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Abstract

Usual networks lossily (if not incorrectly) repre-
sent higher-order relations, which calls for complex
structures such as hypergraphs to be used instead.
Akin to the link prediction problem in graphs, we
deal with hyperlink (higher-order link) prediction
in hypergraphs. With a handful of solutions in the
literature that seem to have merely scratched the
surface, we provide improvements for the same.
Motivated by observations in recent literature, we
first formulate a “clique-closure” hypothesis (viz.,
hyperlinks are more likely to be formed from near-
cliques rather than from non-cliques), test it on
real hypergraphs, and then exploit it for our very
problem. In the process, we generalize hyperlink
prediction on two fronts: (1) from small-sized to
arbitrary-sized hyperlinks, and (2) from a couple
of domains to a handful. We perform experiments
(both the hypothesis-test as well as the hyperlink
prediction) on multiple real datasets, report results,
and provide both quantitative and qualitative ar-
guments favouring better performances w.r.t. the
state-of-the-art.

1 Introduction
Relations in nature, more often than not, exist between a set
of entities rather than a pair thereof. For a lossless repre-
sentation, complex structures such as hypergraphs [Berge,
1984] are used, wherein hyperlinks or hyperedges are used to
represent higher-order relations. Hyperlink prediction refers
to predicting future/missing hyperlinks in a given hyper-
graph [Xu et al., 2013; Zhang et al., 2018; Benson et al.,
2018]. We draw inspirations from recent literature and the ex-
isting state-of-the-art, i.e., Coordinated Matrix Minimization
(CMM) [Zhang et al., 2018], to solve the problem of predict-
ing arbitrary-sized hyperlinks in networks. We first formulate
a Clique-Closure Hypothesis (CCH), which can be summa-
rized as follows: Hyperlinks in a network are more likely
to be formed from closures of cliques (and near-cliques)
rather than those of non-cliques. In simpler terms, we hy-
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Figure 1: A toy example: For i = 1, 2, 3, 4, solid hyperlinks formed
exactly at t = ti, are eventually shown as dotted connections. The
clique-closure hypothesis (CCH) we propose says that for a current
hyperlink (solid) it is highly likely that its nodes had been densely
connected via past connections (dotted).

pothesize that for a given hyperlink, prior to its first occur-
rence, its incident nodes should have had more interactions
than a set of arbitrary number of nodes usually does. I.e.,
we expect every hyperlink to have evolved gradually, rather
than having spontaneously “sprung-up”. Consider the exam-
ple shown in Figure 1, where it could be noted how at any
t = ti, smaller hyperlinks from the past (dotted) combine
together to form larger ones (solid) in the present.

We first test CCH on real datasets, and then use it for
hyperlink prediction via a method we term “Clique-Closure
based Coordinated Matrix Minimization” (C3MM). We in-
gest CCH into the objective function of CMM to get C3MM,
and then solve it in a similar fashion. Choosing datasets
from different domains, we note significant improvements
over CMM. Major improvements come from the fact that
C3MM gives a chance to those hyperlinks that could explain
existing relations.

1.1 Our Contributions

1. We formulate and test a clique-closure hypothesis
(CCH) for hypergraph network evolution. As a re-
sult, we provide novel insights into hyperlink evolution.

2. We provide a hyperlink prediction algorithm C3MM
that significantly improves upon CMM.

3. We extend hyperlink prediction for hyperlinks of arbi-
trary size and to multiple domains.
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Symbol Definition
V Set of vertices
F ⊆ 2V Set of hyperlinks / hyperedges
T : F → R Hyperlink timestamp
H = (V, F ) Non-temporal Hypergraph
H = (V, F, T ) Temporal Hypergraph
F<t := {f ∈ F | T (f) < t} Hyperlinks observed before time t
H<t = (V, F<t, T ) Hypergraph observed before time t
H−f = (V, F \ {f}, T ) Hypergraph punctured w.r.t. (or without) f
G = (V,E) Undirected graph with set E of edges over V
Ef = {{u, v} | u, v ∈ f} Edges induced by a hyperedge f.
η(F ) = ∪f∈FEf Edges projected by hyperedges in F.
η(H) = (V, η(F )) Clique-expansion of H1

d(G) = 2·|E|
|V |·(|V |−1) Density of graph G

G|f Subgraph of G w.r.t. nodes f ⊆ V

Table 1: Notations used in the article.

