
Neighbor Combinatorial Attention for Critical Structure Mining

Tanli Zuo1∗ , Yukun Qiu1∗ and Wei-Shi Zheng1,2,3†

1School of Data and Computer Science, Sun Yat-sen University, China
2Peng Cheng Laboratory, Shenzhen 518005, China

3Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, China
zuotl@mail2.sysu.edu.cn, qiuyk@mail2.sysu.edu.cn, wszheng@ieee.org

Abstract
Graph convolutional networks (GCNs) have been
widely used to process graph-structured data. How-
ever, existing GNN methods do not explicitly ex-
tract critical structures, which reflect the intrin-
sic property of a graph. In this work, we pro-
pose a novel GCN module named Neighbor Com-
binatorial ATtention (NCAT) to find critical struc-
ture in graph-structured data. NCAT attempts to
match combinatorial neighbors with learnable pat-
terns and assigns different weights to each combi-
nation based on the matching degree between the
patterns and combinations. By stacking several
NCAT modules, we can extract hierarchical struc-
tures that is helpful for down-stream tasks. Our ex-
perimental results show that NCAT achieves state-
of-the-art performance on several benchmark graph
classification datasets. In addition, we interpret
what kind of features our model learned by visu-
alizing the extracted critical structures.

1 Introduction
Traditional deep neural networks (e.g. CNN [LeCun et al.,
2015] and RNN [Mikolov et al., 2013]) have made great
progress on Euclidean data like images, audios and videos.
However, it is hard to directly deploy these models to process
a widely-used structural data, i.e. graphs, which is essential
in computer science. Recently, inspired by deep neural net-
works, graph neural networks (GNNs) [Atwood and Towsley,
2016; Kipf and Welling, 2017; Verma and Zhang, 2018] are
proposed to process various kind of graphs, and demonstrate
their capability in processing graph-related tasks.

By analyzing the data and task we get the important insight
to design our module. Graph structure data can be roughly di-
vided into two classes: similarity-based (e.g. social networks
and citation networks) and structure-based (e.g. molecules
and proteins). We notice that critical structures are widely
existed in structure-based graphs. The critical structures are
structure-based subgraphs that reflect the intrinsic property
of a graph. For example, carboxybenzene and nitrobenzene
∗Equal contribution.
†Corresponding author.

3 2

Primary 
structures

Secondary 
structures

Prediction

Graph
representation

(a)

(b)(c)

COOH NO2

Figure 1: Demonstration of our model. (a) Examples of generated
structured-based graph of hand written digits. (b) Visualization of
the graph representation and learned critical spatial structures of
hand written digits. (c) Two similar molecules with different func-
tional group.

has similar structure except their functional group: carboxyl
(COOH) and nitryl (NO2) (Figure 1(c)). Their functional
groups determine the acidity of carboxybenzene and the mu-
tagenicity of nitrobenzene. However, existing GNN meth-
ods do not explicitly extract critical structures in their model.
In this paper, we design a novel graph convolution module
named Neighbor Combinatorial ATtention (NCAT) to find the
critical structures which makes our model more interpretable
and improves its performance.

The insight behind NCAT is that the properties of a
structure-based graph is mainly determined by its critical
structures, and we can find critical structures with different
scales hierarchically. Figure 1 gives an illustration of our in-
sight. Figure 1(a) depicts structure-based graphs formed by
detecting key points of digits using spectral clustering. In
this way, we can compute the graph representations of the
digits and extract their primary critical structures depending
on their relative positions. By stacking several NCAT mod-
ules, we can extract critical structures with different scales
(e.g. primary and secondary critical structures in Figure 1(b))
of the graphs. We can form discriminative graph embeddings
by combining those critical structures, which make the down-
stream tasks easier to tackle.

