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Abstract

We show that the task of collecting stochastic,
spatially distributed resources (Stochastic Resource
Collection, SRC) may be considered as a Semi-
Markov-Decision-Process. Our Deep-Q-Network
(DQN) based approach uses a novel scalable and
transferable artificial neural network architecture.
The concrete use-case of the SRC is an officer (sin-
gle agent) trying to maximize the amount of fined
parking violations in his area. We evaluate our ap-
proach on a environment based on the real-world
parking data of the city of Melbourne. In small,
hence simple, settings with short distances between
resources and few simultaneous violations, our ap-
proach is comparable to previous work. When the
size of the network grows (and hence the amount
of resources) our solution significantly outperforms
preceding methods. Moreover, applying a trained
agent to a non-overlapping new area outperforms
existing approaches.

1 Introduction

A parking spot is often a rare resource and therefore, smart
cities try to allocate them fair among all drivers. On that
account, cities usually establish parking restrictions such as
maximum parking duration. Unfortunately, people tend to
violate restrictions. Hence, parking officers issue tickets for
overstaying cars. In smart cities the assignment of parking
space might be facilitated by the use of sensors which allow
real-time monitoring of the current state of particular spots.
The state of a parking spot can be free, occupied, in viola-
tion or already fined. Based on this information, it is not only
possible to recognize violations but also to predict violations
in the near future. Due to legal constraints, and special rules
for residents, automated fining is not allowed. Thus, we aim
to find a movement policy for an officer (single agent) which
maximizes the number of issued tickets within working hours
(finite horizon). The task is non-deterministic because over-
staying cars might drive away before the officer arrives to
record them. In previous work, this task is called Travelling
Officer Problem (TOP) [Shao et al., 2017].

Similar efforts exist in the transportation domain which can
be outlined in the more general framework of Stochastic Re-
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source Collection (SRC). The tasks vary with respect to ob-
servability, the dynamics of resources, and the stochasticity
of rewards and/or travel times. Examples include the Taxi
Dispatching Problem (TDP), and finding an available park-
ing spot (Resource Routing). In the TDP, taxicabs are look-
ing for passengers (resources) and may get information about
current trip requests from a central entity. However, other
cabs might serve the passenger first, or the passenger changes
his/her mind. The major difference to the TOP is that after
serving a passenger (or collecting a resource), the cab’s posi-
tion changes to the trip’s destination. The Resource Routing
task ends when a single resource is claimed. Though our pro-
posed solution is generally applicable to any SRC, we focus
on the TOP task in this paper. In previous work, the optimal
policy for the TOP was approximated with solvers for a time-
varying Travelling Salesman Problem (TSP). Here, we argue
that SRC should not be considered as a TSP problem. Fur-
thermore, the generalization of the TSP called Vehicle Rout-
ing Problem (VRP) has no existing suitable variation fitting to
the examined problem setting of SRC tasks.The optimal SRC
solution is non-deterministic because the transitions of the re-
sources are typically unknown. Thus, the task should be mod-
eled as a Markov Decision Process (MDP). Since the state
space increases exponentially with the number of resources
(or parking bays), finding an optimal policy using table-based
solvers is infeasible. Therefore, we base our solution on Re-
inforcement Learning with function approximations. To han-
dle non-uniform action duration (travel times), we propose to
formulate SRC tasks as discrete-time Semi-Markov Decision
Processes (SMDP). A challenge when learning an efficient
policy for SRCs is to select a temporal abstraction for the
action space. A instinctive choice would be to let the agent
only decide among the next road segment at each crossing.
However, based on this abstraction agents start with random-
walks while training, which slowly explores the whole graph.
Hence, we use higher temporal abstractions which directly
consider traveling to any potentially useful location as action
space. We present a novel neural network architecture devel-
oped for this abstraction which outperforms standard multi-
layer perceptrons (MLP) by a large margin. Furthermore,
our network architecture has a fixed size of parameters for
any amount of resources. Hence, model sizes scale well with
the amount of resources and trained agents are transferable
to previously unseen regions. In our experimental setup, we
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compare our trained agent to the baselines proposed in [Shao
et al., 2017], and show that agents perform well when trans-
ferred to a new environment using real-world parking data
from the city of Melbourne. Hence, our main contributions
are (1) the first consideration of SRC as a SMDP at graph
level and (2) solving it on a higher level temporal abstraction.
(3) A novel, transferable neural network architecture adapted
to this problem is introduced. (4) We compare our approach
to existing baselines on a real-world setting.

