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Abstract

The automatic diagnosis has been suffering from
the problem of inadequate reliable corpus to train
a trustworthy predictive model. Besides, most of
the previous deep learning based diagnosis mod-
els adopt the sequence learning techniques (CNN
or RNN), which is difficult to extract the com-
plex structural information, e.g. graph structure, be-
tween the critical medical entities. In this paper,
we propose to build the diagnosis model based on
the high-standard EMR documents from real hos-
pitals to improve the accuracy and the credibility
of the resulting model. Meanwhile, we introduce
the Graph Convolutional Network into the model
that alleviates the sparse feature problem and fa-
cilitates the extraction of structural information for
diagnosis. Moreover, we propose the mutual atten-
tive network to enhance the representation of inputs
towards the better model performance. The evalua-
tion conducted on the real EMR documents demon-
strates that the proposed model is more accurate
compared to the previous sequence learning based
diagnosis models. The proposed model has been
integrated into the information systems in over hun-
dreds of primary health care facilities in China to
assist physicians in the diagnostic process.

1 Introduction

The automatic diagnosis has been very popular in recent years
due to the advancement of Artificial Intelligence [Anandan et
al., 2019]. The Al-enabled decision-making has been suc-
cessfully applied in many enterprise diagnostic systems such
as Babylon Health and Ping An Good Doctor, to assist physi-
cians and patients through diagnostic process.

Besides the studies of diagnosis on the Web [Xia et al.,
2020; Chen et al., 2019], there are extensive studies of auto-
matic diagnosis based on EMR (Electronic Medical Record)
documents for clinical use [Yang et al., 2018; Girardi et al.,
2018; Mullenbach et al., 2018; Liang et al., 2019]. An EMR
document consists of multiple text sections written by cer-
tificated physicians with high standards. The text sections
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Sections | Texts

CC Intermittent shoulder and back pain for 3 years.
Feeling short of breath and having syncope for 2

days. (FIEKPE R HERIE3E, SHEFER2K)

HPI The patient suffers from shoulder and back pain
without obvious causes, and feels chest tightness and
sweating from 3 years ago. (35F 51 JCAH 2175 A HH IR
JE E BRI, FE R ] T HY)

PE T:37.8°C, P:86 BPM, BP:120/80mmHg. (&
18:37.8°C, )#:86 BPM, IfilJE:120/80mmHg)

SE Echocardiography: Segmental wall motion abnor-
mality, moderate mitral, tricuspid and aortic insuffi-
ciency, moderate pulmonary hypertension, left ven-
tricular dysfunction. (‘C>F 8 /5 777 BE M % BE 2 )
8, AR, = R, B O P R SR A AN &
R BNk e ., e O P BE A

Diagnosis | Miocardial infarction (CILE3E)

shoulder pain (JB J8), back pain (15 /), short of
breath (“%4), syncope (& ), chest tightness (H’llﬂ
f&), moderate aortic valve insufficiency (3 &)k ¥

FERHAAE).

Findings

Table 1: The example of a real EMR document. CC: chief com-
plaint. HPI: history of present illness. PE: physical examination.
SE: supplementary examination (e.g. imaging reports or lab test re-
sults). Findings are extracted with NER tools from EMR.

describe a patient’s illness such as chief complaint, history
of present illness, physical examination and so forth. Table 1
shows an example of a real EMR document from a hospital in
China. Each section has one or more paragraphs of pure texts
where there are critical medical entities like symptoms and
signs called findings which can be extracted by the Named
Entity Recognition (NER) [Dai et al., 2019].

