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Abstract
Generating diverse behaviors for game artificial in-
telligence (Game AI) has been long recognized as a
challenging task in the game industry. Designing a
Game AI with a satisfying behavioral characteristic
(style) heavily depends on the domain knowledge
and is hard to achieve manually. Deep reinforce-
ment learning sheds light on advancing the auto-
matic Game AI design. However, most of them fo-
cus on creating a superhuman Game AI, ignoring
the importance of behavioral diversity in games.
To bridge the gap, we introduce a new framework,
named EMOGI, which can automatically generate
desirable styles with almost no domain knowledge.
More importantly, EMOGI succeeds in creating a
range of diverse styles, providing behavior-diverse
Game AIs. Evaluations on the Atari and real com-
mercial games indicate that, compared to existing
algorithms, EMOGI performs better in generating
diverse behaviors and significantly improves the ef-
ficiency of Game AI design.

1 Introduction
Gaming is at the heart of the entertainment business, and
the game market is rapidly growing along with fierce com-
petition. According to the latest Global Games Market Re-
port [Newzoo, 2019], there are over 2.5 billion active gamers
across the world, and over $164 billion will be spent on games
in 2020. With such a vast and competitive market, the game
quality like the entertainment and attraction becomes espe-
cially important, as they greatly determinate the success of a
game. For instance, a Game AI with monotonous behaviors in
a battle game is tedious and will sharply degrade the player’s
enthusiasm, resulting in losing users or even the failure of a

> The first two authors contributed equally.
† Corresponding author.

game. To keep the entertainment, game companies put many
efforts (e.g., continuously creating new behaviors), but often
achieve limited progress [Alt, 2004]. Consequently, a more
effective approach to create behavior-diverse Game AIs is of
great importance and meaning for game companies.

One simple way to create Game AIs is to model the human
players’ behavior [Holmgård et al., 2014; Ortega et al., 2013;
Drachen et al., 2009] using collected data. However, suffi-
cient data is required in advance and the resulting AI’s behav-
ior is prone to biased to the training data. Another piratical
way is behavior tree (BT) [Millington, 2019], which is exten-
sively adopted in designing Game AIs, including Red Dead
Redemption [Rockstar Games, 2018] and Halo [Isla, 2008].
However, BT is a rule-based method, requiring abundant de-
signer expert knowledge and labor cost in designing rules.
Besides, contrived rules may be contradictory, leading to po-
tential bugs. Lastly, the more rules in BT, the harder it can be
maintained, restricting its effectiveness in large scale games.
Meantime, evolutionary algorithm (EA) has also been uti-
lized to generate diverse game AIs [Mouret and Clune, 2015;
Lehman and Stanley, 2011; Agapitos et al., 2008]. However,
EAs adopts heuristic search which may be inefficient in mod-
ern complex games [Szita et al., 2009].

Deep reinforcement learning (DRL) has achieved great
success in generating competitive Game AIs for various
kinds of games [Zheng et al., 2019; Zheng et al., 2018;
Mnih et al., 2015]. However, DRL mostly focuses on win-
ning the game, restricting its ability to generate diverse be-
haviors. The aforementioned Game AIs design methods suf-
fer from the following limitations: 1) the necessity of hu-
man behavioral data; 2) heavy dependence of designer expert
knowledge and substantial labor costs in searching a desirable
behavior; 3) lacking the ability to generate diverse behaviors.

To address these, we propose a new framework, named
Evolutionary Multi-Objective Game Intelligence (EMOGI),
combining the power of evolutionary multi-objective opti-
mization (EMO) and DRL to generate behavior-diverse Game
AIs with barely prior human knowledge. It is worth men-
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tioning that EMOGI requires no pre-collected human behav-
ioral data and directly generates Game AIs from scratch. To
minimize the dependence of prior knowledge and labor costs
in behavior searching, EMOGI leverages the power of evo-
lutionary algorithm to achieve automatic parameter tuning
of the reward function in DRL, guiding the policy learning
towards the desirable behavior automatically. On the other
hand, to generate diverse behaviors, the prioritized multi-
objective optimization is introduced, which leverages the
non-dominated sorting and crowding distance sorting to en-
sure the learned policies distributed among multiple objec-
tives, where various kinds of behavior-diverse Game AIs can
be selected for games.