2 Related Work

The general task of collecting resources has a broad range of
real-world applications. [Shao et al., 2017] studied the Trav-
elling Officer Problem (TOP) where an officer moves within
a street graph while maximizing the number of fined park-
ing offenders. Since future development is uncertain, they
propose a Greedy and an Ant Colony Optimization (ACO)
approach. In their follow up work, both methods are ap-
proximated by imitation learning with an artificial neural net-
work [Shao er al., 2019]. Thus, the quality of the policies
learned in [Shao er al., 2019] approximate the solutions in
[Shao et al., 2017] but do not optimize the expected reward
directly. If the future development of resources is determinis-
tic, resource collection is a Vehicle Routing Problem (VRP)
with time windows. A survey of VRP with time windows
is given in [Solomon and Desrosiers, 1988]. In VRPs, the
agent has to visit pickup and drop-off locations for cargo
which are given in advance. In general, it is not acceptable for
scheduled locations to be missed, therefore, solutions have to
consider whether a route to all locations in the queue is still
possible before choosing their next goal. One common sub-
task of VRP is the Travelling Salesman Problem (TSP). Re-
cently, advances in solving TSPs have been achieved by us-
ing function approximations and reinforcement or supervised
learning techniques [Kool et al., 2018; Khalil et al., 2017;
Vinyals et al., 2015]. In variations of the VRP with time win-
dows, the agent does not know all customers at the beginning
of the day, and over time more and more customers become
known [Godfrey and Powell, 2002]. Although this task is
dynamic as well, it differs from our setting in that the agent
never knows the exact time windows. In VRP with stochastic
customers [Gendreau et al., 19961, it is unknown whether a
customer is present but its demand is certain. In contrast, in
our setting the availability of violations for the current point
in time is known, but their state upon arrival is unrecognized.
For Resource Routing (RR) [Schmoll and Schubert, 2018],
an agent is moved to a single available resource in a highly
dynamic environment. The classic application of RR is find-
ing free parking spots or charging stations. This task can
be defined as an MDP and solutions include dynamic pro-
gramming [Schmoll and Schubert, 2018] and approximating
the solution using replanning [Schmoll et al., 2019] methods.
The Taxi Dispatching Problem (TDP) is closest to our set-up.
TDPs consider the dynamic nature of taxi customer appear-
ing and disappearing if not served in time. Typically, TDPs
aim at maximizing the number of served customers or min-
imizing the idle time of the taxi. Another property of TDPs
is that serving a customer not only requires a certain time
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but also moves the agent to the drop off location. Within
the literature, TDP is usually defined as multi-agent setting
with either no observation [Kim et al., 2019], or the com-
mon goal of all taxicabs is to distribute the fleet on a spa-
tial grid or zone [Alshamsi et al., 2009; Xu et al., 2018;
Lin et al., 2018; Li et al., 2019; Alabbasi et al., 2019;
Tang et al., 2019]. The closest TDP approach to our work is
described in [Tang et al., 2019]. Albeit, this solution defines
the TDP as a SMDP, it still work on a hexagon grid system
and needs SMDPs for the options framework (meta-level ac-
tions). In comparison, we model the SMDP such that rewards
appear at discrete time steps rather than assuming uniformly
distributed rewards during the action execution. Furthermore,
we formulate the optimal solution as a SMDP operating di-
rectly on the street network.