2 Preliminaries and Notation
We define basic notations in Table 1 for easy look-up. Hy-
perlink prediction, just like link prediction, could be formu-
lated as a binary classification problem where positive and
negative classes correspond to hyperlink and non-hyperlink
respectively. For our experiments, we first partition the set of
hyperlinks into two parts, namely observed and unobserved
hyperlinks (Fobs and Funobs). For temporal hypergraphs, the
set of hyperlinks is partitioned chronologically whereas for
non-temporal hypergraphs, it is done randomly.

Next, we pick non-hyperlinks through under-sampling
of the negative class due to extreme class imbalance (i.e.,
O(2|V |) possible non-hyperlinks), and denote the sampled
negative class as F̂unobs. Finally, we state the hyperlink pre-
diction problem as follows: Given a set of observed hyper-
links Fobs, find scores s : Funobs ∪ F̂unobs → [0, 1], mapping
potential hyperlinks to their hyperlink-formation probabili-
ties. Later in this article, we also refer to Funobs as ∆F ,
F̂unobs as ∆F̂ , and Fobs as plainly F .

3 The Clique Closure Hypothesis
Occurrence of a hyperlink marks the collaboration among
multiple entities via a single common event. It is intuitive
that subsets of these entities would have interacted in some
form in the past, rather than the hyperlink getting formed
spontaneously. In formal terms, in a temporal hypergraph
H = (V, F, T ), corresponding to a hyperlink f ∈ F formed
at a given time T (f), we could expect to find some hyperlinks
f ′ ∈ F<T (f) that overlap densely with subsets of nodes inci-
dent on f . Since if that were not true, there is not much expla-
nation — at least not any using the hypergraph topology — as
to why the relation f is formed in the first place. In the pro-
jected graph η(H<T (f)), this translates as densely connected
subgraphs (near-cliques) or sometimes even cliques. In sim-
ple words, CCH states that with high probability, nodes of a
hyperlink were part of dense subgraphs before they formed
hyperlinks.

We formally define CCH in this section, but before do-
ing so, we need to keep certain concepts well-defined, since

1As defined by [Agarwal et al., 2006]

their equivalents do not exist in the literature. We de-
fine hypergraph density of a hypergraph H as d(H) :=
d(η(H)), the density of its clique-expanded graph. Simi-
larly, subgraph density d(f,H) of any set of nodes f ⊆ V
(where f need not be a hyperlink) is defined as d(f,H) :=
d(η(H)|f ). Note that f ∈ F =⇒ d(f,H) = 1.
We define a slight modification of this notion for tempo-
ral and non-temporal hypergraphs, viz., pre-hyperlink den-
sity dpre(f,H) := d(f,H<T (f)) and punctured hyperlink
density dpunc(f,H) := d(f,H−f ) respectively. The pre-
fixes punctured- and pre- here refer to the fact that density
is calculated on the hypergraph that existed without and be-
fore hyperlink f respectively. A higher pre-hyperlink den-
sity for a hyperlink would mean it evolved from near-cliques.
Moreover, a hyperlink f evolving from cliques would have
dpre(f,H) = 1, and those having an underlying clique struc-
ture would have dpunc(f,H) = 1. In other words, dpunc is
used as an alternative for dpre in a non-temporal hypergraph,
where the concept of evolution (i.e. order of hyperedge dis-
covery is irrelevant) does not exist.