Most of the previous deep learning based diagnosis mod-
els consider it as a sequence learning problem, and predict
diagnosis with Convolutional Neural Network (CNN) [Gi-
rardi et al., 2018; Mullenbach et al., 2018; Yang et al., 2018]
or Recurrent Neural Network (RNN) [Sha and Wang, 2017]
models. Unfortunately, there still exist three major issues:
(1) There are complex relations between findings and dis-
eases (diagnosis), e.g. one disease may cause multiple find-
ings to occur and one finding can be caused by multiple dis-
eases. But the sequence learning models on pure texts can-



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

not effectively extract the structural information (e.g. graph)
between the findings and the diseases in the original texts.
(2) The mentions of the same finding in the original texts
vary a lot due to different writing styles of the physicians,
which leads to the sparse feature problem because the feature
is diluted into different relations. For example, hemorrhage
of brain stem and brainstem hemorrhage are exactly the same
but may be recognized as different findings. Besides, the mi-
nor difference in the expression also adds to the sparse feature
problem, e.g. formation of softening lesions in the left basal
ganglia (Z£ 55 I8 T AL AL AL) and formation of softening
lesions in the right basal ganglia (#5351 U AETERY) are
both kinds of formation of softening lesions in the basal gan-
glia GLE T TEAL). (3) The medical entities in the
EMR are very important for the physician to make diagnosis,
but the previous self-attentive models [Girardi er al., 2018;
Sha and Wang, 2017] cannot take advantage of the extra in-
formation from other data sources to enhance the importance
of the critical words in the input.

To tackle the above issues, we propose the Graph-based
Mutual Attentive Network (GMAN) in this paper. It im-
proves the effectiveness of sequence learning models by in-
corporating the graph convolutional network and the mutual
attentive network.

We summarize the major contributions of this paper as:

e We introduce the Graph Convolutional Network (GCN)
to faciliate the representation learning of findings and
diseases in automatic diagnosis based on the disease hi-
erarchy and the causal graph of diseases we construct.
GCN enables the proposed model to effectively extract
the structural information between the critical medical
entities and alleviate the sparse feature problem.

e We bring forward the novel mutual attentive network be-
tween pure texts and medical entities in the diagnosis
model. It firstly enhances the representation of medi-
cal entities with pure texts, and then enhances the rep-
resentation of pure texts with the generated features of
medical entities. The proposed mutual attentive network
emphasizes the critical information in both the original
texts and the medical entities towards the better perfor-
mance of diagnosis.

e The experiments conducted on both the real Chinese
EMR documents and the benchmarking English clini-
cal dataset show that the proposed GMAN model out-
performs the previous methods in the automatic diag-
nosis. Besides, we have collaborated with the Regional
Healthcare Committee in several major cities in China
to integrate GMAN into the information systems in over
hundreds of primary health care facilities to assist the
physicians throughout the diagnostic process.

2 Related Work

We briefly introduce the related work on deep learning based
diagnosis, GCN and attentive networks.

2.1 Deep Learning based Diagnosis

There are many studies of automatic diagnosis based on deep
learning. Yang [2018] proposed a multi-layer convolutional
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network for high level semantic understanding, which is used
in automatic diagnosis. Mullenbach [2018] employs a label-
wise attentive mechanism, which allows the model to learn
distinct document representations for each label. Based on
that, Rios [2018] learns to predict the few-shot and the zero-
shot labels by matching the discharge summaries in EMR
documents to feature vectors for each label by exploiting
the structured label space with GCN. RETAIN [Choi e al.,
2016b] is an interpretable predictive model, which employed
the reverse time attentive mechanism in an RNN for binary
prediction. DoctorAl [Choi ef al., 2016¢] is a straightforward
approach with simple RNN for sequential patient data mod-
eling. MNN [Qiao et al., 2019] incorporates clinical text data
and medical codes for diagnosis prediction. Meanwhile, Gi-
rardi [2019] detects the warning symptoms based on the deep
attentive neural network.