3 Background

A Markov Decision Process (MDP) (S, A, R, T,~) consists
of a set of states S, a set of actions A, a reward function R, a
transition function 7., defining the probability that s’ is the
follow state of s after executing action a. The discount factor
v is a value between zero and one defining the optimization
horizon. Given an MDP, a deterministic policy 7 provides
for each state s € S an applicable action a € A(s) . A
discrete-time, finite-horizon MDP has a pre-defined amount
of equal-sized discrete time steps ¢t € {0, 1,...,T} available
before an episode ends. It is important to distinguish between
the MDP time step ¢ and the time of the system ¢ that may or
may not be part of state s € S. An agent being in state s € S
at time ¢ tries to find the action a € A that maximizes the fu-
ture expected, discounted rewards, also known as state-value
function V. The Bellman equation [Bellman et al., 1957] de-
fines a system of equations to compute the optimal values V*:

V(s = max 30 [T, (Rlsua,se) +9V )] (D)

s5t41€S

Note that in this class of MDPs, the optimal policy 7* may
not be stationary, as the horizon to optimize decreases with
increasing t. In other words, the optimal action a for state
s might be different for varying ¢. Often, it is beneficial to
consider the state-value for a given action, i.e. state-action-
value Q(st, a). The Bellman equation for state-action values
directly follows from (1) by omitting the maximum operator.

In many real-world applications, it is intractable or error-
prone to define a transition function 7. Consequently, there
are methods that learn the policy 7, values (V / Q) or both
from a simulation or the real-world without knowledge about
the underlying model. These approaches fall into the class of
reinforcement learning. Without loss of generality, we base
our solution in this paper on Watkins’ Q-Learning [Watkins,
1989], which iteratively runs trials in the simulation and up-
dates the respective ()-value on every state observed with a
learning rate .. See the formula below:

Q(Sta a‘) — Q(St7 Cl)"‘

a<rt+1+7 max Q(st%a')—cz(st,a)) ®

a’€A(st+1)
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Tabular Q-learning — i.e. every state-action-time triple (non-
stationary policy) (or every Q(s¢,a)) has a dedicated train-
able parameter — converges eventually to the optimal Q-
values. However, in our application, the state space is too big
for tabular representations. Furthermore, if every state has its
trainable parameter, abstraction of observations is impossible.
Consequently, the use of Function Approximations (FA) is of-
ten essential. Unfortunately, FA also leads to weaker conver-
gence guarantees (e.g. Braid’s counterexample [Baird, 1995]
and the deadly triad [Sutton and Barto, 2018]). The authors
of Deep-Q-Network (DQN) [Mnih er al., 2013] introduced
two techniques to soften the effects of FA mentioned ear-
lier. First, they proposed a replay buffer where experiences
are stored such that an artificial neural network can train ran-
domly sampled mini-batches from the buffer. Among other
advantages, using an experience buffer improves sample ef-
ficiency. Second, the DQN algorithm freezes the parame-
ters for the target Q-function for a specific amount of train-
ing steps to reduce the moving target issue. Subsequently,
several improvements, e.g. DoubleDQN [Van Hasselt et al.,
2016] and prioritized experience buffers [Schaul et al., 2015],
have been proposed to further improve the performance. Re-
cently, there have been advances in policy gradient and actor-
critic methods, e.g. [Mnih et al., 2016; Lillicrap et al., 2015;
Schulman et al., 2017]. Although, our architecture could be
applied to policy gradient methods as well, for the sake of
simplicity, we decided to focus on DQN approaches, as we
have a discrete action set, and DQN is often more sample ef-
ficient.

4 Stochastic Resource Collection

In Stochastic Resource Collection (SRC), a set of resources
P, located on an edge e € F of street graph G = (N, E, C),
where N is the set of nodes and C are the travel costs, can be
collected by an agent. Over time, a resource p € P changes
its property w of being collectible or not. The transitions of w
are uncertain, and a precise model is not known. Whenever
the agent traverses an edge e € FE, it gathers all collectible
resources located at e. The goal of SRC is to maximize the
collected resources in a given period by guiding the agent
through the graph G.