Let the clique-fraction cf(H) of hypergraph H be de-
fined as cf(H) := |{f ∈ F : dx(f,H) = 1}| / |F |, the frac-
tion of hyperlinks that formed from cliques, where dx denotes
dpunc and dpre for temporal and non-temporal hypergraphs
respectively. Since cf(H) is expected to be too low for
non-temporal datasets, we also define a constant minimum-
clique-fraction cfmin and fix it to be cfmin = 0.05, which
is a little more than the maximum hypergraph density among
all non-temporal hypergraphs (ref Table 3). Finally, we define
cliqueness of a hyperlink f ∈ F as follows:

χ(f,H) := dx(f,H) ·max(cfmin, cf(H)) (1)

where dx denotes dpunc and dpre for temporal and non-
temporal hypergraphs respectively. We are now ready with
a well-defined measure — cliqueness — to capture the no-
tion of how dense is the region from which a given hyperlink
is formed. Cliqueness captures both clique-fraction, as well
as density, thereby catering to both clique- as well as near-
clique-structure of a given hyperlink.
Hypothesis 1 (CCH: Clique Closure Hypothesis) Given a
hypergraph H = (V, F ) (or (V, F, T )), with significance
α = 0.1, the null and alternate hypotheses for CCH are de-
fined as follows for a hyperlink f ∈ F :

H′0 : χ(f,H) ≤ E[d|H], H′1 : χ(f,H) > E[d|H], (2)

where E[d|H] := 1
|2V | ·

∑
f ′∈2V d(f ′, H), the mean subgraph

density over all subsets of V .
In order to simplify CCH, and to make it more deterministic,
we have the following result in place.
Theorem 1 Mean subgraph density of H over all subsets
of V is equal to its hypergraph-density. In other words,
E[d|H] = d(H).

Hypothesis 2 (CCH restated)

H0 : χ(f,H) ≤ d(H), H1 : χ(f,H) > d(H), (3)

where d(H) and χ(f,H) denote density of hypergraph H
and cliqueness of hyperlink f therein.
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Algorithm 1 An algorithm to test CCH on a temporal hyper-
graph H = (V, F, T ). Each hyperlink f = {v1, . . . , v|f |} ∈
F is evaluated w.r.t. connections η(H<T (f)) in its past based
on how densely {v1, . . . , v|f |} are connected.

Input: Temporal hypergraph, H = (V, F, T )
Output: p-value of H0 for H

1: F>2 ← {f ∈ F : |f | > 2}

2: dH ←
2 ∗ |η(F )|

|V | ∗ (|V | − 1)
3: Nc ← 0
4: D ← {}
5: for f ∈ F>2 do
6: Ef ← {{u, v} | ∀ u, v ∈ f}
7: t← T (f)
8: F<t ← T−1([0, t))
9: E<t ← η(F<t)

10: D[f ]← |Ef ∩ E<t|
|Ef |

11: if (f,Ef ∩ E<t) is a clique then
12: D[f ] == 1
13: else
14: Nc ← Nc + 1
15: end if
16: end for
17: cf ← max(cfmin, Nc/|F>2|)
18: NCCH ← 0
19: for f ∈ F>2 do
20: χf ← D[f ] ∗ cf
21: if χf ≤ dH then
22: NCCH ← NCCH + 1
23: end if
24: end for
25: p← NCCH/|F>2|
26: return p

We test CCH on a given temporal hypergraph H using Algo-
rithm 1 and report results in Table 3.

Applying CCH to a non-temporal hypergraph would be fu-
tile, since there’s no concept of evolution per se defined for
it. For instance, reactions (hyperlinks) in a metabolite hyper-
graph [Zhang et al., 2018] cannot be arranged in a chrono-
logical order. However, we attempt to test CCH for such net-
works using a proxy mechanism, in that we set dx = dpunc
in eq. 1 while calculating cliqueness χ(f,H). Making few
changes to lines 7–10 in Algorithm 1, so as to calculate
D[f ] ← dpunc(f,H) for each hyperlink f , we could find
p-values for a non-temporal hypergraph as well. The idea
is to validate whether for a hyperedge, its incident nodes are
well-connected even without its presence. Finally, we present
the results in Table 3 for both temporal and non-temporal
datasets.

In the literature, Benson et al. [Benson et al., 2018], who
restrict themselves to 3- and 4-sized hyperlinks only, refer
(although implicitly) to a similar phenomenon, wherein they
argue that a clique (an open simplex) eventually forms a hy-
perlink (a closed simplex). The results of evaluating CCH on
various datasets are tabulated and discussed in Section 7.1.

