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Abstract
Automatic diagnosis based on clinical notes is crit-
ical especially in the emergency department, where
a fast and professional result is vital in assuring
proper and timely treatment. Previous works for-
malize this task as plain text classification and fail
to utilize the medically significant tree structure of
International Classification of Diseases (ICD) cod-
ing system. Besides, external medical knowledge
is rarely used before, and we explore it by extract-
ing relevant materials from Wikipedia or Baidupe-
dia. In this paper, we propose a knowledge-based
tree decoding model (K-BTD), and the inference
procedure is a top-down decoding process from the
root node to leaf nodes. The stepwise inference
procedure enables the model to give support for de-
cision at each step, which visualizes the diagnosis
procedure and adds to the interpretability of final
predictions. Experiments on real-world data from
the emergency department of a large-scale hospi-
tal indicate that the proposed model outperforms
all baselines in both micro-F1 and macro-F1, and
reduce the semantic distance dramatically.

1 Introduction
The clinical note, an essential part of Electronic Health
Record (EHR), generally contains a patient’s past medical
history, chief complaints and current symptoms. The physi-
cians need to study and be on probation for years before they
can give diagnosis individually, but the diagnosis is still time-
consuming and error-prone.

To address existing drawbacks of human diagnosis, re-
searchers started to study automatic diagnosis [Xiao et al.,
2018]. Automatic diagnosis takes raw texts of clinical notes
as input, and gives the codes of diseases according to the ICD
coding system [WHO, 1978], which is adopted in hospitals
world-wide. The ICD codes are naturally organized as a tree
structure. The tree starts from a virtual root node, goes deeper
through intermediate nodes and finally reaches diseases in
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leaf nodes. Only leaf nodes correspond to a specific disease
with its ICD code. Intermediate nodes represent a medical
concept or a range of diseases.

Automatic diagnosis has become a popular research field
recently [Perotte et al., 2013; Wang et al., 2016; Subotin and
Davis, 2016], and the majority of existing works formalize
it as a plain text classification task. For example, [Lipton et
al., 2016] and [Li et al., 2018] use Recurrent Neural Network
(RNN) and Convolutional Neural Network (CNN) to predict
diseases. To give support from clinical notes for final pre-
dictions, attention mechanisms are used in [Sha and Wang,
2017] and [Mullenbach et al., 2018].

Although existing models have made progress on the accu-
racy of disease diagnosis by a considerable margin, automatic
diagnosis is still confronted with two major problems.

Negligence of the Medical Relationships among Diseases.
Existing models generally treat diseases as mutually indepen-
dent. However, from a medical perspective, diseases are inter-
connected and they are organized hierarchically in the ICD
tree. The constraints of hierarchical structure can prevent the
predictions from being too far away from the ground truth.
For example, without hierarchical restrictions, a patient with
acute myocardial infarction (disease of the circulatory sys-
tem) can be diagnosed with acute gastroenteritis (disease of
the digestive system) by mistake, and this may bring about
life loss and huge economic compensation.

Low Practicality of Support. Existing attention-based
models can already tag words that have deep impact on final
predictions. However, this one-step attention cannot reveal a
transparent reasoning process, thus lacking in the practicality
of assisting doctors in making decisions. In general, diag-
nosis is a step-by-step procedure, where the physician first
locates the diseased organ and then uses the knowledge he
has learned and the information from patients to stepwisely
reach final results. Each step inside the diagnosis procedure
requires different support from clinical notes.

To address these problems, we propose a knowledge-based
tree decoding model named K-BTD, consisting of Clinical
Notes Encoder, Knowledge Encoder, Judge Net and Fusion
Net. K-BTD takes in raw clinical notes as input, and the in-
ference procedure is a top-down decoding process of the ICD
tree. Each node inside the tree is equipped with external med-
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ical knowledge extracted from Wikipedia or Baidupedia. At
each decoding step, the Judge Net decides whether to expand
the children of the current node, and the Fusion Net aggre-
gates information from multiple resources to promote further
decoding. The whole process is repeated recursively until
there are no more children to expand. The stepwise decoding
process imitates the diagnosis procedure of a human doctor,
and at each step our model can give support for its decision,
which visualizes the reasoning process and provides human
doctors with better references.

