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Abstract
Riemannian gradient descent (RGD) is a simple,
popular and efficient algorithm for leading eigen-
vector computation [Absil et al., 2009]. However,
the existing analysis of RGD for eigenproblem is
still not tight, which is O

(
1

∆2 ln n
ε

)
due to [Xu

et al., 2018]. In this paper, we show that RGD
in fact converges at rate O

(
1
∆ ln n

ε

)
, and give in-

stances to show the tightness of our result. This
improves the best prior analysis by a quadratic fac-
tor. Besides, we also give tight convergence anal-
ysis of a deterministic variant of Oja’s rule due
to [Oja, 1982]. We show that it also enjoys fast
convergence rate of O

(
1
∆ ln n

ε

)
. Previous papers

only gave asymptotic characterizations [Oja, 1982;
Oja, 1989; Yi et al., 2005]. Our tools for prov-
ing convergence results include an innovative re-
duction and chaining technique, and a noisy fixed
point iteration argument. Besides, we also give em-
pirical justifications of our convergence rates over
synthetic and real data.

1 Introduction
Leading eigenvector computation has been studied exten-
sively during the past few decades. Power method and Lanc-
zos method have been applied to solve this problem, and
their convergence rates have been well justified. In com-
parison, Riemannian gradient descent (RGD) is another ef-
ficient algorithm for this problem, but its convergence rate
has not been tightly characterized yet [Absil et al., 2009;
Xu et al., 2018]. Given a symmetric and semi-positive
definite (PSD) matrix A, Riemannian gradient descent uses
the following update rule repeatedly to compute the leading
eigenvector:

xt+1 = R(xt,−ηt · gradf(xt)).

Here R is some retraction over the unit hypersphere, and
gradf(x) is the Riemannian gradient of the Riemannian func-
tion f(x). (See formal definitions in Section 3.) An impor-
tant property of RGD is that it embraces a large family of al-
gorithms via different choices of retraction, stepsize scheme
and metric. As suggested by the empirical results in [Xu et

al., 2018], Riemannian gradient descent with Cayley trans-
formation as the retraction rule is comparable to the Lanczos
algorithms in convergence rate but is even more stable.

However, the convergence analysis for Riemannian meth-
ods on leading eigenvector computation is not tight. In [Absil
et al., 2009], only asymptotic convergence results are proven.
And recently, [Xu et al., 2018] proved the convergence rate
of O

(
1

∆2 ln n
ε

)
by Lyapunov analysis using a logarithmic po-

tential function. However, we show that the tight convergence
rate is O

(
1
∆ ln n

ε

)
and the analysis in [Xu et al., 2018] in fact

suffers from a quadratic loss. Our method involves an inno-
vative reduction and chaining based argument that enable us
to track the progress much better.

Another popular method for leading eigenvector computa-
tion is Oja’s rule [Oja, 1982]. We remark that the original
algorithm in [Oja, 1982] has an online and a deterministic
version which are quite different. The online variant has been
well studied [Shamir, 2015], while the convergence rate for
the deterministic version remains unknown. We focus on the
deterministic version throughout the paper.

In terms of convergence analysis of Oja’s rule, only asymp-
totic convergence results are established using the method of
invariant set [Oja, 1989; Yi et al., 2005] . However, we prove
that the convergence rate of Oja’s rule is in fact O

(
1
∆ ln n

ε

)
.

Our method for proving convergence is based on a two-phase
argument: in the first phase we obtain an exponential decay of
the tail error; and in the second phase we attain an exponen-
tial growth of the principal component, by analyzing a noisy
fixed point iteration.

An interesting observation is the connection between RGD,
Oja’s flow and Oja’s rule. We show that RGD and Oja’s rule
are in fact two different discretizations of Oja’s flow.

We summarize our main contributions as follows:

• We use innovative reduction and chaining techniques to
show that RGD has tight convergence rate ofO

(
1
∆ ln n

ε

)
for leading eigenvector computation. This improves the
prior analysis [Xu et al., 2018] by a quadratic factor.

• We use a two-phase analysis and a detailed study of a
noisy fixed point iteration to establish convergence rate
of O

(
1
∆ ln n

ε

)
for Oja’s rule. The prior analysis [Oja,

1982; Oja, 1989; Yi et al., 2005] only gave asymptotic
convergence results.