Figure 2 presents a closer look of NCAT module, and com-
pares it with GCN. Figure 2(a) depicts how GCN aggregate

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3299



Locates 𝒖 in 𝑮 𝒖 and its 
neighbors

Aggregation
Pattern ෡𝑷

Isomorphic substructures Aggregation 

𝒔1 = 𝟎.𝟎𝟏

𝒔4 = 𝟎.1

𝒔2 = 𝟎. 𝟕𝟓 𝒔3 = 𝟎. 𝟏

𝒔5 = 𝟎. 𝟎𝟐 𝒔6 = 𝟎. 𝟎𝟐

(a) (b)

match
𝟎. 𝟎𝟏

𝟎. 𝟕𝟓
𝟎. 𝟏

𝟎. 𝟎𝟐

𝟎. 𝟎𝟐

𝟎. 𝟏

Edge
Information propagation
Neighbor combination𝑢

Best matching

Figure 2: The difference between GCN and NCAT: (a) How GCN aggregates information from neighbors; (b) How NCAT aggregates
information from neighbors.

information from the neighboring nodes. Given a node u,
GCN first locates it in the graph G, and then aggregate in-
formation from its neighbors to form the node embedding of
it. In contrast to GCN layers, NCAT pays more attention to
the substructures that matches particular pattern. Figure 2(b)
shows this procedure. For each node u, NCAT considers all
substructures isomorphic to the learned pattern. Each sub-
structure consists of a center node u and a neighbor combi-
nation. NCAT evaluates the matching scores s between the
learned pattern and substructures by a similarity function, and
then assigns weights to the neighbor combinations based on
the scores. Thus, neighbor combinations match the learned
pattern (i.e. the critical structures) will contribute more when
forming the node embeddings. Finally, the weighted features
of all the neighbor combinations are aggregated into the em-
bedding for center node u.

The main contributions of this paper are summarized as
follows: (1) We proposed a novel graph convolution mod-
ule named NCAT to find critical structures in graphs. Given
a structure-based graph, NCAT can hierarchically find criti-
cal structures with different scales and form a discriminative
graph embedding by combining the critical structures. (2) We
conduct experiments on graph classification and hand-written
digits datasets to evaluate our module. On several benchmark
graph classification dataset, NCAT achieved state-of-the-art
performance. And, the experiments on hand-written digits
further demonstrate the superiority of NCAT when processing
structure-based graph. (3) We also provide a visualization of
the learned critical structures to demonstrate the interpretabil-
ity of our model.

2 Related Work
Due to the success of CNN, many works attempt to imitate
the convolution [Shuman et al., 2013] and pooling [Ying et
al., 2018] operations on graph and make some progress in
processing graphs. In this section, we will provide a brief
introduction about the above methods.

Graph convolution. Early works defined the convolutional
operation in the context of spectral graph theory [Bruna et al.,
2013]. However, the spectral computation is global and time-
consuming. ChebNet [Defferrard et al., 2016] parameterized

graph filter as a Chebyshev polynomial of eigenvalues, make
the convolution operation localized in space. GCN [Kipf and
Welling, 2017] further simplified ChebNet by a first-order
approximation and it bridges the gap between spectral- and
spatial-based GCNs. Spatial-based GCNs try to imitate the
convolution operation on images by defining graph convolu-
tion based on its nodes’ spatial relations. The main challenge
is that neighbors of each node have no order. PATCHY-SAN
[Niepert et al., 2016] and Ego-CNNs [Tzeng and Wu, 2019]
tried to solve this issue by sorting all nodes by a pre-defined
labeling before model training. With the help of labeling,
they can process the graph-structured data in a conventional
way like grid-structured data. Interested readers can obtain
a more detailed introduction to GCNs in [Wu et al., 2019;
Zhou et al., 2018].
Graph pooling. In some tasks like graph classification, a
graph-level feature embedding is required. Therefore, some
works [Ying et al., 2018; Zhang et al., 2018] have defined the
pooling operation on graphs to form a better graph-level rep-
resentation. [Zhang et al., 2018] proposed SortPool, which
performs pooling by sorting nodes into a meaningful order
and preserving the top-k nodes for downstream tasks. Diff-
Pool [Ying et al., 2018] learns an assignment matrix to clus-
ter nodes and form a hierarchical representation of a graph.
They provide a general way to reduce graph size and form
the graph’s hierarchical structure.
Graph kernels. Graph Kernel is the conventional way to
process graphs before GNNs are proposed, and our pro-
posed method have some similar insights with the Graph Ker-
nels. Graph kernels attempt to define the similarity between
graphs, which makes it possible for learning approaches
such as support vector machines (SVMs) to work directly on
graphs [Vishwanathan et al., 2010]. To control the time com-
plexity, they restrict themselves to counting substructures that
are computable in polynomial time, such as graphlets [Sher-
vashidze et al., 2009], shortest paths [Borgwardt and Kriegel,
2005], random walks [Vishwanathan et al., 2010] and sub-
trees [Shervashidze et al., 2011]. An effective class of graph
kernels is the Weisfeiler-Lehman (WL) kernel[Shervashidze
et al., 2011]. WL-subtree kernel relabels each node based on
the collection of local-neighbor labels in each iteration. How-
ever, it focuses on the graph structure and does not support