We conduct experiments on real-world data from the emer-
gency department of Beijing Tsinghua Changgung Hospital,
a large-scale hospital in China. Experimental results indicate
that our model achieves significant improvements over other
state-of-the-art models in micro-F1, macro-F1 and semantic
distance. We also show the superiority of our model in terms
of interpretability. Ablation analysis and error analysis are
conducted to verify the internal mechanism. To the best of
our knowledge, this is the first empirical study to inference
diagnosis with knowledge-based tree decoding.

2 Related Work
2.1 Automatic Diagnosis
Automatic Diagnosis is a long-standing task in the field of
medical informatics. Early works utilize machine learning
models such as hierarchical Support Vector Machine (SVM)
[Perotte et al., 2013]. With the rapid development of deep
learning technologies, researchers start to formalize it as a
text classification task. Long Short Term Memory (LSTM)
[Lipton et al., 2016] and CNN [Li et al., 2018] are used to
extract semantic features from textual content. Bag-of-words
and disease correlation graph are explored in [Wang et al.,
2016]. However, these methods can only extract shallow
features and cannot give support for final predictions, which
block it from practical application.

With the widespread of attention mechanism, researchers
begin to predict diseases and their support by incorporat-
ing deep learning models with it. [Mullenbach et al., 2018]
adopts per-label attention mechanism and allow the model to
learn distinct representations for each disease label.

2.2 Tree-based Multi-label Classification
Tree-based multi-label classification is a branch of multi-
label classification, and it is applicable when the predictor
has a hierarchical structure. To be specific, the label space is
a tree where nodes represent nested semantic concepts, and
the specificity of them increases with depth. Its successful
implementation can reduce a large discrete sample space to
only a small number of candidate labels.

Some researchers focus on inducing tree structure label
space to improve inference efficiency [Beygelzimer et al.,
2009; Daumé III et al., 2017]. Some researchers employ the
already existed label space structure. For example, the natural
tree structure of Medical Subject Heading (MeSH) is utilized
by [Singh et al., 2018] in MeSH tagging task.

Some researchers have explored the tree structure of ICD
coding system. [Perotte et al., 2013] adopts hierarchical SVM

to model the inclusion and exclusion relationships of dis-
eases. [Kamkar et al., 2015] reaches stable and better fea-
ture selection based on the ICD tree structure. [Xie and Xing,
2018] applies tree-of-sequences LSTM to model the latent
representation of each node in the ICD tree with textual de-
scriptions of the ICD codes and their hierarchical structure.
However, none of them formalizes automatic diagnosis as a
tree-decoding procedure along the ICD tree.

3 Model
3.1 Problem Formulation
Considering that a patient can be diagnosed with more than
one disease, we treat automatic diagnosis as a multi-label
classification task over ICD-9 codes. ICD-9 is a standard
version of the ICD coding system, which contains over
15,000 codes in its taxonomy1. In our study, we only con-
sider high-frequent ICD-9 codes such as top-100 and top-150
codes, which takes up more than 90% of all appeared ICD-9
codes. Each node in the ICD-9 tree is equipped with a piece
of text representing the external knowledge extracted from
Wikipedia or Baidupedia.

The input of our model, the clinical notes of a patient, is a
word sequenceX = {x1, x2, . . . , xN}, whereN is the length
of sequence X . Let the ICD-9 codes for diseases to be the la-
bel space L, and the labeling task is to determine yl ∈ {0, 1}
for all l ∈ L.

3.2 Model Overview
The clinical note from patient is first encoded by Clinical
Notes Encoder to get feature sequence T = {t1, t2, . . . , tN}
and flowing vector Froot for root node. We name Fn as flow-
ing vector for node n because it contains all information flow-
ing from the root node to current node n. Next, the tree de-
coding process starts from the root node of the ICD-9 tree.