For evaluation, EMOGI is adopted to design behavior-
diverse Game AIs for a Atari game and a commercial mas-
sively multiplayer online game. Empirical results show that,
compared to existing baselines, EMOGI can achieve not only
generate Game AIs with barely prior human knowledge but
also behavior-diverse Games AIs effectively and efficiently.

2 Preliminaries
2.1 Markov Decision Process
Game playing is a process of successive interactions where
the player (i.e., agent) need to take a sequence of actions
based the observations (e.g., images) to achieve a specific ob-
jective (e.g., winning). Game playing can be modeled as a
Markov Decision Process (MDP), which consists of a tuple
(S,A,R, T, γ), where S is the set of states and usually re-
ferred to as the observations, A is the action space that the
player used for game playing, R(s, a) is the reward func-
tion S × A → R giving an immediate feedback after tak-
ing action a at state s , T (s, a, s′) is the transition function
S ×A × S → [0, 1] giving the probability of transiting into
the new state s′ after taking action a at state s, and γ ∈ [0, 1]
is a discount factor [Sutton and Barto, 2018].

2.2 Asynchronous Advantage Actor-Critic
Asynchronous Advantage Actor-Critic (A3C) [Mnih et al.,
2016] is one of the state-of-the-art DRL algorithms, aiming to
train agents to play games. A3C maintains a policy π(a|s; θ)
and an estimation of the value function V (s; θv) parameter-
ized by θ and θv , respectively. During game playing, the
agent (actor) will execute action a following π(a|s; θ) and
receive an immediate reward signal rt, which will be used by
the critic to learn the value function V (s; θv). The value func-
tion V (s; θv) will be used to optimize the policy π(a|s; θ) to
maximize the cumulative rewards

∑∞
t=1 rt received during

entire game playing using the gradient as follows:
∇θ log π(at|st; θ)[rt + V (st+1)− V (st)], (1)

where st, at, rt, st+1 are sampled by the actor. Notable, A3C
leverages multiple asynchronous agents (critics) to simulta-
neously explore the environment, dramatically speeding up
the efficiency of exploring, sampling and policy learning.

2.3 Multi-Objective Optimization
Evolutionary multi-objective optimization (EMO) [Deb et al.,
2000] is an effective method for solving optimization prob-
lems with multiple objectives. Different from the standard

evolutionary algorithm (e.g., genetic algorithm) which eval-
uates the solution using a scalar fitness value and optimizes
from a single objective perspective, EMO uses vectors and
achieve optimization from a multi-objective perspective. In
such a way, offspring evolved from the EMO can simultane-
ously achieve high performance regarding multiple objectives
and better diversity among multiple objectives.

3 Problem Formulation
Generating behavior-diverse Game AIs is critical for guaran-
teeing a game’s entertainment and popularity. This section
formulates this problem by three parts: 1) necessary notions;
2) generating a policy with desirable behaviors and 3) the
challenges in generating diverse behaviors.

Notions
Game AI refers to an intelligent agent who can play games
using different policies π, resulting in different behaviors.
From the design perspective, behaviors with strong charac-
teristics are more attractive (e.g., an aggressive Game AI in
combat games). To measures aggressiveness, a natural way
is to count the opposite duration spent in games, as an ag-
gressive Game AI tends to finish the game quickly. Similarly,
the average distance between agents is a feasible measure-
ment for defensiveness since a defensive Game AI will keep
a large distance from the opponent to avoid damage.