As would be discussed later, temporal hypergraphs
strongly satisfy CCH, i.e., it is evident that most hyper-
links were cliques or near-cliques (densely connected) in
the projected graph before they become hyperlinks.

4 C3MM: CCH based Hyperlink Prediction
We exploit this unique characteristic of clique-closure to pre-
dict hyperlinks. The approach is similar to Coordinated
Matrix Minimization (CMM) by Zhang et al. [Zhang et al.,
2018]. We call our method Clique-Closure based CMM
(C3MM). It is formed as follows.

For a given hypergraph H = (V, F ), define S ∈
{0, 1}|V |×|F | to be its incidence matrix. And let ∆F ⊆
P(V ) \ F represent the hyperlinks that are missing from (or
yet to occur in) H . Clearly, F ∩ ∆F = ∅. Let ∆S ∈
{0, 1}|V |×|∆F | be the incidence matrix corresponding to ∆F .
Let H ′ := (V, F ]∆F ) be the completed hypergraph, whose
incidence matrix S′ ∈ {0, 1}|V |×(|F |+|∆F |) could be repre-
sented as follows2:

S′ := [S; ∆S]. (4)

Adjacency matrix for projected graph η(H) is defined as
A := η(S) := SST ∈ R|V |×|V |. Similarly, A′ := S′S′T

refers to the adjacency matrix of η(H ′), for which we have:

A′ = S′S′T = [S; ∆S][S; ∆S]T

= SST + ∆S∆ST

= A+ ∆A,

(5)

where ∆A refers to the links (edges) in adjacency space that
get projected by missing hyperlinks ∆F represented by ∆S.

Let Funiv = {f1, f2, . . . , f|Funiv|} represent the set of uni-
versal hyperlinks (or candidate hyperlinks), forming our test
set. Of Funiv , ∆F corresponds to true hyperlinks (the posi-
tive class); the remaining hyperlinks, Funiv \ ∆F , called as
non-hyperlinks, can be represented by ∆F̂ . and let ∆Ŝ ∈
{0, 1}|V |×|∆F̂ be the corresponding incidence matrix.

Let U = [u1 u2 · · · u|Funiv|] ∈ R|V |×|Funiv| to be
the incidence matrix for the of set of candidate hyperlinks
Funiv . Once the adjacency matrix ∆A of the missing links
is predicted, the next step would be to pick those hyper-
links from Funiv , that best explain A and ∆A. For a
given diagonal matrix ΛU = diag(λ1, λ2, . . . , λ|Funiv|) ∈
{0, 1}|Funiv|×|Funiv|, the product incidence matrix UΛU

would “select” exactly those columns ui from U , for which
λi = 1. The corresponding adjacency matrix is then
UΛU (UΛU )T = UΛ2

UU
T = UΛUU

T . Hence ΛU functions
as hyperlink selector or predictor.

For the purpose of link prediction, any feasible link predic-
tion method can be used. Here, we use a Common Neighbor
(CN) [Newman, 2001; Liben-Nowell and Kleinberg, 2003]
based link prediction technique. We first complete the ad-
jacency matrix using the CN score, and then achieve its
low rank approximation via Symmetric NMF [Kuang et al.,

2Here, [A;B] denote column-wise concatenation of matrices A
and B having the same number of rows.
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2012]. The matrix ACN = A2−diag(A2) captures the com-
mon neighbor information of the projected graph η(H) of H .
To predict missing links ∆A we first approximate A+ ACN

with a low-rank matrix W ∈ R|V |×k, where k < |V |, such
that A+ACN ≈WWT .

min
W∈R|V |×k

+

∥∥A+ACN −WWT
∥∥2

F
. (6)

The representation capability of W is low and hence such ap-
proximation ends up removing noisy links which might have
been introduced due to ACN . Thus we define the predicted
links as ∆A := WWT −A.