Each step of the decoding process will be conducted on a
particular node n in the tree (e.g., root). The Knowledge En-
coder first encodes the external knowledge of each child of
the current node n. Next, the Judge Net enumerates each
child node and decides whether to expand this child node
for further decoding. If a child node m is chosen to be ex-
panded, the Fusion Net will aggregate flowing vector Fn and
the external knowledge of node m to get flowing vector Fm

for child node m. The decoding process will repeat recur-
sively until there are no more nodes to expand. The expanded
leaf nodes will be chosen as final predictions. The overall
framework is shown in Figure 1.

3.3 Clinical Notes Encoder
Taking the word sequence X of clinical notes as input, the
Clinical Notes Encoder computes the latent text description
through two layers, i.e., embedding layer and RNN layer.

We first convert each word xi to a vector with pretrained
Tencent AI Lab Embedding Corpus [Song et al., 2018],
which features its strength in the medical domain. We have
tried building word embeddings with the dataset we adopt,

1The ICD-9 tree structure can be found at https://bioportal.
bioontology.org/ontologies/ICD9CM.
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Figure 1: Overview of the proposed K-BTD model. The decoding process is now conducted on node n, and deciding whether to expand child
node m for further decoding. The Am, Cm, T on the right side are originally calculated from the left side.

and the performance is not as good. After the embedding
layer, an RNN is used to extract the contextual information
from clinical notes. It is noticeable that the RNN can be in any
form such as Gated Recurrent Unit (GRU), LSTM and BERT
[Devlin et al., 2018]. After the RNN layer, we can get clinical
notes feature sequence T = {t1, t2, . . . , tN} ∈ RN×q , where
q is the dimension of the hidden state. The flowing vector for
the root node is set as Froot = tN .

3.4 Knowledge Encoder

For Knowledge Encoder, we choose CNN due to its high
efficiency. The input of Knowledge Encoder from node m
is a word sequence of external medical knowledge Gm =
{gm,1, gm,2, . . . , gm,M}, where M is the sequence length.
The same embedding method is applied on the sequence to
get G̃m = {g̃m,1, g̃m,2, . . . , g̃m,M}.

The convolution operation is done with a convolution ma-
trix W ∈ Ru×(h×k), where u is the number of filters, h is the
length of the sliding window and k is the dimension of word
embeddings. The convolutional feature matrix Cm ∈ RM×u

is calculated by:

Cm,i =W · g̃m,i:i+h−1 + b (1)

where g̃m,i:i+h−1 is the concatenation of word embeddings
within the i-th sliding window, and b ∈ Ru is a bias vector.

To integrate the information from convolutional feature
matrix Cm, we adopt self attention and calculateAm, the fea-

ture vector of external knowledge for node m as follows:

Am =
∑
i

(
eCm,iWa∑
j e

Cm,jWa

)
Cm,i (2)

where Wa is a multi-layer perceptron.

3.5 Judge Net
Suppose the decoding process is now conducted on node n,
and the network is deciding whether to expand child node m
for further decoding. The Judge Net calculates the possibility
that child node m will be expanded with two measurements,
namely semantic-level score and word-level score.

Semantic-level score. We use semantic-level score s1 to
represent the semantic-level interactions between external
knowledge feature vectorAm and the aggregated information
Fn that has flown to current node n:

s1 = Sigmoid (ZsW1) ∈ R
where Zs = Concat (Fn, Am, Fn ◦Am, |Fn −Am|)

(3)

where W1 is a multi-layer perceptron and ◦ indicates
element-wise multiplication.

Word-level score. Semantic-level score only considers the
interactions between holistic feature vectors. Here, we use
word-level score s2 to introduce reactions at the word-level
between clinical notes feature sequence T = {t1, t2, . . . , tN}
and convolutional feature sequence {Cm,i}.
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First, we calculate the similarity matrix S with {ti} and
{Cm,j} as follows:

Sij = tanh
(
tiW2C

T
m,j

)
(4)

where W2 ∈ Rq×u is a parameter matrix. Then, row-wise
and column-wise softmax are separately applied on S to get
γij and δij :

γij =
exp(Sij)∑M
v=1 exp(Siv)

(5)

δij =
exp(Sij)∑N

v=1 exp(Svj)
(6)

we use ξi =
∑M

j=1 δij to measure the importance of the
ith word in clinical notes. It is noticeable that ξi is only cal-
culated for interpretability, and is not involved in subsequent
calculations.

