse than TCN. Using light fusion, we can achieve almost
doubled throughput and 3.3dB SI-SDRi gain over the single-
scale version. We would also like to mention that MSGT
(Light) achieve 1.5 dB gain over TCN with 3.9X speedup.

Influence of group size. The hyper-parameter g in group
Transformer controls how many frames should be consider
as a group. As shown in Fig.6, the largest group size achieves
the highest SI-SDRi for both fusion versions. In particular,
large group size is essential for the light version to get good
performance, which may due to its inadequacy in exploring
long-range dependencies.

6 Conclusion and Future Work

In this paper, we present the design and implementation
of multi-scale group Transformer for long sequence mod-
eling. Through group self-attention and multi-scale fusion,
MSGT significantly reduces the computational complexity
of Transformer without affecting its performance. Two ver-
sions of MSGT with different complexities are implemented
and applied in a well-known speech separation framework
called Conv-TasNet. Experiment results show the proposed
MSGT-TasNet achieves a large gain over Conv-TasNet on
both WSJO-2min and WHAM! benchmarks. For the noisy
speech separation task, MSGT-TasNet is the first approach
surpassing the performance of the ideal T-F mask.

In the future, we plan to apply neural architecture search
(NAS) [Liu et al., 2018] to find better fusion choices of
MSGT. Besides, we plan to integrate the innovations of Deep
CASA into MSGT-TasNet. We believe that such combination
can further advance the state-of-the-art of speech separation.
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