• We validate our convergence results on both synthetic

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3276



and real datasets. The empirical iteration complexity
matches with our iteration complexity bound, and is
much better than that proved in [Xu et al., 2018].

We remark that these techniques could be applied to ana-
lyzing other algorithms for eigenproblems as well.

2 Related Works
Riemannian optimization is a meta-algorithm for solving op-
timization problems using the inherent structure of the feasi-
ble space. [Absil et al., 2009] is an excellent survey on this
topic. In the past few decades, Riemannian method has been
shown to be a powerful tool for solving optimization prob-
lems with orthogonality constraints [Wen and Yin, 2013]. It
also has a useful Matlab toolbox [Boumal et al., 2014].

The leading eigenvector computation is one of the most
widely studied problems using Riemannian optimization
method [Absil et al., 2009]. The asymptotic convergence re-
sults for RGD on eigenproblems have been established in a
number of papers and books, see [Absil et al., 2009] for ex-
ample. However, the non-asymptotic convergence rate of this
method is still undetermined prior to this work, and the tight-
est analysis before this work is O

(
1

∆2 ln n
ε

)
due to [Xu et al.,

2018].
There are also convergence results for RGD on geodesi-

cally convex(g-convex) functions [Zhang and Sra, 2016;
Zhang and Sra, 2018]. However, the Rayleigh quotient func-
tion is neither g-convex nor g-concave on the hypersphere
[Absil et al., 2009]. Thus, the convergence results on g-
convex functions is not applicable to it.

The Riemannian method is also called natural gradient de-
scent (NGD) in deep learning society [Amari, 1998], which
is further equivalent to mirror descent with certain met-
ric [Raskutti and Mukherjee, 2015]. Recently, Riemannian
method is shown to be efficient for training deep neural net-
works, whose loss surface can be highly non-convex and
non-smooth [Li et al., 2018]. Despite the superiority of the
Riemannian method, few theoretical justifications have been
given so far [Pascanu and Bengio, 2013].

Oja’s rule was introduced by Oja for principal compo-
nent analysis (PCA) in [Oja, 1982]. The deterministic ver-
sion of Oja’s rule, together with its continuous-time anal-
ogy called Oja’s flow, have been widely studied in the liter-
ature since its invention [Chen et al., 1998; Yan et al., 1994;
Yi et al., 2005]. [Yan et al., 1994; Chen et al., 1998] proved
linear convergence of Oja’s flow, and [Yi et al., 2005] proved
asymptotic convergence of Oja’s rule. However, the non-
asymptotic convergence rate of Oja’s rule is only known to
be at least sublinear prior to this work (see Table 1 for a
summary). A great exposition of this topic can be found in
[Helmke and Moore, 2012].

3 Preliminaries and Main Results
We first give the definitions for the terminologies in the Rie-
mannian method. A manifold M is a nonlinear space that
is locally isomorphic to the Euclidean space in the neighbor-
hood of each point. For example, the unit hypersphere in
the n-dimensional Euclidean space is a submanifold of di-
mension n − 1 with the induced metric, and is denoted as

Sn−1. At each point x ∈ M, there is an associated structure,
called the tangent space Tx(M), which is also a linear space.
For the unit hypersphere, the tangent space is just the tan-
gent plane at some point x ∈ Sn−1, which can be explicitly
expressed as Tx(M) = {y|〈x, y〉 = 1, y ∈ Rn}. Rieman-
nian function assigns each point on the manifold a real value
f(x) ∈ R, ∀x ∈M.

The leading eigenvector computation considers the prob-
lem of finding the leading eigenvector e1 (or −e1), given a
symmetric and positive definite matrix A ∈ Rn×n. We de-
note the eigenpairs of A as (λi, ei), ∀i ∈ [n], with {λi, i ∈
[n]} arranged in non-increasing order. We make the stan-
dard eigengap assumption [Musco and Musco, 2015] that
λ1 > λ2, though it is trivial to generalize it to the case where
λ1 = λ2 = ... = λp > λp+1, which is called the gen-
eral p-th eigengap assumption. The eigengap ∆ is defined
as ∆ = 1 − λ2

λ1
∈ (0, 1]. The leading eigenvector problem is

equivalent to the following Riemannian optimization problem
[Absil et al., 2009]:

max
x∈Sn−1

f(x) = xTAx.