Next, we generate intermediate representation pi ∈ Ru by
attentively aggregate {Cm,j}:

pi =
M∑
j=1

γijCm,j (7)

Then, we apply a GRU to process the generated intermedi-
ate representation P = {p1, p2, . . . , pN} ∈ RN×u:

P = GRU (P ) ∈ RN×dp (8)
where dp is the dimension of the hidden state. Next, we

project P to a compressed vector by max-pooling along the
column axis to get the word-level score s2:

s2 = Sigmoid
(
Maxpoolcol

(
Concat

(
P , T

))
W3

)
∈ R (9)

where W3 is a multi-layer perceptron, and T is a shortcut
connection to facilitate the training process.
Overall score. To consider both scores simultaneously, we
formulate the overall score s as a weighted summation of
semantic-level score and word-level score:

s = λs1 + (1− λ)s2 (10)
where λ ∈ [0, 1] is a hyper-parameter. If s is greater than

a preset threshold ε, the child node m will be expanded. If
s is smaller than ε, the Judge Net will check the next child
node of current node n. ε is set to be 0.45 in our experiment
to balance precision and recall.

# of admission records 72333
# of unique ICD-9 codes 2156
Ratio of top-100 codes 91.6%
Ratio of top-150 codes 95.2%
Avg. # of codes per admission (top-100) 2.35
Avg. # of codes per admission (top-150) 2.43
Avg. # of words per admission 105.58
Avg. # of words per external knowledge 268.17

Table 1: Statistics of the dataset from Beijing Tsinghua Changgung
Hospital, a large-scale hospital in China.

3.6 Fusion Net
The Fusion Net comes into operation only if a child node
m is chosen to be expanded by Judge Net. Its purpose is
to generate Fm by fusing the information flowing to parent
node n and the external knowledge of child node m.

First, the weight βi for each position i in the convolutional
feature sequence {Cm,i} is calculated via dot-production
with flowing vector Fn and subsequent softmax operation:

αi = Fn � Cm,i

βi =
exp(αi)∑M
j=1 exp(αj)

(11)

Next, the flowing vector of child node m is the weighted
summation of Fn, Am and the weighted average of {Cm,i}:

Fm = Fn +
s2

s1 + s2
Am +

s1
s1 + s2

M∑
i=1

βiCm,i (12)

The different weight for Am and
∑M

i=1 βiCm,i is designed
to introduce more information from child node m. If s1 is
smaller than s2, the model needs to pay more attention to the
word-level information. If s1 is greater than s2, the model
should absorb more information from the semantic-level.

3.7 Training
We use layerwise multi-label cross entropy to train our net-
work. The loss function is as follows:

loss =

MaxDepth∑
d=1

e−d |yd|∑
k=1

L(yd,k, pd,k)

 (13)

where MaxDepth is the depth of the ICD-9 tree, L is bi-
nary cross entropy loss, pd is the prediction of Judge Net at
layer d and yd is the ground truth label at layer d. The ex-
ponential part is added to penalize more for early error and
penalize less for late error.

4 Experiments
4.1 Dataset Description
The data from the emergency department of Beijing Tsinghua
Changgung Hospital, a large-scale hospital in China, is col-
lected from 2015 to 2017, and it is the first large automatic di-
agnosis dataset in Chinese. The dataset contains unstructured

Chronic Airway Obstruction (ICD-9 code: 496.0)
Clinical manifestations:
Chronic cough is often the earliest symptom, and it can
be unhealed with the course of the disease. Cough ...
Cause of diseases:
The risk factors that have been found can be roughly
divided into external factors like environment ...