The SRC defined above can be transferred into an MDP
as follows. A state s € S is a concatenation of the agent’s
location and all resources states’, including all information
necessary for being Markov. The latter may depend on the
actual real-world application. We define the action space as
A = E U {a.}, where a. is a “continue” action, applicable
to all states where the agent’s location is an edge, not a node.
Further, we say:

n.outgoing if s onnode n
A(s) :{ Loytaems s 3)

The real-world duration A of a time-step d is the great-
est common divisor of all edge travel times. Differently ex-
pressed, taking any action adds d to the environmental time &.
The reward function R is incremented by 1 for every collected
resource and otherwise 0. Due to the unknown dynamics of
the resources’ states, the transition function 7 is unknown.
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S Temporal Abstraction

In practice, one would not want to update parameters for
states between two nodes, as the only valid action is the con-
tinue action a.. Hence, the lowest-level temporal abstraction
being practical is actions completely traversing edges. As
those meta-level actions may vary in the number of required
time steps, one needs to give special attention to the dis-
count factor . This setting is called Semi-Markov-Decision-
Process (SMDP). The SMDP consists of the same tuple as
MDPs (S, A, R, T,v). The only difference is the transition
function 7. Instead of sampling the following state, given
the current state and action, T additionally samples the time
steps exhausted, i.e. 7;5;7 := P(s',7 | s,a). Let’s assume
that executing action a took 7 time-steps. Then, the update
rule for Q-learning is [Barto and Mahadevan, 2003]

T—1

Q(st,a) « Q(s¢,a) + « (Z 'Yirt+i+1

=0

Ty max Q(stﬂ,a’)—Q(st,a)). @
a’'€A(St4r)

Notwithstanding, there are other considerable abstractions,
e.g. directly routing to a specific target. Although the pol-
icy can eventually learn to follow optimal paths, the learn-
ing process itself accelerates notably by outsourcing the well-
understood shortest-path task to external solvers. The tempo-
ral abstraction used in our approach is outlined in Section 6.

5.1 Semi-Markov DoubleDQN

In our experiments, we use the DoubleDQN with prioritized
experience replay buffer [Van Hasselt er al., 2016; Schaul et
al., 2015]. Due to the variable action duration in our SMDP,
the DQN algorithm needs slight adaption. Note that since our
SMDP has discrete time events, there is no need to integrate
the rewards as done in [Bradtke and Duff, 1995; Crites and
Barto, 1998] even though the time step duration may be small.
In particular, we adjust the update rule of the DoubleDQN to

Q(s¢,a,0) < Q(st,a,0)+
« (C + 7TQ(St+T,a/’é) - Q(St’a’ 9)> »

where 6 are the FA parameters, 6 are the FA parameters for
the frozen target network, a’ is the optimal action w.r.t. 6, i.e.
a' = argmax, e a(s,,,) Q(st1+,a”,0), and ¢ is the experi-
enced time discounted reward provided by the environment,

. —1 .
e ¢ =300 V' retivr.

6 Environment

We examine our solution approach to SRC on the special case
of the Travelling Officer Problem (TOP), as first defined in
[Shao et al., 2017]. In this problem setting, an officer tries to
maximize the parking violation fined in a given area of Mel-
bourne. Due to parking sensors, the officer knows in real-time
whether a car is in violation or not. Note that this is a real
scenario which is actively applied in Melbourne. We use the
real-world and freely available dataset of on-street parking
spots', containing the arrival and departure times as well as

'https://data.melbourne.vic.gov.au/browse?tags=parking
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Figure 1: Illustration of the environment areas (blue: Docklands
(613 resources), red: Queensberry (662 resources), green: Down-
town (1954 resources)). Downtown is a collection of many tiny ar-
eas. Small colored dots are parking spots. Color denotes the state.

the respective restrictions of parking events of the Melbourne
city in the year of 2017. Our environment uses this dataset
as a replay to simulate the real-world as close as possible. To
this end, we do an inner join of the table providing the park-
ing events with another table containing the locations of each
parking sensor. We extract a walking graph for the area from
OpenStreetMap?. The preprocessing step thereafter assigns
all parking spots to the closest edge in the graph. If an officer
traverses an edge containing parking spots in state violation,
he/she gets rewarded with 41 at the time the officer passes the
resource. An officer’s working day is from 7 am. to 7 p.m.
and always starts at the same randomly chosen node. An il-
lustration of the environment and the used areas are sketched
in Figure 1.