Formally, the opposite duration and average distance are
referred to as the game business indicators (denoted by
Iduration

1 and Idistance). Given a policy π, the aggressiveness
and defensiveness can be measured by:

Sagg(π) = Iduration,Sdef(π) = Idistance, (2)

where Sagg(π) and Sdef(π) denote the extent of a policy ex-
hibiting an aggressive/defensive behavior, respectively. It is
worth mentioning that S(π) is used for measuring the policy
after the policy is learned, not guiding policy learning.

Behavior Generation
Utilizing DRL to generate a policy with desirable behavior
characteristics is non-trivial, requiring tremendous domain
knowledge and labor-costs. One reason is that the behavior of
the policy π depends on the reward function R(s, a), which
mostly focuses on winning the game. To generate desirable
behaviors, one effective method is the reward shaping, adding
behavior-related reward items in R(s, a) to affect a policy’s
behavior [Oh et al., 2019; Suay et al., 2016]. The reward
function can be shaped as follows:

Rw(s, a) =
∑
wi∈w

wi ∗ ri, (3)

where ri is a reward shaping item associated with weight wi.
For instance, we can setRw(s, a) = w1∗rdamage+w2∗rinjury,
where rdamage and rinjury are adopted to encourage damaging
the opponent and avoiding getting hurts, respectively. Dif-
ferent weights w = {w1, w2} may lead to different behav-
iors. Increasing w1 and w2 tends to create aggressive and de-
fensive behaviors, respectively. Therefore, adjusting weights
contributes to guiding DRL towards desirable behaviors.

1Iduration = 1− t, where t is the normalized time spent in games.
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Figure 2: The aggressiveness Sagg(π) of policy π learned by differ-
ent weights . The x- and y-axis are weights in reward function while
color depicting the extent of a policy being a aggressive style.

It should be emphasized that the reward shaping item ri
and indicator value I are different. The former constitutes the
reward function, guiding DRL towards a desirable behavior,
and the latter measures the degree of a policy having a cer-
tain behavior characteristic. Besides, indicators like Iduration
and Idistance can only be measured after playing, making them
unusable in the reward shaping.

Challenges
Manual weights tuning requires abundant domain-
knowledge. Even a slight change in the weight may
result in unpredictable behaviors. Fig. 2 is a schematic
diagram briefly describing the relationship between weights
and an aggressive behavior, where one can find that most
of the combinations (in the x- and y-axis) are incapable of
achieving significant aggressiveness (yellow areas). Only a
few combinations (around the red dot R∗) can create target
behavior, which are hard to find by manual weight tuning.

4 EMOGI
We propose a new framework, named EMOGI, to generate
behavior-diverse Game AIs with barely prior human knowl-
edge. Overall, EMOGI is built on an evolutionary frame-
work like population-based training (PBT) [Li et al., 2019;
Jaderberg et al., 2017]. However, in addition to the policy,
EMOGI treats the reward function as a part of the candidate

Algorithm 1: EMOGI
1 Input : n: the size of the population
2 Output: P : the population of candidates.
3 P = {{π1

θ , R
1
w}, ..., {πnθ , Rnw}} . Initialize randomly

4 Q = {} . Initialize Q with a synchronized set
5 repeat
6 // Asynchronized Evolution
7 p1, p2, ..., pu = mating(P )
8 q1, q2, ..., qv = crossover(p1, p2, ..., pu)
9 for q ∈ {q1, q2, ..., qv} do

10 q = evaluate(DRL-Train(mutate(q)))

11 Q = Q+ {q1, q2, ..., qv}
12 // Synchronized Selection
13 if |Q| ≥ n then
14 P = Diverse-Select(P ∪Q,n) . (see Alg.2)
15 Q = {}
16 until the stop criteria is satisfied;
17 return P ;

(denoted by (πiθ, R
i
w) in Fig. 1). By evolving the w, EMOGI

achieve automatic weights tuning, guiding DRL learning to-
wards the desirable behavior. Another innovative difference
is that EMOGI leverages multi-objective optimization to se-
lect policies with different behaviors, guaranteeing the diver-
sity of the populations.