2.2 Graph Convolutional Networks

The Graph Convolutional Networks have attracted the grow-
ing attention recently and have been widely used in many
tasks like recommender system [Zhang et al., 2019], rela-
tion extraction [Guo et al., 2019] and reading comprehension
[Ding et al., 2019]. The most similar application of GCN to
automatic diagnosis is the text classification that models long
documents as graphs. Peng [2018] proposes to convert a doc-
ument into a word co-occurrence graph, which is used as the
input to the GCN layers. Yao [2019] models words and doc-
uments into a unified graph where the edges between words
are computed with the point-wise mutual information (PMI)
and the edges connecting words and documents are calculated
with TF-IDF features. Liu [2018] proposes a siamese GCN
model in the text matching problem by modeling two docu-
ments in an interaction graph. Zhou [2018] adopts a similar
strategy but uses GCN to match the article with a short query.

2.3 Attentive Networks

Attention is generally used to attend to the most critical part
of texts, images or other types of data. It has been success-
fully applied in machine translation [Vaswani et al., 2017]
and question answering [Chen er al., 2019]. In automatic
diagnosis, the attentive mechanism is mostly combined with
the convolutional networks or recurrent networks to obtain
the interpretable prediction results [Sha and Wang, 2017;
Girardi et al., 2018; Choi et al., 2016b; Qiao et al., 2019].
Choi [2017] improves disease representation learning by in-
corporating attention from the preceding nodes on disease hi-
erarchy. The attentive pooling network [Santos et al., 2016]
introduces the bidirectional attention in question answering,
which is similar to our mutual attentive network. The major
difference is that we apply the attention in two consecutive
steps rather than the parallel manner in [Santos et al., 2016].

3 The GMAN Model

Fig. 1 shows the architecture of the proposed Graph-based
Mutual Attentive Network (GMAN) model. It consists of
three components: medical graph construction, GCN encod-
ing and mutual attentive network.
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3.1 Medical Graph Construction

As shown in Fig. 2, the GMAN model is built on top of two
medical graphs: the disease hierarchy and the causal graph of
diseases. The disease hierarchy shows the affiliation between
diseases. It consists of disease nodes and the isA relationship
(=) between them. The directed edge d; = d; means that
disease d; is a kind of disease d;, e.g. bacterial pneumonia =
pneumonia. One disease may have multiple parent diseases or
multiple children diseases in the disease hierarchy. We obtain
the disease hierarchy from the International Classification of
Diseases, 10th Revision (ICD-10) !

The causal graph of diseases is mined from the EMR docu-
ments, which connects disease d and the findings in the EMR
documents where d is the main diagnosis. Let G = (V, E)
denote the causal graph of diseases where V' and F are the
sets of nodes and edges, respectively. V mainly consists of
two types of nodes: finding and disease where finding can be
the evidence (e.g. symptom or sign) found in the EMR that
supports the diagnosis, and disease is the main diagnosis of

"https://www.cdc.gov/nchs/icd/icd10cm. htm
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the EMR. F contains the directed edge d — f which means
disease d causes finding f to occur. In this study, we propose
to construct the causal graph G with the following steps:
Firstly, the EMR document undergoes the named entity
recognition (NER) [Dai et al., 2019] to extract the medi-
cal entities in the EMR like symptoms, signs and diseases
together with the polarity of entities (positive, negative or
unknown). The F1 score of the NER is 91% in a separate
evaluation conducted on 1000 deduplicated sentences from
EMRs annotated by physicians. The original causal graph
is obtained by adding a directed edge from the main diagno-
sis (disease) to each of the positive findings in the same EMR.
Secondly, the original causal graph is pruned based on the
causal weight matrix A € RIVelXIVsl which is defined as:

A; j =n(f;|d;) * log (1)

N
1+n(d)’
where V; and V7 are the set of disease nodes and that of find-
ing nodes, respectively, and V; U Vy = V. n(f;|d;) is the
frequency of finding f; in the EMR documents where d; is
the main diagnosis. n(d;) is the number of EMR documents
of disease d; and N is the total number of EMR documents.
A; ; measures the likelihood that disease d; causes finding
f;j- The causal weight is normalized by diseases, and the final
causal weight matrix is:
~ A