The design of the actions’ meta-level is an important deci-
sion for the environment. The most flexible level would be
to let the agent decide the next edge. However, we decided
against it and rather propose a more sample efficient action
abstraction by outsourcing deterministic routing decisions to
an external solver (Dijkstra). Thereby, the focus lies on de-
ciding which of the edges containing resources, the officer
should visit next. Hence, the action space used in our experi-
ments is A(s) := {e | e € E A e has resources}, Vs € S.

For practical reasons, the greatest common divisor d of all
edge travel times is not directly computed. Instead, we pro-
pose to use a scaled discount factor 4 defined as ¥ = /. It
is not necessary to compute neither d nor the actual discount
factor . The benefit of using # is, that the real valued times
t can be used instead of ¢. Note that although the time is real
valued, our SMDP resides on a discrete time SMDP. The dis-
crete time ¢ is merely scaled to 7. Furthermore, defining 4 is
more intuitive.

For the sake of simplicity, we assume the parking spot is
passed at the end of the edge and tagging the car does not
consume any time. A modification to a more realistic set-
ting, including more complex reward functions, would not
need any alteration to the main concepts of our solution ap-
proach. More precisely, in the simulation, ¢ is defined as
¢ = Z(p,At)e]: 42t Here, F is the set of all parking spots
fined p € P plus the fining time point At relative to the start
time of the currently executed action. Note that r is omitted
as its value is +1.

“https://www.openstreetmap.org/
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7 Function Approximation

The potential space of possible function approximations is
vast.We present a sample efficient, transferable neural net-
work architecture. This function approximation has to return
a Q-value for each action, i.e. for each edge containing at
least one resource. In the following, we present the archi-
tecture of our artificial neural network, whose parameter size
does not increase with the amount of resources. Furthermore,
parameters can be transferred to another, spatially not over-
lapping area. First, observation input is defined, followed
by subsequentially explaining the next layers until the output
layer is reached. An overview of the function approximation
is sketched in Figure 2.

Observation. The observation, or the input of the function
approximation, is a matrix X where each row X, represents
a resource from the environment. We take advantage of the
fact that the routing part of the state transition is determinis-
tic. The main stochasticity of the state transition are arriving
and departing vehicles. Note that this approach is related to
afterstates [Sutton and Barto, 2018]. We look up the pre-
computed distances to the resources and estimate the time of
arrival. Then, we examine whether it is free, occupied, in vi-
olation or fined for the given time — assuming no arrival and
departures. The first four columns in X; represent a one-hot
encoding of the aforementioned state. The next column is the
walking time to the resource, such that the FA can assess the
degree of stochasticity. Further, the current time of the day &
and the time of arrival are included. Finally, we add a real-
valued number between —1 and 2, indicating how long a car
is still allowed to occupy the resource, and how long it is in vi-
olation, respectively. Having a score higher than zero shows
a violation. Some information provided is redundant, but it
appears that all information is useful for the agent. Not ev-
ery resource behaves equally. For instance, there are parking
spots for disabled, loading zones, etc. It is possible append-
ing a resource-dependent embedding such that the agent can
learn the resources’ properties. However, no significant im-
provement could be found, while loosing the transferability
to other areas.

Resource representation. The first step of our function ap-
proximation is to compute an h dimensional representation
for each resource by using the observation X. Therefore,
we use a standard MLP with one hidden layer and h out-
put neurons f”. The same parameter set fp is applied to
all resources, i.e. P; := f"(X;,0p) with ReLU as activation
function.

Convolution. So far, the function approximation has one
representation for each resource. However, our actions are
all possible edges containing at least one resource. There-
fore, the action space is potentially smaller than the resource
dimension. One naive idea is to sum up the representations
of all resources located at the same edge, and subsequently,
predict the Q-value for each action. We decided against it,
as one would ignore close by resources located at neighbour-
ing edges. For this reason, we propose an approach similar to
graph convolutions. First of, we compute a distance matrix D
where each element d;; represents the shortest-path distance
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Figure 2: Overview of the function approximation.

from resource p; € P to the edge belonging to the i'" action.
To transfer the distance matrix to a similarity matrix A, we
use an MLP f! (sigmoid activation) with one input and out-
put dimension, such that a;; := f*(d;;,6,) for all entries a;;
in A. This gives the agent the chance to learn which distances
are important. Other possibilities, e.g. to exponentiate the
negative (scaled) distance work as well. However, the results
of the MLP performed better. Next, Ais computed by nor-
malizing A such that each row sums up to one. Finally, we
can apply the convolution to compute an encoding for each

action F by the matrix multiplication E/ := A - P.