Here f(x) = xTAx, ∀x ∈ Sn−1 is a Riemannian func-
tion over the unit hypersphere. The Riemannian gradient of
this function is g(x) = (I− xxT )Ax, which gives the locally
steepest descent direction at x restricted to the tangent space
of x. After updating x using the gradient by y = x + ηg(x),
we will need a retraction that maps the tangent plane to the
hypersphere. The most widely used retraction is just the nor-
malization, R(x, ηg(x)) = x+ηg(x)

‖x+ηg(x)‖2 . To this end, we have
the following RGD update rule for leading eigenvalue com-
putation.

Riemannian gradient descent:
g(xt) = (I− xtxTt )Axt, xt+1 = R(xt, ηg(xt)).

For leading eigenpair computation, Oja’s rule [Yi et al.,
2005] is equivalent to Riemannian gradient descent method
without retraction. And when η → 0+, it evolves to its con-
tinuous counterpart, Oja’s flow, which can be characterized
by an ordinary differential equation (ODE) as follows.

Oja’s rule : xt+1 = xt + ηg(xt).
Oja’s flow : ẋ(t) = g(x(t)).

Here ẋ denotes the derivative of x with respect to t, or
equivalently, dxdt . Through the lens of numerical integration
[Hairer et al., 2006], it turns out that Oja’s rule and RGD
are essentially two different discrete integration algorithm for
Oja’s flow. Using forward Euler method to discretize Oja’s
flow gives us Oja’s rule, while using the structure-preserving
method to discretize it gives us the RGD algorithm (See Fig-
ure 1).

Before we delve into the technical proofs, we present
our main results and briefly discuss the techniques we use.
Our first convergence result is the convergence rate of RGD,
which is quadratically better than the previous result [Xu et
al., 2018].
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Figure 1: Connections between Riemannian gradient descent, Oja’s flow, Oja’s rule.

Theorem 1 (Convergence of RGD). Under random initial-
ization over the unit hypersphere, RGD with stepsize η = 1

λ1

converges to e1 (or −e1), and it achieves precision ε ∈ (0, 1)
such that ‖xt − e1‖2 ≤ ε (or ‖xt + e1‖2 ≤ ε) in O

(
1
∆ ln n

ε

)
iterations with high probability.

Our analysis for RGD uses innovative reduction and chain-
ing techniques. These new techniques enable us to track the
convergence procedure step-by-step without much loss and
allows us to obtain a tighter bound than [Xu et al., 2018]. We
also provide concrete instances to show that our characteriza-
tion is essentially tight.

Our second convergence result is the convergence rate of
Oja’s rule as the following. We remark that the previous anal-
ysis [Oja, 1982; Oja, 1989; Yi et al., 2005] only gave asymp-
totic convergence results for this algorithm.

Theorem 2 (Convergence of Oja’s rule). Under random ini-
tialization over the unit hypersphere, Oja’s rule with stepsize
η = 1

4λ1
converges to e1 (or −e1), and it achieves precision

ε ∈ (0, 1) such that ‖xt − e1‖2 ≤ ε (or ‖xt + e1‖2 ≤ ε) in
O
(

1
∆ ln n

ε

)
iterations with high probability.

Since no explicit retraction is used in Oja’s rule, the con-
vergence in L2 norm is non-trivial. We prove this result using
the invariant set technique [Yi et al., 2005] and a detailed
analysis of a noisy fixed-point iteration.

It is important to point out that Oja’s flow was shown to
converge at rate O

(
1

λ1∆ ln n
ε

)
[Chen et al., 1998]. However,

the analysis heavily depends on the ODE characterization that
allows a smooth calculation since it is continuous in time.
However, the recurrence in the discrete algorithms can be
extremely complex to analyze even just for a few iterations.
Thus, we need to develop fundamentally new techniques for
proving convergence rates of the discrete algorithms.

The rest of the paper is organized as follows. In Section 4
we present our proof for the convergence rate of RGD (The-
orem 1). In Section 5, we continue to prove the convergence
rate of Oja’s rule (Theorem 2). We conclude the paper in Sec-
tion 6.