Table 2: Partially shown example of external medical knowledge
from Baidupedia (translated from Chinese).
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Tasks Top-100 Codes Top-150 Codes
Metrics micro-F1 macro-F1 SD micro-F1 macro-F1 SD

Type #1

TFIDF+SVM 0.6241±0.0089 0.5027±0.0076 1.818±0.047 0.5987±0.0077 0.4592±0.0082 2.371±0.061
TextCNN 0.6695±0.0126 0.5239±0.0097 1.315±0.041 0.6409±0.0117 0.4887±0.0109 1.826±0.057

BERT 0.6823±0.0118 0.5459±0.0104 1.250±0.051 0.6598±0.0097 0.5201±0.0129 1.588±0.072
DeepLabeler 0.6703±0.0152 0.5357±0.0193 1.291±0.038 0.6385±0.0137 0.4977±0.0201 1.799±0.089

CAML 0.6618±0.0134 0.5375±0.0093 1.282±0.035 0.6402±0.0161 0.5028±0.0144 1.766±0.093
AIC 0.6875±0.0093 0.5602±0.0081 1.142±0.045 0.6557±0.0096 0.5152±0.0108 1.527±0.059

Type #2 C-MemNNs 0.6855±0.0177 0.5652±0.0203 1.131±0.058 0.6647±0.0135 0.5227±0.0121 1.476±0.033
Fact-Law 0.6785±0.0147 0.5603±0.0111 1.189±0.040 0.6602±0.0181 0.5185±0.0166 1.481±0.049

Ours
K-BTD (LSTM) 0.7025±0.0104 0.5903±0.0138 0.899±0.014 0.6798±0.0117 0.5462±0.0142 1.182±0.047
K-BTD (GRU) 0.7011±0.0149 0.5942±0.0126 0.920±0.021 0.6813±0.0206 0.5493±0.0178 1.169±0.051
K-BTD (BERT) 0.7085±0.0128 0.5973±0.0097 0.852±0.036 0.6855±0.0175 0.5472±0.0134 1.159±0.032

Table 3: Automatic diagnosis results on the data from the emergency department of Beijing Tsinghua Changgung Hospital. Values after the
plus minus sign denote standard deviations from 5-fold random data splits.

clinical notes including chief complaints, history of recent ill-
ness, past medical history and structured data such as auxil-
iary examination results.To keep track with previous work,
we only utilize the unstructured part.

Each admission record is tagged with one or more ICD-9
codes by licensed physicians, denoting the identified diseases.
A summary of the dataset statistics is provided in Table 1. We
choose the top-100 and top-150 most frequent codes to con-
duct two separate experiments. When doing experiments on
top-k frequent codes, we filter the dataset down to instances
that have at least one of the top-k frequent codes. In experi-
ment, we conduct random five fold cross-validation to exam-
ine the performance of our model as well as baselines.

For external medical knowledge, we use Wikipedia and
Baidupedia as resources. [Trevena, 2011] has demonstrated
the reliability of medical articles in Wikipedia, and medical
terms in Baidupedia are under the supervision of National
Health Care Commission of China. The extraction of ex-
ternal medical knowledge is divided into three steps. For
each node in the ICD-9 tree, we first search the correspond-
ing Wikipedia page. If the Wikipedia page does not exist,
we use the corresponding Baidupedia page to make up for
it. If the corresponding Baidupedia page also does not exist,
we will consider highly related candidates in Baidupedia. We
rank related candidates by the similarity between candidates
and query terms and select the one with highest similarity.
For Wikipedia pages, we use the content in the section of
Signs and Symptoms. For Baidupedia pages, we extract the
materials in sections of Clinical Manifestations and Cause of
Diseases. An illustration of external medical knowledge is
shown in Table 2.

4.2 Baselines
For comparison, we reproduce two major categories of base-
lines. The first category utilizes only clinical notes and the
second employs external medical knowledge as well.

As for the first category baselines, we first choose
TFIDF+SVM, TextCNN [Kim, 2014] and BERT [Devlin et
al., 2018], which are classic models for text classification.
Besides, three classic automatic diagnosis models DeepLa-
beler [Li et al., 2018], AIC [Xie and Xing, 2018] and CAML
[Mullenbach et al., 2018] are also adopted for comparison.