A= =2, 2
9= 2

The causal weight A; ; has a long-tail distribution by dis-
eases, and most of the low-weight edges are noise. Thus, we
preserve the Top-k edges in each row so that the most impor-
tant signals on each disease are captured in the result graph.
The rest edges are removed and their weights in the graph are
set to zero. Therefore, each disease is connected to at most &
neighbors in the causal graph. We empirically set K = 5 in
our experiments.
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3.2 GCN Encoding

Most of the previous deep learning based automatic diagno-
sis models conduct sequence learning on the pure texts of
EMR documents [Yang er al., 2018; Mullenbach et al., 2018;
Girardi et al., 2018]. Although the sequence learning mod-
els can extract important information from the plain texts, yet
they are not designed to model the complex inherent relation-
ship between the medical entities, e.g. graph structure. In
contrast, the Graph Convolutional Network (GCN) has been
widely used in the modeling of graph structure data [Fu et
al., 2019]. Thus, we propose to use GCN to obtain the high-
level representation of medical entities considering the graph
structure among the entities.

Letd; € R™ and f; € R™ denote the embedding of dis-
ease d; and that of finding f;, respectively. Inspired by [Fu
et al., 2019], GCN convolves the features of the neighbors
to update the embedding of the target node. We propose the
update rules as:

W(z)du
[Ny (3)]

W(3>d,,
+ > ), o
vENe (i) v

d; = ReLUWMa;+ >
u€Np (i)

£ = ReLUWWE + —— S 4, ,;w®a, +p?%), @
INg(DI s eRmr)

where W, W W@ w® Wb ¢ gmxm pb)
and b(®) € R™ are the trainable parameters of the GCN en-
coder. N (i) and N,(4) are the set of parent nodes and that
of children nodes of disease d; on the disease hierarchy, re-
spectively. N, (j) is the set of neighbors (diseases) of finding
f; on the causal graph. In Eq. (3), we update the embedding
of disease d; based on the features of its parent diseases, chil-
dren diseases and the feature of itself. In Eq. (4), we update
the embeding of finding f; based on the features of the neigh-
boring disease nodes and the feature of f; itself. Thus, the
structural information of disease hierarchy and causal graph
is encoded in the embeddings of diseases and findings with
the GCN encoder. Eq. (3) and (4) can be considered as: a
Disease-Disease (D-D) GCN layer followed by a Disease-
Finding (D-F) GCN layer. We update disease embeddings
before updating finding embeddings because disease causes
findings to occur instead of the other way around. There is an
ordinal causal relationship in between. In the GMAN model,
the GCN encoder is used to generate the high-level represen-
tations of the findings from the given EMR document.

3.3 Mutual Attentive Network

As shown in Fig. 1, the pure texts and the findings extracted
from the given EMR are fed into a convolutional neural
network with attention. In this study, we propose a mu-
tual attentive network to jointly model pure texts and find-
ings (i.e. medical entities) in automatic diagnosis. Specifi-
cally, we use the pure texts to enhance the representation of
findings with attention, and vice versa.

Firstly, we concatenate the texts of chief complaint, history
of present illness, physical examination and supplementary
examination (e.g. lab test result or imaging report) together,
and perform Chinese word segmentation with Jieba 2.

2Jieba (https://github.com/fxsjy/jieba) is an open-sourced Chi-
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Secondly, on one hand, the word sequence is passed
through a convolutional layer to get the m-gram features
where n is the size of the convolutional kernel, e.g. n =
3,4,5. On the other hand, the word sequence is fed into a
Bidirectional Gated Recurrent Unit (Bi-GRU) layer to get the
hidden feature hV), Let {w1, ..., wy} denote the input word
sequence. The features of the hidden GRU layer are:

— —

h' = GRU(w;) h'eR’, )
— —

b = GRU(w;) hieR’,

where r denotes the number of recurrent units per direction.
We use the step-wise average pooling as the hidden feature:

1 (o
h® = ¥ L%_] h e R?". (6)
1=1

h(" is used to compute the attention weights a of the em-
beddings (Eq. (4)) w.r.t each finding:

u; = tanh(W© [hf(jl)} +b®), )

o exp(v(h) -uy)
Ty erp(viD) L)’

where W), b®) and vV are the parameters. Thereafter,
we compute the compound representation of all findings as
the attentive weighted sum:

h! = Zajuj. )
J

We call the process (Eq. (5)-(9)) the text-guided attention.