Next step is to predict the missing hyperlinks ∆F from the
predicted missing links ∆A. Since U contains missing hy-
perlinks as well as non-hyperlinks, the diagonal matrix ΛU

should be such that the hyperlinks selected by UΛU corre-
spond to the links in ∆A when they are projected on graph.
This can be obtained by optimizing ΛU w.r.t following objec-
tive function:

min
ΛU∈diag

(
{0,1}|Funiv|

) ∥∥∆A− UΛUU
T
∥∥2

F
(7)

This is where we bring CCH into the picture. According to
CCH, links in A also play a major role in formation of future
hyperlinks. Hence, the predicted hyperlinks in ∆F should
not only explain missing links of ∆A but also existing links
in A (through clique and near-clique closure). However, as
we already know, links in A are formed by F and hence can
always be explained by S. Then hyperlinks can be predicted
by optimizing ΛU w.r.t following objective function:

min
ΛU∈diag

(
{0,1}|Funiv|

)
ΛS∈diag({0,1}|F |)

∥∥A− SΛSS
T − UΛUU

T
∥∥2

F
+ ‖ΛS‖1.

(8)
The L1-penalty imposed on ΛS is important to avoid a trivial
solution where ΛS = I and ΛU = 0.

Satisfying the objective functions specified in eqs. (8) and
(7) leads to a joint optimization problem for hyperlink pre-
diction, which we formulate next. We note that since the
problems in eqs. (7 – 8) fall into the integer programming
paradigm, and since such problems are NP-complete, we re-
lax the domains of ΛU and ΛS to the unit interval [0, 1] in-
stead of {0, 1}. Hence our final problem boils down to the
following:

min
ΛU∈diag([0,1]|Funiv |)

ΛS∈diag([0,1]|F |)

∥∥A− SΛSS
T − UΛUU

T
∥∥2

F

+
∥∥∆A− UΛUU

T
∥∥2

F
+ ‖ΛS‖1 .

(9)

In summary, we have exploited our clique-closure hy-
pothesis by explicitly forcing the objective function to con-
sider cliques and near-cliques from the projected graph of
the observed hyperlinks, as well as new information ∆A
simultaneously, and predict hyperlinks that explain them
both.

Alternating Minimization
Finding an optimal solution to the problem (9) can be done
by minimizing it alternatively — first for W , and then for ΛS

and ΛU .
This leads to an alternating optimization where we first pre-

dict missing links with the help of W obtained as per eq (6)
and then predict missing hyperlinks by solving the optimiza-
tion problem in eq (9). At the end of each iteration we update
A with the new predicted links by adding UΛUU

T . Overall
C3MM predicts hyperlinks by performing following steps al-
ternatively:
Step 1: For fixed ΛU from Step 2 below (or by fixing it to be
a random matrix for the first iteration), solve for W :

min
W∈[0,∞)|V |×|V |

∥∥A+ACN + UΛUU
T −WWT

∥∥2

F
(10)

Step 2: Defining ∆A := WWT − A for W fixed from Step
1 above, find the optimal ΛU according to Eq. (9).

Since both Step 1 and Step 2 are convex optimization prob-
lems, we solve them by alternatively minimizing them for
matrices ΛU , ΛS and W , and finally use ΛU , that denotes
the newly predicted hyperlinks.

5 Related Work
The hyperlink prediction problem focuses on predicting un-
known/unseen interactions between a set of nodes, whose
analogue in usual networks is the link prediction problem.
Here, we given a brief overview of the related work in both
link- as well as hyperlink-prediction.

Although research in hyperlink prediction has been lim-
ited, its literature is convincing enough to vouch for its im-
portance. Ever since the near-seminal works by [Agarwal et
al., 2006] and [Zhou et al., 2006] that unite the fields of hy-
pergraphs and machine learning, there has been four major
works focusing on hyperlink prediction. Xu et al. [Xu et al.,
2013] and both works by Zhang et al. [Zhang et al., 2018;
Zhang et al., 2016] deal with specific domains, viz., email
and metabolite networks respectively. Benson et al. [Ben-
son et al., 2018], on the other hand, bring a multitude of do-
mains to the table (see Section 6 for more details). While
Zhang et al. [Zhang et al., 2018] introduce a matrix com-
pletion based solution called Coordinated Matrix Minimiza-
tion (CMM) that works well for a non-temporal network of
metabolites, Benson et al. [Benson et al., 2018] restrict the
problem to that of predicting the closure of a 3-4 sized open
simplex, which is a problem temporal in nature.