4 Riemannian Gradient Descent
Our analysis for RGD mainly consists of two phases. First,
we reduce the dimension of the convergence procedure from
n to 2 for a single step and further for multiple steps, with-
out compromising on the convergence rate (Lemma 1). Then,
we investigate the basic 2-dimensional case and give the con-
vergence guarantee shown in Theorem 1. Here we denote
∠(a,b) as the angle between vectors a and b.

Lemma 1 (Multiple-step reduction). If we take η ≤ 1
λ1

,
then for two sequences {xt} and {yt} generated by RGD
with different initial points, x0 =

∑n
i=1 qiei ∈ Sn−1,

and y0 = q1e1 +
√

1− q2
1e2, we have sin2 ∠(xt, e1) ≤

sin2 ∠(yt, e1), ∀t ≥ 0.

Proof of Lemma 1. We first prove the result for a single step.
To simplify the notation, we denote x′ = R(x, ηg(x)) as the
one-step update of x ∈ Sn−1, here x =

∑n
i=1 qiei is the

spectrum decomposition of x. We let y = q1e1 +
√

1− q2
1e2,

which is a counterpart of x with all the non-principal compo-
nents concentrated on the second dimension. And we denote
y′ = R(y, ηg(y)) to be the one-step update of y accordingly.

Consider one-step update as x′ = R(x, ηg(x)) =∑n
i=1 q

′
iei. Then component-wise, we have

q′21 =
(1 + ηλ1 − η(

∑n
j=1 λjq

2
j ))2q2

1∑n
i=1(1 + ηλi − η(

∑n
j=1 λjq

2
j ))2q2

i

.

It is conceptually easier to proceed the proof by thinking
of (q2

1 , q
2
2 , ...q

2
n) as a discrete probability distribution. Thus,

we denote pi = q2
i , ∀i ∈ [n] and we have p = (p1, ..., pn) ∈

Γn−1, where Γn−1 , {p ≥ 0 |
∑n
i=1 pi = 1} is the (n− 1)-

dimensional probability simplex. Our analysis and notations
will benefit from this point of view of probability distribution.
We further denote η(λ1 − λi) , χi, thus χ1 = 0, χ2 =
η(λ1 − λ2), and χ2 ≤ χi ≤ ηλ1, ∀i ≥ 2.

Now we consider the following function g(p), which char-
acterizes the increment of the principal component p1 by
p′1 = g(p) · p1,

g(p) =
(1 + (

∑n
j=1 χjpj))

2∑n
i=1(1− χi + (

∑n
j=1 χjpj))

2pi
, ∀p ∈ Γn−1.

We create a random variable χ that follows the distribution
P (χ = χi) = pi. Then we know E(χ) =

∑n
i=1 χipi and

g(p) =
(1 + E(χ))2∑n

i=1(1− χi + E(χ))2pi
=

(1 + E(χ))2

1 + Var(χ)
.

Here we used the equation E(1−χ+E(χ))2 = 1+E(χ2)−
E(χ)2 = 1 + Var(χ). Then it suffices to study the extremal
property of this function, which gives a lower bound on the
increment of the principal component and thus a lower bound
for the convergence rate.

Note that
∑n
i=1 pi = 1, then we can substitute it into g(p)

to eliminate pn. We then consider the following restricted
functions over Γ̄n−1 = {p̄ ≥ 0, |

∑n−1
i=1 p̄i ≤ 1}. Note that
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Γ̄n−1 is not a probability simplex, but the projection of Γn−1

onto the first n− 1 dimensions.

ḡ(p̄) = g
(

p̄, 1−
n−1∑
i=1

pi

)
;

E(χ) =
n−1∑
i=1

piχi +
(

1−
n−1∑
i=1

pi

)
χn;

E(χ2) =
n−1∑
i=1

piχ
2
i +

(
1−

n−1∑
i=1

pi

)
χ2
n.

Also note that Var(χ) = E(χ2) − E(χ)2. Then we claim
that for stepsize η ≤ 1

λ1
, we always have ∂

∂p2
ḡ(p̄) ≤ 0. To

see this, we take the derivative of ḡ(p̄) w.r.t. p2 and obtain

∂

∂p2
ḡ(p̄) =

(1 + E(χ))

(1 + Var(χ))2

(
2(1 + Var(χ)) · ∂

∂p2
E(χ)

− (1 + E(χ)) · ∂

∂p2
Var(χ)

)
.