Next, we use the findings to enhance the representation of
pure texts with attention mechanism because there are key
information in the word sequence of pure texts that are not
included in the extracted findings due to the missed recall of
NER and the other critical but non-medical keywords. For
example, the duration of symptoms like “one hour ago” and
“for ten years” in the pure texts are critical to tell whether it
is acute disease or not.

We use the multi-channel CNN model [Kim, 2014] to pro-
cess the input pure texts with 3-gram, 4-gram and 5-gram
kernels. Each channel has [ (e.g. [ = 100) kernels and the
sequence is padded with zeros so that the size of the resulting
feature maps is the same. Let X € RV *¥ denote the word
embeddings of the input pure texts where IV is the length of
the input word sequence and k is the number of dimensions
of word embedding. The output of the convolutional layer is:

(®)

v

Y = | Y®| = MultiChannel CONN(X), Y € R*N*!
Y®

(10

nese word segmentation package, widely used in Chinese NLP stud-
ies. It generates the DAG structure of all possible segmentations
based on Trie Tree, and uses dynamic programming to find the most
probable segmentation based on word frequency.
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Metrics | Neurology | Cardiology | MIMIC-III-50
# of training samples 20,545 16,130 8,067

# of testing samples 1,425 1,108 1,574

# of unique findings 35,111 23,158 77,949

# of unique diseases 154 110 50

avg. length of text 1,691 2,208 1,530

avg. # of findings per EMR 12 15 25

Table 2: The statistics of the datasets. # means the the number.

where Y, Y2 Y () € RN*! are the output feature maps
of the CNN channels w.r.t. 3-gram, 4-gram and 5-gram, re-
spectively. Due to page limits, we refer the readers to [Kim,
2014] for the detail of multi-channel CNN model.

Similarly, let Y; denote the ¢-th row of Y. We compute the
hidden feature of w.r.t. the ¢-th row as:

T

where h(/) is the text-guided attention in Eq. (9). W(7) and
b®) are the parameters. The attentive weight of gram is:

exp(v® - 2,)
i = . 12
NS eV 2y (12

Finally, the compound representation of all pure texts is com-
puted as the attentive weighted sum:

h! = Zaizi. (13)

We call Eq. (10)-(13) the finding-guided attention.

To this end, the findings and the pure texts are mutu-
ally used to enhance the representation of each other. We
name this process the mutual attentive network. Different
from [Santos et al., 2016], the two attentions are performed
consecutively in GMAN to introduce more information ex-
change between free-texts and entities during representation
learning. That is, GMAN computes h/ first, and the compu-
tation of h? is based on h/ unlike the parallel attention mech-
anism used in question answering in [Santos et al., 2016]
where the update is separately performed based on the snap-
shot features of the counterpart’s previous state. Finally, the
attentive features h/ and h' are concatenated together with
the patient’s basic information like gender and age before
feeding to the last fully connected layer for classification.

4 Experiments

In this section, we evaluate GMAN on the real-world EMR
data and compare them with the baseline models.

4.1 Experimental Settings

We have collaborated with many top hospitals in China to
conduct research on automatic diagnosis. In this way, we col-
lected the real EMR documents for experiments. We select
two medical departments, Neurology and Cardiology, in the
evaluation with the following reasons: (1) It is difficult to dis-
tinguish between diseases in the same department since they
usually share symptoms and signs. (2) Most of the diseases in
Neurology and Cardiology are highly risky, e.g. heart failure
and brainstem hemorrhage. It is of highly clinical value to
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automatically diagnose the diseases in the two departments.
The main diagnosis by the certificated doctor in each EMR is
selected as its ground-truth label to predict.