Researchers have previously worked on the task of pre-
dicting links in heterogeneous and bipartite networks as well
[Kunegis et al., 2010; Yu et al., 2014], however, their rele-
vance to the current work is limited since hyperlink predic-
tion parallels neither to link prediction on such networks, nor
their one-mode projections.

6 Experimental Setup
We test our algorithm (C3MM3) on both structural as well as
temporal link prediction problems, and report results on di-
verse datasets, using a few baselines to compare against. But

3Code available at https://github.com/govindjsk/c3mm
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Dataset Temporal? |V | |F |
contact-ps Yes 242 11,161
contact-hs Yes 327 6,700
MAG-G Yes 1,876 9,471
tags-ms Yes 862 9,098

iJO1366 No 1,805 2,583
iAF1260b No 1,668 2,388
iAF692 No 628 690
iHN637 No 698 785
iIT341 No 485 554
iAB RBC 283 No 342 469

Table 2: Temporal and non-temporal datasets that we use in our
experiments.

before that, we test our hypothesis (CCH) on these datasets,
and elucidate that it holds statistically significantly for most
of them. Let us describe the datasets we have used.

6.1 Datasets
We have performed our experiments on altogether ten
datasets, of which four are temporal hypergraphs and we use
the six non-temporal metabolite hypergraphs from Zhang et
al. [Zhang et al., 2018].

We provide a brief introductory overview of these datasets
below. For more information, we suggest the reader to refer
to Benson et al. [Benson et al., 2018] for an extensive anal-
ysis of the four (and more) temporal datasets, and to Zhang
et al. [Zhang et al., 2018] for the six metabolites datasets.
Summary is in Table 2.

1. contact-ps and contact-hs: These are contact networks,
wherein nodes are primary/high school students and a
hyperlink between them represents those observed to be
within a close proximity to each other over a period of
three days.

2. MAG-G: This refers to a co-authorship network,
wherein nodes are authors and a hyperlink between
them denotes a set of authors who have exclusively co-
authored at least one paper. Since this is one of the
biggest datasets we have, we reduce it using the same
core-based filtering technique as Liben-Nowell et al.
[Liben-Nowell and Kleinberg, 2003].

3. tags-ms: It is a hypergraph where nodes refer to tags
given to question-answer threads on Math StackEx-
change, and a set of all tags associated a thread forms
a hyperlink. We take only one year’s (most recent) data
for tags-ms.

4. Metabolites: This is a group of six datasets of metabolic
reactions, where nodes are metabolites (reactants and
products) of a metabolic reaction, which represents a
hyperlink. They have been named iJO1366, iAF1260b,
iAF692, iHN637, iIT341, and iAB RBC 283.

6.2 Baselines
Coordinated Matrix Minimization (CMM) [Zhang et al.,
2018] as well as baseline algorithms mentioned in their paper

form the baselines for our experiments. More specifically, we
use the following methods as our baselines: Bayesian Sets
(BS) [Ghahramani and Heller, 2006], Spectral Hypergraph
Clustering (SHC) [Zhou et al., 2006], Factorization Machines
(FM) [Rendle, 2012], Katz [Katz, 1953], and Hyper Com-
mon Neighbors (CN) [Zhang et al., 2018; Liben-Nowell and
Kleinberg, 2007]. For more information we refer to Zhang et
al. [Zhang et al., 2018] or the respective references therein.

To evaluate the performance of hyperlink prediction algo-
rithms, we make use of the area under ROC curves (AUC)
metric.