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3300



Pooling

NCATinput NCAT

sub-module
(𝑚 = 1)

sub-module
(𝑚 = 2)

NCAT

sub-module
(𝑚 = 1)

sub-module
(𝑚 = 2)

𝑚 = 2

…

𝑚 = 1

…

MLP

𝑟 layers

…… …

…

…

Figure 3: Pipeline of our model. Each layer is composed of several NCAT modules, and extracts critical structures to form the output
embedding. By stacking several layers the model can find discriminative structures for downstream tasks.

continuous node and edge labels, which are important in bio-
and chemoinformatics. In contrast to those kernel methods,
NCAT learns sub-tree patterns from graphs and can process
features on both nodes and edges with linear complexity w.r.t.
the number of edges.

3 Neighbor Combinatorial Attention
In this section, we introduce the NCAT module, a basic GCN
building block. We first specify our notations and outline the
pipeline of our model, in Section 3.1 and 3.2. Then, we will
explain the details of our module, in Section 3.3. We also
explain how our module process edge features and illuminate
the connection between our module and CNN in Section 3.4
and 3.5.

3.1 Preliminary
In this paper, we use lowercase letters (e.g., a, b, c) to rep-
resent scalars, bold lowercase letters (e.g., x,y, z) to rep-
resent vectors, and bold uppercase letters (e.g., A,W,X)
to represent matrices or tensors. The typical input to our
module is a graph G and node features X, where a graph
is a pair G = (V,E) in which V is the vertices set and
E ⊆ {(u, v)|u, v ∈ V } is the set of edges. The node
features are X = (x1,x2, · · · ,xn)

T ∈ Rn×d, where xu

is the feature of node u, and n, d represent the number of
nodes (graph size) and the input dimension, respectively.
N (u) = {v|(u, v) ∈ E} is the neighborhood set of node
u, which contains all neighbors of node u. NCAT matches
the pattern with node u and its neighbor combinations (i.e.
subsets of N (u)), and assigns different weights to neighbor
combinations based on the matching degree. To simplify the
representation, we define the sequence set for a node u.
Definition 1. The sequence set Qm(u) for node u contains
all permuted node sequences of N (u) that have exactly m
neighbors:

Qm(u) = {(q1, q2, · · · , qm)|qi ∈ N (u), ∀i 6= j, qi 6= qj}.
For a node u with nu neighbors, Qm(u) contains Pnu

m ele-
ments.

3.2 Pipeline
Before providing a detailed introduction to NCAT, we first
describe the pipeline of our model in Figure 3. The input is a
graph G = (V,E), which can be described by an adjacency
matrix A ∈ Rn×n and a node features matrix X ∈ Rn×d.
If the graph includes edge labels, an additional edge features
matrix Xe ∈ Rn×n×l is required. xe

u,v ∈ Rl is the feature of
the edge between nodes u, v ∈ V . The input graphs first tra-
verse the NCAT layers, which extract different-scaled critical
structures of them; these are the ingredients of graph embed-
dings. Entire model includes r NCAT layers, and each NCAT
layer contains several NCAT sub-modules. Each sub-module
can include c different patterns; we call this parameter a chan-
nel. sub-modules extract informative critical structures based
on different patterns with sizes m = 1, 2, · · · . The outputs
from all the channels are concatenated to form the output of
the sub-module, and outputs of all the sub-modules are con-
catenated to form the output of the entire NCAT layer. Fol-
lowing the insight of [Xu et al., 2018], the output of each
NCAT layer is not only used as the input of the subsequent
NCAT layer but is also concatenated with the output of other
NCAT layers to form the final node embeddings. In this way,
the final node embeddings can aggregate critical structures in
different scales. Note that each graph has a different size;
thus, the dimension of output feature will vary. Therefore,
we need a pooling layer to generate graph representations that
have the same dimension. In this paper, we use attribute-wise
max pooling to generate a graph representation g ∈ Rd from
the node embedding Z ∈ Rn×d, i.e.