Taking the derivative of E(χ) and Var(χ) w.r.t. p2 gives
us ∂

∂p2
E(χ) = χ2 − χn and ∂

∂p2
Var(χ) = (χ2

2 − χ2
n) −

2(χ2 − χn)E(χ). Substituting these derivatives into that of
ḡ(p̄) gives

∂

∂p2
ḡ(p̄) =− (1 + E(χ))(χn − χ2)

(1 + Var(χ))2

(
2E(χ2)

+ (1 + E(χ))(2− χ2 − χn)
)
.

Since − (1+E(χ))(χn−χ2)
(1+Var(χ))2 ≤ 0, we have ∂

∂p2
ḡ(p̄) ≤ 0 when

2E(χ2) + (1 + E(χ))(2− χ2 − χn) ≥ 0. But since η ≤ 1
λ1

,
we have χi ≤ 1, ∀i ∈ [n] and thus 2 − χ2 − χn ≥ 0. Thus
our claim is correct, and hence the minima should satisfy the
boundary condition of Γ̄n−1 as p2 = 1 − p1 −

∑n−1
i=3 pi, or

equivalently, pn = 0.
In other words, we have proved that when η ≤ 1

λ1
, the in-

crement of principal component satisfies g(p) ≥ g(p1, (p2 +
pn), p3, ..., pn−1, 0). Using similar arguments over pn−1,
..., p3, we can show that g(p) ≥ g(p1,

∑n
i=2 pi, 0, ..., 0) =

g(p1, 1 − p1, 0, ..., 0). This means that the increment of the
principal component attains minima when all the weights
p2, p3, ..., pn are concentrated on the second leading compo-
nent. Thus when η ≤ 1

λ1
, we have

g(p) ≥ (1 + χ2(1− p1))2

1 + (1− p1)χ2
2 − (1− p1)2χ2

2

.

This together with the fact that sin2 ∠(x′, e1) = 1−g(p)p1

gives

sin2 ∠(x′, e1) ≤ (1− χ2p1)2

1 + p1(1− p1)χ2
2

· sin2 ∠(x, e1).

Note that the right hand side is in fact equivalent to
sin2 ∠(y′, e1), then we get sin2 ∠(x′, e1) ≤ sin2 ∠(y′, e1).
This proves the lemma for a single step. Now we critically

use a chaining argument to show that this is also true for mul-
tiple steps.

With some abuse on notations, suppose we have an array
{p(t) = (p1(t), ..., pn(t))} produced by the RGD algorithm
above. Then we have

p1(t+ 1) ≥ g(p1(t), 1− p1(t), 0, ..., 0) · p1(t).

We further construct another virtual sequence {r(t) =
(r1(t), ..., rn(t))}, which is also generated by the gradient
process but with a different starting point r1(0) = p1(0),
r2(0) = 1−p1(0), ri(0) = 0, ∀3 ≤ i ≤ n. Then r(t), ∀t ≥ 0
will only have nonzero values for its first two components.
And we have the recurrence for r(t) as

r1(t+ 1) = g(r1(t), 1− r1(t), 0, ..., 0) · r1(t).

To establish our reduction for multiple steps, it suffices to
prove that p1(t) ≥ r1(t), ∀t ≥ 0. Note that we have validated
this inequality for t = 0 by Lemma 1, since p1(1) = g(p(0)) ·
p1(0) ≥ g(p1(0), 1− p1(0), 0, ..., 0) · p1(0) = r1(1).

In the following, we will prove that p1(t) ≥ r1(t), ∀t ≥ 0
by induction. The induction base is that ∀t ≤ k, we have
p1(t) ≥ r1(t). In fact, if the function h(p) = p · g(p, 1 −
p, 0, ..., 0), ∀p ∈ [0, 1] is monotonically increasing, then by
induction base we have

p1(t+ 1) ≥ g(p1(t), 1− p1(t), 0, ..., 0) · p1(t)

≥g(r1(t), 1− r1(t), 0, ..., 0) · r1(t) = r1(t+ 1),

and this concludes our proof. The fact that h(p) is a mono-
tonic function can be validated via its derivative:

d
dp
h(p) =

(1 + χ2(1− p))
(1 + p(1− p)χ2

2)2

(
(1− χ2p)

2

+ χ2(1− p)(1− χ2
2p

2)
)
.