Action prediction. Finally, we apply another MLP with
one output dimension f' (ReLU activation after the hidden
layer) to every row of E in order to compute the ()-value of
every action:

Q(S7ai) = f1<Ei79Q>7 (6)

where ) is the parameter set of the MLP and state s produces
observation X.

Transferability. To transfer this function approximation to
another area, only the graph dependent distance matrix D has
to be adapted. In our experiments, we empirically show that
transferring to another graph and resource set performs well.

8 Reference Approaches

We compare our solution to the current state-of-the-art TOPs
methods [Shao et al., 2017].

Greedy. The Greedy approach assumes an exponentially
distributed dwelling time of cars being in violation. This ap-
proach chooses the next parking spot such that the probability
of reaching the next car before its departure is maximized. We
choose the next resource to visit with respect to

9. +d
arg max exrp (—M) ) 7
PEP, K

P, C P is the set of all resources currently in violation, ¥,
is the time window since the resource p became violated, V'
is the assumed walking speed and « is a parameter affecting
the average dwelling time [Shao et al., 2017]. Since the ex-
ponential function is monotone, it can be omitted. Although
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Figure 3: Example where the agent (big blue dot) learned to wait for
resources becoming collectible (red) soon. In this simulation, the
agent waited multiple time steps (left) until the resources became
collectible (middle) and then it collected all resources (right). Light
blue dots denote nodes of the graph.

this policy is very short-sighted, the computational effort is
low and the resulting policy is still valuable.

ACO. Our second reference approach uses Ant-Colony-
Optimization (ACO) techniques [Shao et al., 2017] to approx-
imate a time-varying Travelling Salesman Problem (TSP).
In doing so, the approach assumes the same exponential
distribution as the Greedy (Formula 7). After every state
change, multiple virtual “ants” successively visit resources of
P,. The ants choose the next resource according to present
pheromones and the probability that the resource will be in
violation at arrival. Since at some point in time, the probabil-
ities that resources are still in violation becomes negligible,
the current run can be abandoned before the ant visited all
resources.

Note that both approaches ignore some uncertainties and
hence, a new solution needs to be re-computed after every
non-assumed state change. Therefore both methods can be
considered as replanning approaches [Little et al., 2007].
Defining the SRC task as an MDP has a vast advantage com-
pared to the problem definition of [Shao er al., 2017]. MDPs
are treating the stochastic future by design, i.e. future appear-
ances of collectible resources are estimated by the policy. The
agent can learn to “wait” for close resources becoming col-
lectible. An excerpt of a simulation where the agent waited
for resources is illustrated in Figure 3.

9 Experiments

To prevent overfitting, we split the parking event dataset into
three sets, training, validation, and test. The segmentation is
based on the following principle. If the remainder of the day’s
number of the year divided by 13, is zero, the day is added to
the test set (28 days). If the rest is one, the day is added to the
validation set (27 days). All other days are in the training set.
We trained our approach on various GTX/RTX GPU comput-
ing machines. The presented results are the best with respect
to the validation results after tuning the hyper-parameter (e.g.
learning/exploration rate, batch size, hidden neurons). As the
ACO algorithm plans on execution time, we assigned a maxi-
mum computation time available (1 and 0.1 seconds) for each
decision (single core Intel i7-3770 3.40GHz), as we do not
think a user would accept a longer waiting time than 1 sec-
ond plus networking delay. We assumed equal dwelling time
k for all parking spots and we tried different abandon times
and chose the parameters according to the validation results.

Results. Table 1 depicts the experimental results for the ar-
eas Docklands, Queensberry and Downtown. The values cor-
respond to the average amount of tickets issued per day.
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Figure 4: Validation performance during training in Downtown.

Reference approaches. One can see that in all settings the
Greedy approach is outperformed by the ACO. The ACO al-
gorithm is slightly stronger than our approaches (SDDQN)
in the Queensberry and Docklands setting. This can be ex-
plained by the fact that the distances between parking spots
are not very large, and hence the stochastic component is not
as important as in larger areas, where our solution outper-
forms both Greedy and ACO significantly (see Figure 4).