gj = max
i

Zi,j . (1)

Finally, the graph representation g can be input into a multi-
layer perceptron (MLP) to generate classification scores.

3.3 Neighbor Combinatorial Attention Module
In the NCAT module, we intend to use an attention mech-
anism to weight all the substructures based on the match-
ing degree between patterns and the corresponding substruc-
tures. The substructures with greater weights are critical

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3301



structures. We formally defined the pattern of a NCAT mod-
ule as a tree that contains a root and m child nodes connect
to the root. For simplicity, we named parameter m as pat-
tern size. Each node of the pattern has its feature which
is parameterized with a vector pi ∈ Rd′

. All these fea-
tures form the feature set P = {pi}mi=0 of the pattern. For
each node u, all substructures root at u and are isomorphic
with the pattern are considered. Due to the special struc-
ture of the pattern, the isomorphic substructures can be in-
dicated by node sequences q ∈ Qm(u), i.e. sequences
of neighbors of node u that has m elements. Each node
qi ∈ q is corresponding to the i-th node of the pattern.
To match the pattern with substructures, a projection W ∈
Rd′×(m+1)d is needed to transform the concatenated node
features xq = Concat(xu,xq1 ,xq2 , ...,xqm) ∈ R(m+1)d into
the target space Rd′

. The projection W can be decomposed
into m + 1 projections W = [W0,W1, · · · ,Wm], where
Wi ∈ Rd′×d. For simplicity, we denote the transformed fea-
ture of node v by projection Wj as hv,j = Wjxv . Then,
for each substructure indicated by sequence q ∈ Qm(u), its
transformed features hq can be computed by hq = Wxq =
hu,0 +

∑m
i=1 hqi,i. After that, the matching scores can be

computed using Eq. (2), where φ(·) measures the matching
degree between the pattern features and the neighbor features.
The common choices for φ(·) include inner product and co-
sine similarity; actually, any similarity function can be used
for φ(·):

sq =

m∑
i=1

φ(hqi,i,pi). (2)

Then, we can assign different weights to isomorphic substruc-
tures using the softmax in Eq. (3).

αu,q =
exp(sq)∑

q′∈Qm(u) exp(sq′)
. (3)

The obtained attention coefficients can be used to weight their
corresponding features, and the node embedding of u can be
computed as follows:

zu = σ(
∑

q∈Qm(u)

αu,qhq)

= σ(hu,0 +
∑

q∈Qm(u)

αu,q

m∑
i=1

hqi,i),

(4)

where σ(·) is an activation function (ReLU in this paper).
Note that Eq. (4) can be regarded as the weighted sum of
the transformed features as follows:

zu = σ(hu,0 +
∑

v∈N (v)

m∑
j=1

wv,jhv,j). (5)

After calculated wv,j for node u, the computation complex-
ity is linear w.r.t. |N (u)|. Given a larger pattern size m,
the NCAT module can learn more complex critical structures,
which may be important to graph classification. However,
both the computational complexity and the space complexity
increase as m becomes larger.

In the following, we analyze the cases m = 1, m = 2
and m ≥ 3 separately. To simplify the equations, we define
ev,j = exp(φ(hv,j ,pj)).

Case m = 1. In this case, the pattern consists of two nodes
corresponding to center node u and a neighbor of it respec-
tively. The Eq. (4) can be rewritten as

zu = σ(hu,0 +
∑

v∈N (u)

ev,1∑
v′∈N (u) ev′,1

hv,1)

= σ(hu,0 + (
∑

v′∈N (u)

ev′,1)
−1

∑
v∈N (u)

ev,1hv,1).
(6)

The denominator and numerator can be computed sep-
arately, and the computational complexity in this case is
O(|E|).