Note that for χ2, p ∈ [0, 1], we have d
dph(p) ≥ 0.

Thus, h(p) is indeed monotone, which establishes our pre-
vious statements. In other words, if x0 =

∑n
i=1 qiei, and

y0 = q1e1 +
√

1− q2
1e2, then after t iterations, we will have

sin2 ∠(xt, e1) = 1−p1(t) ≤ 1−r1(t) = sin2 ∠(yt, e1). This
proves the lemma.

Since the worst-case convergence rate occurs when the ini-
tial vector lies in the span of the first and second principal
dimensions due to Lemma 1, it suffices to lower bound the
rate for the two-dimensional case. By putting all these argu-
ments together, it is straight-forward to establish Theorem 1
as follows.

Proof of Theorem 1. By Lemma 1, we have sin2 ∠(xt, e1) ≤
sin2 ∠(yt, e1), ∀t ≥ 0. Since the series of yt only remains
in the two-dimensional space of span{e1, e2}, in essence its
convergence follows the case where d = 2.

Here we consider the convergence property of the basic
2-dimensional case. Denote θt , ∠(xt, e1), then we have
q1(t) = | cos θt|, q2(t) = | sin θt|. And we have

tan θt+1 =

(
1− χ2

1 + χ2
tan2 θt

1+tan θ2t

)
· tan θt.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3279



Since we have tan2 θt
1+tan2 θt

∈ [0, 1), then 1 + χ2
tan2 θt

1+tan2 θt
<

1 + χ2. Thus

| tan θt| ≤
| tan θt|
1 + χ2

⇔ tan2 θt ≤
tan2 θt

(1 + χ2)2
.

By simple chaining, we have tan2 θt ≤ tan2 θ0
(1+χ2)2t → 0.

Note that sgn(tan(θt)) = sgn(tan(θ0)). Thus, we conclude
that either θt → 0 or θt → π, which corresponds to the cases
where xt converges to e1 and −e1. Without loss of general-
ity, we consider the case where θt → 0, then we can bound
sin2 θt as

sin2 θt ≤ tan2 θt ≤
tan2 θ0

(1 + χ2)2t
.

Thus when η ≤ 1
λ1

, with high probability over random
initialization over the hypersphere, we have tan2 θ0 = Θ(n),
and hence

‖xt − e1‖22 = sin2 θt ≤ O(n(1 + χ2)−2t) ≤ O(ne−2χ2t).

Taking η = 1
λ1

, we have χ2 = ∆ and for t = O
(

1
∆ ln n

ε

)
,

the required precision is attained.

Remark 1 (Tightness of the analysis). We show that our
analysis is essentially tight by considering the concrete in-
stance where {xt} is defined by the RGD process with start-
ing point x0 = 1√

2
(e1 + e2), then we have tan θt ≥ (1 −

∆)t tan θ0 = Ω(ne−2∆t) with high probability. Thus it re-
quires Ω

(
1
∆ ln

(
n
ε

))
iterations to converge in the least.

5 Oja’s Rule
The difference between Oja’s rule and RGD lies in the retrac-
tion step. Since no explicit retraction is enforced during the
execution of Oja’s rule, the convergence behavior is very dif-
ferent from that of RGD, and the analysis also needs different
techniques.

To give our non-asymptotic analysis for L2 convergence,
we first review the following lemma previously established in
[Yi et al., 2005], using the invariant set technique.
Lemma 2 (Invariant set property [Yi et al., 2005]). If we let
η ≤ 1

2λ1
in Oja’s rule, then we always have xtAxt ≤ 1

η

throughout the process, and tan2 θt decreases as follows.

tan2 θt ≤ tan2 θ0

(
1 + ηλ2

1 + ηλ1

)2t

.