Function approximation. To illustrate the benefit of the
proposed function approximation, we optimized a standard
MLP with the same (flattened) observation (see SDDQN
(MLP) in Table 1, Queensberry). It turns out that the MLP
performs considerably worse although it is theoretically more
powerful since it could learn the correlations between all re-
sources. Nevertheless, our FA shares the weights along all
resources. Hence, it is easy to infer experience from one re-
source to all others. The MLP needs sufficient experiences for
each resource. Moreover, the amount of samples needed to
learn correlations between resources is high. Thus, the MLP
had no chance to significantly improve within the provided
period (600, 000 steps in the environment). Even if the MLP
would eventually learn, our FA is much more sample effi-
cient.

Horizon. Even though, our objective is to optimize the total
amount of parking tickets issued during the officer’s working
hours of the officer (hence to optimize v = 1), it turns out
to be difficult for the agent to learn expectations of events for
the far future due to high variance. In particular, the parking
states at the beginning of the working day are not very cor-
related with the parking situation at the end of the day. Con-
sequently, the task is made numerically difficult with v = 1.
At the same time, it is most important that resources in the
near future are not omitted because time periods with lim-
ited tickets usually cannot be compensated at a later point in
time. This observation is confirmed in our experiments (Table
1). The basic DoubleDQN (DDQN ~ = 1) performs signif-
icantly worse than our SMDP-based version on all ~y values.
Furthermore, one can observe that when selecting too small
discount factors, e.g. half-life period of 600 seconds (10 min-
utes), and too large discount factors, e.g. half-life period of
3600/4800 seconds (1/1.5 hours) the overall performance de-
creases. Nevertheless, this hyper-parameter still did not react
very sensitively.
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Area Algorithm Val Test
Queensberry  Greedy 161.7 167.3
ACO (0.1 seconds) 186.2 190.1
ACO (1 second) 1909 196.2
SDDQN (MLP) 83.6 81.2
DDQN (v =1) 173.0 167.6
SDDQN (5 = (L))  187.6 184.9
SDDQN (5 = (L)=w) 189.7 187.0
SDDQN (5 = (1)zim) 188.6 186.8
SDDQN (4 = (1)sw) 1856 181.5
SDDOQN (y = (%)ﬁ) 185.0 1845
Docklands Greedy 2235 2224
ACO (0.1 seconds) 255.6 2562
ACO (1 second) 270.1 268.9
SDDQN 258.2  261.0
Downtown Greedy 411.1 407.8
ACO (0.1 seconds) 3974 4125
ACO (1 second) 484.1 4974
SDDQN (Scratch) 6459 643.7
SDDQN (transfer) 660.3 660.1
SDDQN (transfer train) 671.4 676.9
Table 1: Summary of the experimental results.
Transfer. We empirically show transferability by applying

the weights trained for the Docklands environment (Dock-
lands SDDQN, Table 1) to the Downtown setting. Without
any training (SSDQN (transfer)) at the Downtown environ-
ment, our approach already outperforms the baseline algo-
rithms (c.f. Table 1). After training, the agent is able to fur-
ther improve (SSDQN (transfer train)). See also Figure 4.

10 Discussion

We formulate the Stochastic Resource Collection (SRC) task
as a discrete time Semi-Markov Decision Process (SMDP)
and propose to solve it with an adapted DQN based reinforce-
ment learning approach on a higher level action abstraction.
Furthermore, we present a function approximation that shares
parameters along all resources and actions (destinations) en-
abling a transfer to previously unseen areas without further
training. In future work, we plan to adopt our approach to
multi-agent settings and adapt it to the TDP setting. Fur-
thermore, due to the SMDP formulation, it is suggestive to
make use of the options framework. Another research direc-
tion could be to replace the graph convolution-like part of the
function approximation with an attention mechanism. One
bottleneck of our function approximation is the distance ma-
trix D. To make it applicable to very large graphs, pruning
far off resources with a sparse matrix representation can be
considered.
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