Case m = 2. In this case, the pattern consists of three
nodes corresponding to center node u and two neighbors of
it respectively. This case is more complex than the previous
case because we need to enumerate all isomorphic substruc-
tures contain two neighbors. Similar to the previous case, we
split the second term of equation (4) into the denominator du
and the numerator cu. Thus, the node embedding can be cal-
culated by zu = σ(hu,0 +

cu

du
):

du =
∑

v1,v2∈N (u),v1 6=v2

ev1,1ev2,2

= (
∑

v′∈N (u)

ev′,1)(
∑

v∈N (u)

ev,2)−
∑

v∈N (u)

ev,1ev,2.
(7)

cu =
∑

v1,v2∈N (u),v1 6=v2

ev1,1ev2,2(hv1,1 + hv2,2)

= (
∑

v′∈N (u)

ev′,2)(
∑

v∈N (u)

ev,1hv,1)

+ (
∑

v′∈N (u)

ev′,1)(
∑

v∈N (u)

ev,2hv,2)

−
∑

v∈N (u)

ev,1ev,2(hv,1 + hv,2).

(8)

In Eq. (7) and Eq. (8), enumerating substructures of node
u were reduced to a linear operation using the inclusion-
exclusion principle.

Case m ≥ 3. For the more general case, we propose two
dynamic programming algorithms to calculate the denomina-
tor du and numerator cu separately for each node u. Time
complexity of our CPU version algorithm is O(2mm|E|).
The GPU version algorithm we proposed is designed in par-
allel and its time complexity is O(3m).

3.4 Process Edge Features
Our algorithm can easily be extended to process graphs with
edge features. In this case, the pattern features are extended
to include edge features, which are defined by a series of vec-
tors {pe

1, ...,p
e
m}, where pe

i ∈ Rl corresponds to the edge

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3302



Dataset PROTEINS ENZYMES D&D NCI1 PTC MR MUTAG

# Graphs 1113 600 1178 4110 344 188
Max Node 620 125 5748 111 64 28
Avg Node 39.05 32.46 284.32 29.76 14.29 17.93

Max Degree 25 9 19 4 4 4
# Degree 16 9 18 4 4 4

Table 1: Properties of benchmark graph classification datasets.

between the center and the neighbor that matches pattern pi.
The matching degree with edge features becomes

sq = β
m∑
i=1

φ(hqi,i,pi) + γ
m∑
i=1

φ(xe
u,qi ,p

e
i ), (9)

where β and γ represent trade-offs between the node match-
ing scores and the edge matching scores. The remaining pro-
cedures are the same as described in Section 3.3.

3.5 Connection to CNN
Images can easily be represented as graphs by treating each
pixel as a node and connecting each pixel with its 8 neigh-
bors. The node attributes are the gray levels, colors or hidden
features of the pixels, and the edge attributes are the relative
positions between the pixels. Thus, GCNs can process the
images based on the graphs generate from them. CNNs actu-
ally match neighbor features (pixels) in a fixed receptive field
with patterns (filters) under the spatial ordering. NCAT can
utilize the spatial relations of pixels embedded in the edge
features and perform exactly same operation in CNN.
Theorem 1. Let G be the generated graph for an image
whose feature map is X. Then for any convolution oper-
ation Conv(X;Ŵ) in CNNs, we have that ∀ε > 0 there
exists a parameter setting Θ∗, such that |Conv(X;Ŵ) −
NCAT (X, G;Θ∗)| < ε.

Theorem 1 states that the representation ability of NCAT
module is at least the same as convolution layer in CNNs.

4 Experiment
We conducted experiments on several benchmark graph clas-
sification datasets to compare the performance of NCAT with
state-of-the-art kernel methods and GCN-based methods.

4.1 Graph Classification
Datasets. To evaluate our module, we chose three datasets
have relatively large maximum degree and three datasets have
relatively small maximum degree. All these datasets include
node labels or features. Table 1 shows some basic informa-
tion about those datasets. detailed information of the datasets
can be found in [Yanardag and Vishwanathan, 2015].