4.1 Generating Single Behavior
EMOGI aims at generating desirable behaviors by auto-
matic weights tuning without human intervention. Specifi-
cally, as shown in Alg. 1, EMOGI initializes a population
of candidates, each of which is a pair of πθ (a neural net-
work parameterized by θ) and Rw(s, a) (parameterized by
w). To create new offspring, EMOGI performs single-point
crossover (SPX) on network parameters with a minimal per-
formance loss, and simulated binary crossover (SBX) on re-
ward weights (Line 8-10) [Deb and Agrawal, 1994]. Then
Gaussian noise (GN) is adopted to mutate both parameters.
As shown in Fig.1, SPX and GN are adopted to crossover and
mutate the network parameters θ, leading to new θ′. As for
reward weights w, EMOGI uses the SBX and GN to achieve
crossover and mutation, resulting in new w′. Once finished,
the newborn policy πθ′ is trained using a DRL algorithm,
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guided by the newly tuned reward function Rw′ towards new
behaviors (line 10). After training, each candidate is evalu-
ated to obtain their performance regarding a given game busi-
ness indicator. Assume an aggressive behavior is required
and duration indicator Iduration is adopted to measure a pol-
icy’s aggressiveness (i.e., Sagg(π) = Iduration). Individuals
with higher Iduration will be kept for further evolution, while
the rests are eliminated. This evolutionary cycle repeats until
reaching a certain number of iterations. In this way, poli-
cies in the last population will have high Sagg(π) = Iduration,
achieving a significant aggressive behavior without any man-
ual parameters tuning.

To boost efficiency, EMOGI divides the population and
distributes them to multiple servers to achieve asynchronized
evolution including: crossover, mutation, DRL training and
evaluation (asynchronized part in Alg. 1). Each evolved can-
didates will be sent to the collector server and added into a
synchronized set Q. Once the size of Q reached a threshold
n, PMOO is adopted to select better offspring as the next new
population (line 14 in Alg. 1).

4.2 Generating Diverse Behaviors
Evolving the whole population towards one behavior style
will restrict the population’s behavioral diversity. To ad-
dress this, EMOGI proposes the prioritized multi-objective
optimization (PMOO), where different behavior styles are re-
garded as different optimization objectives. PMOO optimizes
policies towards multiple styles, requiring policies to be eval-
uated from multiple aspects and resulting in two differences:
1) the policy measurement and 2) the offspring selection.

PMOO uses multiple indicators to measure a policy’s per-
formance regarding different behavioral characteristics. Take
a combat game for instance, given a policy π, the duration
and distance indicators Iduration, Idistance are adopted to respec-
tively measure the aggressiveness and defensiveness of π (de-
noted by Sagg(π),Sagg(π)). Thus, policy π can be measured
regarding two kinds of behavioral styles as follow:

[Sagg(π),Sdef(π)] ≡ [Iduration, Idistance] (4)

where Sagg(π) and Sdef(π) are regarded as two optimization
objectives, spanning a two-dimensional optimization space,
where each policy is located (right part in Fig. 1).

For offspring selection, PMOO proposes the domination
relation to achieve vector-based comparison between poli-
cies. Specifically, we say policy π0 dominates π1 (denoted as
π0 � π1) if and only if (Sagg(π0) > Sagg(π1) ∧Sdef(π0) ≥
Sdef(π1)) or (Sagg(π0) ≥ Sagg(π1)∧Sdef(π0) > Sdef(π1)).
Intuitively, π0 � π1 means π0 is better than π1 regarding at
least one optimization objective, while the rest no worse.