Negative Sampling
Owing to extreme class imbalance (of ratio O

(
2|V |/|F |

)
)

between non-hyperlinks and hyperlinks in hyperlink pre-
diction, the issue of negative sampling (i.e., undersam-
pling the negative/dominant class) becomes serious, lest bi-
ased results get reported. The literature on fair evaluation
of link prediction algorithms [Garcia Gasulla et al., 2015;
Lichtenwalter et al., 2010; Lichtnwalter and Chawla, 2012;
Yang et al., 2015] highlights the role of negative sampling in
evaluating solutions, which extends to hyperlink prediction as
well. We extend Lichtenwalter et al.’s [Lichtenwalter et al.,
2010] geodesic-distance ` = 2 (i.e., one-hop neighbor) based
negative-sampling technique to hypergraphs as follows [Patil
et al., 2020].

We sample the negative class (i.e., non-hyperlinks) by ran-
domly picking a hyperlink f ∈ F (of size, say s) and re-
placing its lowest degree node (say v0 ∈ f ) with a common-
neighbor (say v′ /∈ f ) of all other s − 1 nodes in f−v0

:=
f \ {v0}, such that f ′ := (f−v0

) ∪ {v′} /∈ F . We repeat
this process to extract multiple non-hyperlinks f ′ /∈ F corre-
sponding to a hyperlink f ′, and stop when we have an enough
(defined as a factor p ∈ R of the positive class size) num-
ber of them. This method is a simple extension of the usual
one-hop (` = 2) negative sampling performed in link predic-
tion [Lichtenwalter et al., 2010].

Data Preparation
We sample 15 times as many non-hyperlinks as there are
hyperlinks in the unobserved hypergraph for all of the tem-
poral hypergraphs. For the non-temporal hypergraphs (i.e.,
the Metabolites datasets), Zhang et al. [Zhang et al., 2018]
already refer to a manually curated negative class (or non-
hyperlinks)4; hence there is no need to generate any negative
samples. We fix the size of latent dimension for symmetric
NMF in (6) to be k = 30 for the all the datasets, just as Zhang
et al. [Zhang et al., 2018] do as a default choice for CMM.

7 Results and Discussion
7.1 CCH Hypothesis Testing
We test our hypothesis (CCH) on a total of ten datasets, four
of which are temporal, while remaining are non-temporal (Ta-
ble 3). On temporal datasets, we test CCH using Algorithm 1,
whereas for non-temporal ones the variation as mentioned in
Section 3 is used. More specifically, for each of our datasets,

4Owing to the knowledge domain experts have about “impossi-
ble” metabolic reactions.
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Dataset d(H) cf(H) p-value Result (α = 0.1)
contact-ps 0.285 0.92 0.001 Rejects H0

contact-hs 0.109 0.91 0.000 Rejects H0

MAG-G 0.014 0.27 0.059 Rejects H0

tags-ms 0.028 0.52 0.021 Rejects H0

iJO1366 0.009 0.07 0.102 Fails to reject H0

iAF1260b 0.008 0.07 0.033 Rejects H0

iAF692 0.027 0.08 0.571 Fails to reject H0

iHN637 0.028 0.03 0.658 Fails to reject H0

iIT341 0.034 0.04 0.813 Fails to reject H0

iAB RBC 283 0.030 0.04 0.591 Fails to reject H0

Table 3: CCH Test on temporal and non-temporal datasets with sig-
nificance level α = 0.1. All temporal datasets reject H0 (i.e., follow
CCH) with significance α = 0.1, and all but one (iAF1260b) non-
temporal datasets fail to reject H0 (i.e., don’t follow CCH).

we report the values of d(H), cf(H), and also p-values of H0

(Hypothesis 2) over all hyperlinks f ∈ F .
The first set of results (first four rows of Table 3) show that

all temporal hypergraphs satisfy the hypothesis by a decent
margin, in that p < α. One can infer that in these settings, it is
highly required for a group of nodes to have had dense lower-
order interactions before the group evolves into a hyperlink.
Also, as the hyperlink size increases, so does its mean pre-
hyperedge density. It is therefore observed that three or four
authors can relatively easily group together to collaborate on
a common work, than bigger groups.