Configurations. Our models follow the pipeline introduced
in Section 3.2. We use Instance Normalization [Ulyanov
et al., 2016] to perform data normalization because each
graph in a batch has different structure; thus, they should
be normalized individually. We adopted the Adam optimizer
[Kingma and Ba, 2015] to minimize the cross-entropy loss
function. Following the conventional validation approach, we
performed 10-fold cross validation to evaluate the accuracy

of our model. To ensure a fair comparison, we guaranteed
that all 10 folds data were randomly shuffled, and the class
distribution among folds did not vary. The accuracies of the
compared methods are cited directly from their papers.
Baselines. We compared our NCAT module with several
state-of-the-art GCN-based methods and graph kernels. The
GCN-based methods we compared with including GCN[Kipf
and Welling, 2017], PATCHY-SAN (PSCN) [Niepert et al.,
2016], Sort Pooling (SortPool) [Zhang et al., 2018], Diff
Pooling (DiffPool) [Ying et al., 2018] and Graph Capsule
Convolutional Neural Network (GCAPS-CNN) [Verma and
Zhang, 2018]. The graph kernel methods we compared with
including Graphlet Kernel (GK) [Shervashidze et al., 2009],
Random Walk Kernel (RW) [Vishwanathan et al., 2010],
Weisfeiler-Lehman Subtree Kernel (WL) [Shervashidze et
al., 2011], Weisfeiler-Lehman Optimal Assignment Kernel
(WL-OA) [Kriege et al., 2016].
Results. Table 2 lists all the results. On the first three
datasets, NCAT achieves state-of-the-art performance. These
datasets contain biomolecules like proteins or enzymes,
which can be represented as structure-based graph natively.
By extracting their critical structures, NCAT improves the
accuracy significantly. Under the same experiment setting,
NCAT module outperforms conventional GCN module by
4% ∼ 5% on PROTEINS, ENZYMES and D&D. However,
NCAT only achieves comparable performance with conven-
tional GCN on the last three datasets. The maximum degree
of those three datasets is relatively small, thus graphs from
those datasets will contain fewer substructures and lead to
the performance decline. It is worth noting that NCAT is a
basic component of GCN; thus, it is possible to merge it with
various methods and may result in better performances.
Running time. Theoretically, NCAT cost 2m times more
FLOPS than GCN. However,m is relatively small in practice,
thus will not dramatically increase the running time.

4.2 Hand-written Digits Classification
We conducted experiments on a classical image classification
task: Hand-written digit classification. As shown in Figure
1, we extract the skeleton structures and transform images
into graphs. First, we divide the pixels into several clusters
by spectral clustering algorithm. Each cluster is treated as
a node in graph and the average coordinate is treated as the
node feature. Then, we linked two nodes if the pixels of the
corresponding clusters are connected. The edge features are
defined as the relative position between two nodes.

We build two simple models with one and two NCAT lay-
ers respectively. In this experiment, only edge features are
used. As visualized in Figure 1, those models are power-
ful enough to learn critical structures for hand-written digits
classification. The experiment results in Table 3 show that ac-
curacy of 1-layer model and 2-layers model are comparable.

4.3 Ablation Study
In this section, we conducted ablation studies to analyze the
sensitivity of the NCAT module, and the experiment results
are reported in Table 4. On all the datasets, best or compa-
rable performances were achieved when combining several

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3303



Dataset PROTEINS ENZYMES D&D NCI1 PTC MR MUTAG

K
er

ne
l GK 71.67 26.61 78.45 62.28 57.26 81.39

RW 74.22 24.16 > 1 day > 1 day 57.85 79.17
WL 74.68 52.22 79.78 82.19 57.97 84.11

WL-OA 76.40 59.9 79.2 86.1 63.6 84.5
G

N
N

PSCN 75.89 - 77.12 78.59 62.29 92.63
SortPool 75.54 - 79.37 74.44 58.59 85.83
DiffPool 76.25 62.53 80.64 - - -

GCAPS-CNN 76.40 61.83 77.62 82.72 66.01 -
GCN∗ 72.95 64.33 74.36 79.95 64.18 87.81
NCAT 79.06 72.33 81.15 81.36 65.36 89.51

Table 2: Comparison with graph kernels and GCN-based methods (best viewed in color). A hyphen (”-”) represent a value without an
experiment result in the original paper.