The set of all “best” candidates constitutes a Pareto-optimal
frontier (denoted by Fi in Fig. 1). Each policy in Fi cannot
dominate each other (e.g., π0 is more aggressive while π1
is more defensive). The visualization of offspring selection is
depicted in Fig. 1 (right part), and the pseudo-code is outlined
in Alg. 2. Given a population P , the Pareto-optimal frontier is
identified using the non-dominated sorting [Deb et al., 2000],
and added into the new population, then removed from the
original population (e.g., F1, F2, F3, ... in Fig. 1). This pro-
cess repeats until the size of the new population reaches a

Algorithm 2: Diverse-Select
Input : P : the population, n ≤ |P |: the number of

candidates to be selected
Output: P ′: the selected population

1 P ′ ← ∅
2 loop
3 F = ND Sort(P ) . select the Pareto frontier from P
4 if |P ′|+ |F | ≤ n then
5 P ′ ← P ′ ∪ F
6 P = P \ F
7 else
8 F ′ ← CD Select(F, n− |P ′|) . squash set.
9 P ′ ← P ′ ∪ F ′

10 break

11 return P ′

pre-defined threshold (line 3-7 in Alg. 2). Note that, F1 gen-
erally exceeds F2 because ∀π ∈ F1.(@π′ ∈ F2, π

′ � π).
Once the size of the new population P ′ adding the current
Pareto frontier Fi exceeds the threshold n, only n− |P ′| can-
didates in the Fi can be selected in to the P ′ (Line 8-10). An
intuitive example is given in Fig. 1, where only part of the F3

can be selected. To achieve this, PMOO measures the den-
sity of each candidate in F3 and selects sparse candidates to
construct a more diverse offspring (line 8). Intuitively, the
density of π1 is computed based on the distance between two
nearest surrounding neighbors regarding in terms of two ob-
jectives (i.e., d1 + d2 + d3 + d4). Candidates with sparser
density will be selected as the new offspring.

In this way, EMOGI can generate not only desirable be-
haviors by evolving policy towards two objectives (aggres-
sive/defensive styles), but also behaviors (e.g., a neutral style)
evenly distributed among two objectives. As such, where de-
signers can conveniently choose whichever in need of games.

4.3 Generating Complex Behaviors
A single indicator is insufficient to create complex behaviors
like “hit-and-run”, which exhibits a defensive behavior but
need to win eventually. Maximizing Idistance will result in a
behavior that is always avoiding without attacking.

To create such complex behaviors, EMOGI proposes to
evaluate the extent of a policy exhibiting complex behaviors
as follows:

Sagg(π) = [Iwin-rate, Iduration],Sdef(π) = [Iwin-rate, Idistance]
(5)

where the win rate indicator Iwin-rate is introduced and Iwin-rate
measures the win rate of a given policy. To compare policies
regarding a complex behavior (e.g., “hit-and-run”), we pro-
pose a prioritized element-wise comparison as a complement
to the domination relation. For instance, π0 is better than π1
in achieving a “hit-and-run” behavior only when: 1) it has
a larger Iwin-rate regardless of Idistance; or 2) the same Iwin-rate
but larger Idistance. This comparison guarantees that indica-
tors in the front will be firstly considered than the latter. In
this way, PMOO will select offspring with higher value in
both [Iwin-rate, Idistance], whereby the “hit-and-run” behavior is
achievable.
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Figure 3: Visualization of different behaviors generated by EMOGI.
The paddle position (in the vertical direction) are counted and plot-
ted, where busy AI has a more dense distribution than lazy AI.

5 Experiments
This section presents empirical results on an Atari game pong
and a commercial game Justice Online (JO). Both games use
build-in AIs as the opponents. Comparisons between EMOGI
and A3C are conducted to verify their effectiveness in gener-
ating behavior-diverse Game AIs. Besides, we visualize all
generated behaviors for further comparison2. It is worth men-
tioning that, due to parameters tuning heavily dependents on
domain knowledge, to ensure the fairness, experienced front-
line designers are invited to tune the weights in reward func-
tion for A3C, and all baselines use the same hyper-parameters
defined in [Mnih et al., 2016].