We will also use the following version of fixed point itera-
tion theorem.
Proposition 1 (Fixed point convergence theorem). Let g and
g′ be continuous on [a, b] and suppose that if a ≤ x ≤ b then
a ≤ g(x) ≤ b. Also suppose that λ = maxa≤x≤b |g′(x)| <
1. Then:

1. There exists a unique solution α ∈ [a, b] to the equation
x = g(x).

2. For any initial estimation x0 ∈ [a, b], we have |xn−α| ≤
λ|xn−1 − α|, and limn→∞ xn = α.

Our proof for Theorem 2 mainly studies the convergence
property of a noisy fixed point iteration.

Proof of Theorem 2. Due to Lemma 2 and tan2 θt =∑n
i=2 q

2
i (t)

q21(t)
, we have

n∑
i=2

q2
i (t) ≤ q2

1(t) tan2 θ0

(
1− η(λ1 − λ2)

1 + ηλ1

)2t

.

And note that λ1q
2
1(t) ≤ xTt Axt ≤ 1

η , thus q2
1(t) ≤ 1

ηλ1
.

Taking ηλ1 = 1
4 , then we have

n∑
i=2

q2
i (t) ≤ 4 tan2 θ0

(
1−∆

5

)2t

≤ 4 tan2 θ0 exp
(
− 2∆t

5

)
.

Thus, to achieve tail error
∑n
i=2 q

2
i (t) ≤ δ, it suffices to

assure

4 tan2 θ0 exp
(
− 2∆t

5

)
≤ δ ⇔ t ≥ 5

2∆
ln

4 tan2 θ0

δ
.

And after t1 = O
(

1
∆ ln tan θ0

δ

)
iterations, we always have

tail error bounded by δ. Suppose that we have already ran t1
iterations to reduce the tail error to some δ ≤ 1

4 , then we have∑n
i=2 λiq

2
i (t) ≤ λ1

∑n
i=2 q

2
i (t) ≤ λ1δ. It is not hard to show

that Oja’s rule updates q1(t) as follows,

q1(t+ 1) =
(5

4
− η

n∑
i=1

λiq
2
i (t)

)
q1(t).

Note that q1(t) preserves the sign throughout the process.
Thus, w.l.o.g. we assume q1(t) ≥ 0, ∀t ≥ 0. And thus

1

4

(
5− q2

1(t)− δ
)
q1(t) ≤ q1(t+ 1) ≤ 1

4

(
5− q2

1(t)
)
q1(t).

Then we study the convergence of the fixed point iterations
gζ(x) = 1

4 (5−ζ−x2)x, where ζ ∈ [0, δ]. Since q2
1 ≤ 1

ηλ1
=

4, it suffices to study this fixed point iteration over (0, 2]. We
heve the first-order and second-order derivatives of gζ(x) as
g′ζ(x) = 1

4 (5− ζ − 3x2) and g′′ζ (x) = − 3
2x.

Thus gζ(x) is concave in (0,+∞). And since the zero of

g′ζ(x) on (0,+∞) is sζ =
√

5−ζ
3 , we have gζ(x) increasing

with ζ in (0, sζ ], and decreasing in (sζ ,+∞). To guaran-
tee that gζ(x) is positive in interval (0, 2], it suffices to let
gζ(2) = 1

2 (1− ζ) > 0, and this is equivalent to ζ < 1.
Denote tζ = gζ(sζ) = 5−ζ

6 · sζ , thus for any x ∈ (0, 2],
a single update is guaranteed to bring it to (0, tζ ] and get

trapped within it. But tζ ≤ t0 = 5
6

√
5
3 ' 1.076 < sζ .

Thus, w.l.o.g., we may only consider the interval (0, t0]. And
note the fixed point of gζ(x) in (0, t0] is rζ =

√
1− ζ.

By Proposition 1, since g′ζ(0) = 1
4 (5 − ζ) > 1, thus

x = 0 cannot be a stable fixed point; and since g′ζ(rζ) =
1
2 (1 + ζ) < 1, rζ is a stable fixed point. Summarizing our
analysis above, over the interval (0, t0], the function family
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Scenarios Oja’s flow Riemannian GD Oja’s rule

d = 1 O
(

1
λ1∆ ln n

ε

)
(Folklore) O

(
1
∆ ln n

ε

)
(Thm 1) O

(
1
∆ ln n

ε

)
(Thm 2)

1 < d < n O
(

1
λd∆d

ln 1
ε

)
[Chen et al., 1998] O( 1

ε )(Folklore) O( 1
ε )(Folklore)

Table 1: Convergence results.