For the reproducibility concerns, we choose MIMIC-III-
50 [Mullenbach er al., 2018] as the English dataset in the
evaluation besides the Chinese datasets. Table 2 shows the
statistics of the datasets in the evaluation’. The training and
the testing sets in the above three datasets are disjoint. For
MIMIC-III-50, we use the same training and testing sets from
the original study*. The public English NER for clinical
notes, CliNER?, is used to process MIMIC-III-50, which re-
ports 83.8% F1 score in the original paper [Boag et al., 2018].

We compare the proposed model with the following deep
learning based automatic diagnosis methods:

CNN [Yang et al., 2018]: It proposes a convolutional neu-
ral network to extract features from EMR documents for au-
tomatic diagnosis.

BiGRU [Choi et al., 2016a]: It introduces the bidirectional
GRU upon the word sequence to get the hidden features be-
fore aggregating to a compound representation by average
pooling for diagnosis prediction.

ACNN [Girardi et al., 2018]: It combines the CNN model
with the gram-level attention to predict the diagnosis and de-
tect the warning symptoms.

CAML [Mullenbach et al., 2018]: Tt proposes a label-wise
attention on top of a convolutional neural network to predict
diagnosis from clinical texts.

In order to validate the effectiveness of the proposed
method in automatic diagnosis, we use GCN, MAN and
GMAN to denote the proposed models with GCN encoding
alone, mutual attention alone and both, respectively. GPAP
is the method that replaces the mutual attentive network of
GMAN with Parallel Attentive Pooling [Santos et al., 2016].

4.2 Results

We use recall at K (R@K) and precision at K (P@K) as
the metrics to measure the performance. Since there is only
one ground-truth label in each testing sample in the Chinese
datasets Neurology and Cardiology, the R@1 and P@1 are re-
ported. However, since there are multiple ground-truth labels
for each sample in MIMIC-III-50, we report R@5 and P@5
to be consistent with [Mullenbach et al., 2018]. Since the
original paper [Mullenbach et al., 2018] only reports the P@5
result, we reproduce CAML on the same training and testing
datasets, and report both P@5 and R@5 in our evaluation.
The reproduced P@5 is 61.50%;, very similar to that (61.80%)
in the original paper.

Table 3 shows the evaluation results. As we can see, the
proposed models outperform all baseline models on three
datasets under all metrics including the benchmarking En-
glish dataset. Compared to the best of the baselines, there
are about 6%-10% absolute improvement of recall and pre-
cision on Neurology, while there are about 1.6%-4% abso-

*We do not have the permission from hospitals to publish the
Chinese EMR data since they are legally protected by the laws.
Please focus on the contributions of the proposed diagnosis models.

“https://github.com/jamesmullenbach/caml-mimic

Shttps://github.com/text-machine-lab/CLINER
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Models | Neurology | Cardiology |  MIMIC-II-50

| Re@l P@l | Rel P@1 | R@5 P@s
CNN 6239%  68.02% | 4837%  4889% | 59.66%  61.67%
BiGRU | 64.00%  67.59% | 51.32%  60.22% | 57.51%  59.10%
ACNN | 6458%  6931% | 52.62%  58.01% | 59.77%  61.85%
CAML | 62.53%  6891% | 50.75%  56.84% | 59.23%  61.50%
GCN 7031%  77.32% | 53.73%  61.19% | 61.22%  62.53%
MAN 66.45%  72.36% | 5326%  60.43% | 60.05%  62.19%
GPAP | 71.87%  78.63% | 5579%  61.94% | 61.57%  62.83%
GMAN | 7359% 7981% | 57.31%  62.62% | 62.13%  63.46%

Table 3: Prediction results for the different models
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Figure 3: The t-SNE plots of the findings before (upper) and af-
ter (bottom) GCN encoding. The findings most close to the same
disease are in the same color.

lute improvement of recall and precision on Cardiology and
MIMIC-III-50, which prove the effectiveness of the proposed
models in automatic diagnosis.