5.1 Atari Game
Atari pong is a widely used benchmark where an agent con-
trols the green paddle (using 6 actions) to play the game. We
investigate the effectiveness of EMOGI in generating compet-
itive Game AIs with diverse behaviors (e.g., busy/lazy styles).
To be fair, all methods uses the same reward function as fol-
lows:

R = w1 ∗ rwin + w2 ∗ rpaddle-move + w3 ∗ ract, (6)

where rwin, rpaddle-move and ract encourage the agent to win,
move positions and take fewer actions, respectively. Specif-
ically, the rwin = 1 if the agent scores otherwise 0. The
rpaddle-move = 1 if the the paddle’s position changes other-
wise 0 (the red rectangle). The ract = −1 if any actions is
taken otherwise 0. In A3C, weights are manually tuned by
designers to create Game AIs, however, EMOGI leverages
automatic tuning. The busy/lazy styles are treated as two op-
timizing objectives by EMOGI, which can be measured as
follows:

Sbuzy(π) = [Iwin-rate, Imove-rate],Slazy(π) = [Iwin-rate, Ino-act-rate],
(7)

where Iwin-rate is the win rate. Imove-rate calculates the percent-
age of frames when the paddle moves, and Ino-act-rate counts
the percentage of frames when the agent takes no actions.
Generating Diverse Behaviors. Fig. 3 visualizes the dif-
ferent behaviors generated by EMOGI, where one can find
that two styles vary greatly. Both AIs can win the game, but

2More details in https://sites.google.com/view/ijcai20-emogi
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Figure 4: Distribution of styles generated by EMOGI among two
objectives (left), and quantitative analysis of three styles in term of
three related indicators (right). Values in all axis are normalized.

Indicator values Iwin-rate(score) Imove-rate Ino-act-rate

EMOGI
Busy AI 15.2 0.954 (best) 0.055

Neutral AI 13.6 0.557 0.531
Lazy AI 18.2 0.008 0.966 (best)

A3C
Busy AI -9.9 0.908 0.215

Neutral AI -5.0 0.304 0.857
Lazy AI 11.8 0.257 0.853

Table 1: Averaged evaluation results (10 runs) regarding related in-
dicators of generated Game AIs in Atari game.

the busy one moves more frequently than the laze one3. An-
other evidence is that busy AI has a dense position distribu-
tion than laze AI. These complex behaviors are achieved by
EMOGI with automatic parameter tuning without human in-
tervention.

Quantitative Comparisons. To investigate the effective-
ness of EMOGI in generating diverse behaviors, Game AIs’
behaviors are evaluated quantitatively regarding related game
business indicators. Fig. 4 (left) visualizes the distribution
of all Game AIs created by EMOGI among two optimiza-
tion objectives (i.e., busy/lazy styles). EMOGI can generate
not only extreme styles (lazy- and busy styles) along with two
objectives but also more neutral AIs evenly distributed among
them. Fig. 4 (right) demonstrates that all Game AIs can win
the game (green bar) but exhibits different behaviors.

Evaluation results of Game AIs generated by EMOGI and
A3C are summarized in Tab. 1. To be fair, both A3C and
EMOGI are trained using the same number of runs (around 1
million episodes). One can find that A3C has limitations in
generating desirable behaviors via manual parameter tuning.
For instance, the busy AI high value in Imove-rate but fails to
win. Besides, the neutral AI, generated by A3C, not only lose
the game but also fails to perform neutrally.

By contrast, the busy and lazy AIs created by EMOGI not
only achieve higher busy (0.954) and lazy degree (0.966) than
the ones learned by A3C, but also be able to win the game.
This demonstrates the effectiveness of EMOGI in learning
complex style automatically. Another advantage is that the
neutral AI, generated by EMOGI, achieves 0.557 busy degree
and 0.531 lazy degree, making itself a suitable neutral Game
AI, which, however, is hard to obtained by A3C.