Model GCN NCAT1 NCAT2

Acc 90.72 98.03 97.86

Table 3: comparison with GCN on hand-written digits classification.

Modules ENZYMES NCI1 D&D

only m = 1 72.33 79.22 79.62
only m = 2 70.66 81.29 80.64
m ∈ {1, 2} 68.33 81.36 81.15
m ∈ {1, 2, 3} 68.50 80.17 78.35

Table 4: Contribution of each sub-module.

sub-modules. There is no obvious trend showing that m = 1
sub-module or m = 2 sub-module is better. This result in-
dicates that patterns with different size make different con-
tributions to the downstream task and a better graph embed-
ding can be aggregated by combining them. An interesting
phenomenon is that best performances were achieved using a
single sub-module on ENZYMES. A reasonable explanation
is that the critical structures in ENZYMES are amino acid
sequence, which can be represented as a chain. Thus, using
m = 1 module is sufficient to extract their critical structures.

4.4 Visualization
In this section, we provide a visualization of what we learned
on MUTAG. This dataset consists of 188 graphs generated
from aromatic or heterocyclic hydrocarbons, each node rep-
resents an atom (e.g. C, N or O) and each edge represents a
chemical bond (e.g. single, double or triple). For simplicity,
hydrogens are ignored. We randomly selected a sample, and
visualized the top-3 important substructures for its classifica-
tion (Figure 4(a)). Then, we located each substructure in the
graph (Figure 4(b)) to analyze their contribution. Substruc-
ture one indicates this aromatic hydrocarbon has a radical
group that contains a nitrogen, and substructure three indi-
cates this radical group probably is a nitro group. In addition,
Substructure two tells us this aromatic hydrocarbon contains
at least two carbon atomic rings. all structures provide some

1

NO

O

C

CC

C

C

CN

C

C

2

3

N
O

O

C

C

C

C

C

C

C

C

C
C

(a) (b)

Figure 4: Visualization of critical structures on MUTAG. (a) top-3
important structures. (b) locations of the structures in the graph.

clues for us to speculate the properties of this aromatic hydro-
carbon.

5 Conclusion
In this paper, we introduced the Neighbor Combinatorial
ATtention (NCAT) module for GCNs, which can find criti-
cal structures to form graph embedding for structure-based
graph. We introduced the implementation of the m = 1
and m = 2 sub-modules in detail and provided a dynamic
programming algorithm for general cases. NCAT achieved
state-of-the-art performance on several graph classification
datasets, which demonstrated its capability to form better
graph embeddings. Additional experiments about hand-
written digits classification are conducted to show that NCAT
can find the spatial structure of the generated structure-based
graph of images. We also provide ablation study and visual-
ization to demonstrate the interpretability of our module.

Acknowledgements
This work was supported partially by NSFC (U1911401,
U1811461), Guangdong Province Science and Technology
Innovation Leading Talents (2016TX03X157), and Research
Projects of Zhejiang Lab (No. 2019KD0AB03).

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3304



References
[Atwood and Towsley, 2016] James Atwood and Don

Towsley. Diffusion-convolutional neural networks. In
Advances in Neural Information Processing Systems,
pages 1993–2001, 2016.

[Borgwardt and Kriegel, 2005] Karsten M Borgwardt and
Hans-Peter Kriegel. Shortest-path kernels on graphs.
In Fifth IEEE international conference on data mining
(ICDM’05), pages 8–pp, 2005.

[Bruna et al., 2013] Joan Bruna, Wojciech Zaremba, Arthur
Szlam, and Yann LeCun. Spectral networks and lo-
cally connected networks on graphs. arXiv preprint
arXiv:1312.6203, 2013.

[Defferrard et al., 2016] Michaël Defferrard, Xavier Bres-
son, and Pierre Vandergheynst. Convolutional neural net-
works on graphs with fast localized spectral filtering. In
Advances in neural information processing systems, pages
3844–3852, 2016.

[Kingma and Ba, 2015] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. Proceedings
of International Conference on Learning Representations,
2015.