Figure 2: Synthetic data with ∆ ≥ 0.2. Figure 3: Synthetic data with ∆ ≤ 0.2. Figure 4: On Schenk dataset.

{gζ(x), ∀ζ ∈ [0, δ]} is concave, increasing and positive, and
each function have fixed point rζ . For x ∈ (0, rζ ], we have
gζ(x) ≥ x; and for x ∈ (rζ , t0], we have gζ(x) ≤ x.

After studying the property of gζ(x), we now turn to bound
the convergence of a noisy fixed point iteration, where in
each iteration t, we are given a different ζ(t) ∈ [0, δ], and
update according to xt = gζ(t)(xt−1). Specially, setting
ζ(t) =

∑n
i=2 λiq

2
i (t)/λ1 recovers the original Oja’s rule.

By Proposition 1 and detailed case analysis1, we claim that
if we set δ = ε ≤ 1

4 , then the worst case iteration complexity
is O

(
max{ln 1

x0
, ln 1

ε }
)
. Putting together the tail error re-

duction and the noisy fixed point iteration gives us the final
convergence rate as

O

(
max

{
1

∆
ln

tan θ0

ε
, ln

1

q1
, ln

1

ε

})
.

Then with high probability, we have tan θ0 = Θ(
√
n) and

q1 = Θ(1/n) under random initialization over the hyper-
sphere. This proves the theorem.

We summarize the convergence properties for RGD and
Oja’s rule in Table 1 for reference. We remark that the sub-
linear rate O

(
1
ε

)
when 1 < d < n is not supposed to be tight

in general.

6 Experiments
We re-implement experiments from [Xu et al., 2018] for val-
idation of our results. Our setting is exactly the same as [Xu
et al., 2018], with n = 1000 and A = UΣUT . Here U
is a random orthonormal matrix and Σ = [Σ1 Σ2]. Fur-
ther, we have Σ2 = [ |g1|n , ..., |gn−6|

n ] for gi ∼ N (0, 1); and
Σ1 = [1, 1−∆, 1−1.1∆, ..., 1−1.4∆] for certain ∆. We re-
fer readers to [Xu et al., 2018] for detailed parameter settings.
Here we let ε = e−5 ' 0.0067 be the desired precision, and

1Not presented here due to limited space. Please refer to the full
version of this paper.

compare the empirical iteration complexity to attain this pre-
cision compared with the iteration complexity bound of ours,
m1 = 1

2∆ ln n
ε ' 5.954 · 1

∆ , and that of [Xu et al., 2018],
m2 = 1

∆2 ln n
ε ' 11.908 ·

(
1
∆

)2
.

As shown by the experiment results, the empirical itera-
tion complexity linearly depends on 1

∆ , which is well char-
acterized by our iteration complexity bound. However, the
quadratic bound of [Xu et al., 2018] is already much higher
than the empirical complexity when ∆ ≥ 0.2 (Figure 2); and
this gap becomes huge when ∆ ≤ 0.2 (Figure 3).

Moreover, we also validate our convergence results on the
Schenk2 dataset used by [Xu et al., 2018] for fair compari-
sion. Schenk dataset provides a 10,728× 10,728 PSD sparse
matrix with 85,000 non-zeros in it. The eigengap of this ma-
trix is roughly ∆ = 0.39. And our convergence bound in
Theorem 1 gives ε ≤ O(ne−2∆t), thus ln(ε) ∝ −∆t; while
[Xu et al., 2018] gives ln(ε) ∝ −∆2t. As shown in Figure 4,
our convergence bound is much closer to empirical rate than
theirs. This also justify the tightness of our analysis.

7 Conclusions
In this paper, we proved tight convergence rate of O( 1

∆ ln n
ε )

for RGD and Oja’s rule, for leading eigenvector computa-
tion. Our methods for proving convergence mainly involves
a special reduction and chaining technique, together with a
noisy fixed point iteration argument. We believe these meth-
ods will also be useful when analyzing other algorithms for
eigenproblems.
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