3Video of busy/lazy styles: https://youtu.be/1uEWhIxmGVc
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Figure 5: (a) is a round fighting arena in JO and (b,c,d) visualize the
footprint of different styles in game playing. The blue and yellow
dots depict trajectories of Game AI and its opponent, respectively

5.2 Justice Online
In Fig. 5, a commercial game (JO) is adopted for evaluation.
To make our study feasible, we only select one combat sce-
nario, where an easy-to-kill wizard needs to uses 17 differ-
ent actions to beat a hard-to-kill fighter. EMOGI and A3C
are adopted to create (aggressive/defensive) behaviors for the
wizard by tuning the reward function as follow:

R = w0 ∗ rwin + w1 ∗ rdamage + w2 ∗ rinjury (8)

where rwin, rdamage and rinjury encourage to win, attack and
avoid the opponent, respectively. The rwin will be a large pos-
itive scalar if the agent wins otherwise 0. The rdamage, rinjury
are the damages to the enemy and the agent received, respec-
tively. The agg/def styles are treated as two optimizing objec-
tives by EMOGI, which can be measured as follows:

Sagg(π) = [Iwin-rate, Iduration],Sdef(π) = [Iwin-rate, Idistance],
(9)

where Iwin-rate, Iduration and Idistance measure the win rate, op-
posite duration spent in game and averaged distance between
agents, respectively. Note that, high Iduration means finish
game quickly.
Generating Diverse Behaviors. Fig. 5 (c,d) visualizes
the behavior of the aggressive/defensive AIs (denoted by
Agg/Def AI) generated by EMOGI, where two styles vary
greatly. The Agg AI always attack, barely moving, producing
shorter trajectories. By contrast, Def AI creates longer paths
by running around the field to avoid the opponent (known
as the “hit-and-run”). More importantly, both styles suc-
ceed in defeating the opponent, confirming the ability of
EMOGI in generating complex and diverse behaviors (see
video: https://youtu.be/5eps0YLY-lM).
Quantitative Comparisons. Fig. 6 (left) visualizes the dis-
tribution of all Game AIs created by EMOGI among two op-
timization objectives. In Fig. 6 (right), all generated Game
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Figure 6: Distribution of styles learned by EMOGI among two ob-
jectives (left), and quantitative analysis of three styles in term of
three related indicators (right).

Indicator values Iwin-rate Iduration Idistance

EMOGI
Agg AI 1.000 0.955 (best) 0.032

Neutral AI 1.000 0.685 0.632
Def AI 1.000 0.048 0.993 (best)

A3C
Agg AI 0.233 0.891 0.136

Neutral AI 0.760 0.188 0.916
Def AI 0.633 0.164 0.938

Table 2: Averaged evaluation results (30 runs) regarding related in-
dicators of generated Game AIs in JO game.

AIs can defeat the opponent in different ways. Def AI defeats
the opponent by keeping a safe distance (in Fig. 5(d)). Agg
AI exhibits aggressive behavior, like constant attack without
moving (in Fig. 5(c)). Tab. 2 shows that EMOGI can generate
better behaviors than A3C from a numerical perspective (e.g.,
Agg/Def AI with bold values). Besides, A3C fails to create an
Agg AI to win, which, however, can be generated by EMOGI.
Both A3C and EMOGI are trained using the same number of
runs (around 27 million episodes). But A3C still fails to find
a desirable behavior (e.g., Agg AI and Netural AI).

6 Conclusion
This paper proposes EMOGI, aiming to efficiently generate
behavior-diverse Game AIs by leveraging EA, PMOO and
DRL. Empirical results show the effectiveness of EMOGI
in creating diverse and complex behaviors. To deploy AIs
in commercial games, the robustness of the generated AIs is
worth investigating as future work [Sun et al., 2020].
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