[Kipf and Welling, 2017] T.N. Kipf and M. Welling. Semi-
supervised classification with graph convolutional net-
works. In Proceedings of International Conference on
Learning Representations, 2017.

[Kriege et al., 2016] Nils M Kriege, Pierre-Louis Giscard,
and Richard Wilson. On valid optimal assignment ker-
nels and applications to graph classification. In Advances
in Neural Information Processing Systems, pages 1623–
1631, 2016.

[LeCun et al., 2015] Yann LeCun, Yoshua Bengio, and Ge-
offrey Hinton. Deep learning. nature, 521(7553):436,
2015.

[Mikolov et al., 2013] Tomas Mikolov, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. Efficient estimation of word repre-
sentations in vector space. In Proceedings of International
Conference on Learning Representations, 2013.

[Niepert et al., 2016] Mathias Niepert, Mohamed Ahmed,
and Konstantin Kutzkov. Learning convolutional neural
networks for graphs. In International conference on ma-
chine learning, pages 2014–2023, 2016.

[Shervashidze et al., 2009] Nino Shervashidze, SVN Vish-
wanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borg-
wardt. Efficient graphlet kernels for large graph compar-
ison. In Artificial Intelligence and Statistics, pages 488–
495, 2009.

[Shervashidze et al., 2011] Nino Shervashidze, Pascal
Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and
Karsten M Borgwardt. Weisfeiler-lehman graph kernels.
Journal of Machine Learning Research, 12(Sep):2539–
2561, 2011.

[Shuman et al., 2013] David Shuman, Sunil Narang, Pascal
Frossard, Antonio Ortega, and Pierre Vandergheynst. The

emerging field of signal processing on graphs: Extend-
ing high-dimensional data analysis to networks and other
irregular domains. IEEE Signal Processing Magazine,
3(30):83–98, 2013.

[Tzeng and Wu, 2019] Ruo-Chun Tzeng and Shan-Hung
Wu. Distributed, egocentric representations of graphs for
detecting critical structures. In International Conference
on Machine Learning, pages 6354–6362, 2019.

[Ulyanov et al., 2016] Dmitry Ulyanov, Andrea Vedaldi, and
Victor Lempitsky. Instance normalization: The miss-
ing ingredient for fast stylization. arXiv preprint
arXiv:1607.08022, 2016.

[Verma and Zhang, 2018] Saurabh Verma and Zhi-Li Zhang.
Graph capsule convolutional neural networks. arXiv
preprint arXiv:1805.08090, 2018.

[Vishwanathan et al., 2010] S Vichy N Vishwanathan,
Nicol N Schraudolph, Risi Kondor, and Karsten M
Borgwardt. Graph kernels. Journal of Machine Learning
Research, 11(Apr):1201–1242, 2010.

[Wu et al., 2019] Zonghan Wu, Shirui Pan, Fengwen Chen,
Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. arXiv
preprint arXiv:1901.00596, 2019.

[Xu et al., 2018] Keyulu Xu, Chengtao Li, Yonglong Tian,
Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping
knowledge networks. In Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
pages 5449–5458, 2018.

[Yanardag and Vishwanathan, 2015] Pinar Yanardag and
SVN Vishwanathan. Deep graph kernels. In Proceedings
of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
1365–1374, 2015.

[Ying et al., 2018] Zhitao Ying, Jiaxuan You, Christopher
Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differen-
tiable pooling. In Advances in Neural Information Pro-
cessing Systems, pages 4800–4810, 2018.

[Zhang et al., 2018] Muhan Zhang, Zhicheng Cui, Marion
Neumann, and Yixin Chen. An end-to-end deep learn-
ing architecture for graph classification. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[Zhou et al., 2018] Jie Zhou, Ganqu Cui, Zhengyan Zhang,
Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph neu-
ral networks: A review of methods and applications. arXiv
preprint arXiv:1812.08434, 2018.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3305


	Introduction
	Related Work
	Neighbor Combinatorial Attention
	Preliminary
	Pipeline
	Neighbor Combinatorial Attention Module
	Process Edge Features
	Connection to CNN

	Experiment
	Graph Classification
	Hand-written Digits Classification
	Ablation Study
	Visualization

	Conclusion