The second set of results (bottom six rows of Table 3)
clearly show that metabolite datasets, which are non-temporal
in nature, show little-to-no support for the hypothesis. Not
much could be commented on the relative comparison be-
tween datasets since they are all equally low, wherein cf(H)
lies in the range of 3–8% and p-value much higher as com-
pared to its temporal counterparts.

In summary, temporal datasets satisfy CCH with high con-
fidences, while non-temporal ones fail miserably. The results
we report in the bottom part of Table 3 are certain summaries
of the static analysis of metabolite networks, which is not
bound to follow a particular pattern, at least not the pattern
we expect it to (namely, CCH).

7.2 Hyperlink Prediction
We present the results for hyperlink prediction on the four
temporal datasets in Table 4. Table 4 reports mean AUC
scores for C3MM versus CMM and its other baselines.

In all the temporal datasets, C3MM performs better than
the other baselines, of which in particular, CMM (an ap-
proach that is similar to C3MM) has much lower AUC scores.
This supports the argument that our hypothesis (CCH) has
helped identify hyperlinks that the earlier formulation did not.
Of the datasets, MAG-G and tags-math-sx have the highest
scores, since they are bigger datasets and have formed over a
longer time range than the other ones. Of the other baselines,
we have BS (Bayesian Sets) that has a decent AUC for all
datasets, except for tags-ms, and SHC seems to be the third
best baseline.

One dataset that has a relatively higher p-value for CCH
and despite this fact C3MM performing well is MAG-G,

Dataset C3MM CMM BS SHC FM Katz CN
contact-ps 0.590 0.455 0.580 0.563 0.497 0.324 0.413
contact-hs 0.629 0.382 0.624 0.537 0.490 0.308 0.391
MAG-G 0.639 0.380 0.637 0.626 0.262 0.274 0.350
tags-ms 0.638 0.476 0.590 0.549 0.374 0.374 0.430

Table 4: AUC scores of hyperlink prediction on temporal datasets.
In all cases, C3MM outperforms CMM, our main baseline. The role
of CCH in helping to identify hyperlinks better is hence evident.

where we see most (73%) of the hyperlinks forming from
non-cliques. This is possibly due to MAG-G being a co-
authorship network where one would anticipate future collab-
oration among authors who have worked together in the past
in some form. The higher p-value could be attributed to the
fact that we take the hypergraph snapshot of recent 7 years,
which ends up ignoring meaningful connections of the past.

At the same time, performance of C3MM drops for most of
the non-temporal metabolite datasets. The only dataset which
shows better performance for C3MM is iAF1260b while for
the rest of the datasets performance drop is anywhere between
12% to 1%. Also it should be noted that iAF1260b is the only
non-temporal dataset that satisfies CCH hypothesis as seen in
Table 3 while the other datasets don’t as shown by Table 3.
This shows that C3MM is a better algorithm for hyperlink
prediction when the CCH hypothesis is strongly supported
by dataset.

8 Conclusion and Future Work
Hyperlink prediction is a difficult task to perform, at least
more difficult than what link prediction is. This is so both
due to the number of possible hyperlinks in a given hyper-
graph (which is exponential in the number of nodes), as well
as lack of multi-way heuristic scores. We set out to im-
prove upon the current state-of-the-art (CMM) by introduc-
ing a clique-closure hypothesis into its objective function, ul-
timately forming C3MM. It is clear from the results on the
hypothesis tests that we succeed in validating that it is cliques
and co-cliques that close to form hyperlinks, instead of they
being formed by co-cliques or disconnected structures. Em-
bedding the hypothesis into the objective function leads to
it significantly hunting down more hyperlinks which were
missed by CMM. Another conclusion we draw is that hyper-
link prediction on temporal and non-temporal datasets works
differently, in that the latter predicts the future, and the for-
mer, the missing hyperlinks. While CMM works well on non-
temporal datasets, C3MM better predicts future links.

In an extension, we would like to extract more concepts
from baselines such as Bayesian Sets and Spectral Hyper-
graph Clustering and incorporate them into C3MM, to hope-
fully improve further. Also, we would aim to work with more
variety of networks: heterogeneous hypergraphs, directed hy-
pergraphs, and weighted hypergraphs.
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