Among the proposed methods, we can see that both GCN
and MAN improve the performance of automatic diagnosis. It
means that both the proposed GCN encoding and the mutual
attentive network bring benefits to model patient’s illness. By
comparing GMAN and GPAP, we can see that the proposed
mutual attentive network outperforms parallel attentive pool-
ing in this task. Meanwhile, the experiments show that when
applying both methods together, the performance improve-
ment is the best.

We attribute the improvement of performance of the pro-
posed models to two aspects:

Firstly, the incorporation of GCN encoding can effectively
extract the structural information between findings and dis-
eases, and it also alleviates the sparse feature problem. Fig. 3
illustrates the t-SNE plots of the findings before and after
GCN encoding. In order to show the validity, we use the same
color to draw the findings if they are the most close to the
same disease. We randomly select up to 20 findings for each
disease from the Cardiology department where the findings
are the most close to the selected disease based on the cosine
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Diagnosis :  Hemorrhagic cerebral infarction (H f4FXAE%E)

Pure Texts: Six days ago, without inducement, the patient developed aphasia,
depression, and , barely able to lift out of bedf, have cough
and phlegm more, yellow purulent sputum, not easy to cough out. Left temporal
occipital lobe infarction on cranial CT  (BEGRAIFTIEETH
HARERESIE, IS, a0 (B BEA B R, B 12 R 2, W B, T 5
Iz SkARCT A MIBRAL H-AEE) )

Findings :  [iCHiclSGoienness (FHHEEE) decreased muscle tone (BI3KA1E)

- (-) bilateral lung respirator pitch (IXAHIFEIRE4H) phlegm yellow (B

) fever (R#) superficial lymph nodes (HE453%) cough (1%%) EETeBal
(B right limb fatigue (A1)

Figure 4: Visualization of mutual attention weights

distance between their embeddings. Apparently, the findings
w.r.t. the same disease are much closer after GCN encoding,
which means GCN is capable of encoding complex structural
information in the embeddings.

Secondly, the proposed mutual attentive network can cor-
rectly enhance the weights of both the critical findings and
the important original words from the input towards getting
more accurate diagnosis. Fig. 4 illustrates an example of the
mutual attention weights. The example is randomly selected
from the testing set. The proposed mutual attentive network
learns to impose higher weights upon the critical findings as
well as the important words. In Fig. 4, the words with high
attention weights are highlighted. The higher the weight is,
the darker the background color is. As we can see, the high-
lighted findings (e.g. mental sluggishness, decreased muscle
tone, cerebral hemorrhage and limb fatigue) are all the crit-
ical symptoms and signs of the diagnosis hemorrhagic cere-
bral infarction. Similarly, the highlighted words (e.g. right
limb weakness and with hemorrhage) in the original texts are
also the keywords highly relevant to the diagnosis. Besides,
the attention weights can be further used to explain the diag-
nosis prediction because they are considered critical to make
the diagnosis by the model. Thus, the mutual attentive net-
work sheds some light on the interpretability of the automatic
diagnosis models.

In all, the evaluation results prove that the proposed models
are effective in automatic diagnosis on both the Chinese and
the English datasets. The improvement results from the better
representation learning of medical entities by GCN and the
interpretability brought by mutual attentive network.

5 Conclusion

In this paper, we propose GMAN, an automatic diagnosis
model which is built upon the reliable corpus of EMR doc-
uments from hospitals. GMAN consists of medical graph
construction, GCN encoding and mutual attentive network.
We construct the disease hierarchy and the causal graph of
diseases based on the international standards as well as the
clinical EMR data. The proposed GCN encoding extracts the
complex structural information between the critical findings
found on the patient. The mutual attentive network enhances
the feature representations of the critical words and findings
by imposing higher attention weights on them. The experi-
mental results show that the proposed models outperform the
previous deep learning based diagnosis methods on the real-
world clincial EMR data.
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