As for the second category baselines, we adopt C-
MemNNs [Prakash et al., 2017], which uses multi-hop mem-
ory networks to inference diagnosis. As there are few works
in automatic diagnosis that utilize external knowledge, we
adopt a classic reading comprehension model Fact-Law At-
tention Model [Luo et al., 2017] from the legal judgement
domain for comprehensive comparison. All baselines in type
#2, as well as the proposed model use the same external
knowledge to assure fair comparison.

To better demonstrate the advantage of our model, we
use LSTM, GRU and BERT to replace the RNN in Clinical
Notes Encoder and conduct three different experiments. The
code for our model is publicly available at https://github.com/
kaisadadi/K-BTD.

4.3 Evaluation Metrics
The distribution of diseases is highly imbalanced so we eval-
uate our model with both micro-F1 and macro-F1. Besides,
we propose another metrics named semantic distance (SD),
which is modified from [Singh et al., 2018]. SD is defined as:

SD =
1

|Y|
∑
u∈Y

min
v∈Ŷ

D(u, v) +
1

|Ŷ|

∑
u∈Ŷ

min
v∈Y

D(u, v) (14)

where Y is the set of target codes and Ŷ is the set of pre-
dicted codes. D is a distance function that measures the short-
est distance between two nodes in the ICD-9 tree. If Ŷ is
empty, SD is set to be the maximum distance between two
nodes in the ICD-9 tree. The semantic distance measures the
distance between predictions and labels from a medical view.
Mismatch with small semantic distance is tolerable, while a
large semantic distance might result in completely wrong op-
erations or even death.

4.4 Experimental Settings
In experiment, we set λ to 0.5, ε to 0.45 and dp to 256. We
adopt Adam [Kingma and Ba, 2015] for optimization. The
size of the mini-batch is 64, and the learning rate is 10−5 for
BERT-related models and 10−3 otherwise. Dropout is set to
0.5, and weight decay is 10−5.
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Clinical Note: The patient got upper abdominal pain and paroxysmal colic 12 hours ago with no 
obvious inducement. The symptom exacerbated after 6 hours, accompanied with acid reflux, 
nausea and multiple vomiting, which is yellow watery. The patient also has chills, sore throat, and 
fatigue all over. The patient takes ibuprofen and the symptom is not relieved ....... Past history: 
allergy history (-), last menstruation: 2017-*-**. Menstruation is delayed.
Diagnosis: Gastroenteritis(ICD-9: 558.9), Reflux esophagitis (ICD-9: 530.1)

CAML

root

upper abdominal pain, vomiting, nausea, ibuprofen

pain, chills, sore throat, fatigue, ibuprofen

Gastroenteritis   ✔
upper respiratory 

infections

Diseases of 
the digestive 
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abdominal
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vomiting
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Figure 2: Evaluation of interpretability with a partially shown clinical note (translated from Chinese). Support is placed in the rectangular
bar. The middle part shows the support and predictions from CAML, and the bottom part shows the stepwise inference results and support
from our proposed model.

4.5 Experimental Results
We evaluate our model on real-world data from the emer-
gency department of Beijing Tsinghua Changgung Hospital,
and experimental results are shown in Table 3. From the re-
sults we can see that:

(1) K-BTD exceeds all baselines in both experiments,
which demonstrates the effectiveness and robustness of our
model.

(2) K-BTD surpasses baselines in macro-F1 by a consid-
erable margin, and this indicates that the utilization of tree
structure enables the model to make the right decisions on
diseases that are not common to appear.

(3) K-BTD reduces semantic distance significantly com-
pared with baselines. This indicates that the results of our
model are closer to the ground truth than baselines and can
provide better references for human doctors.

(4) K-BTD can benefit from the research progress in text
encoder. K-BTD is actually a framework, where the compo-
nents inside can be updated easily. We are confident that our
model can reach higher performance with better text encoders
in the future.

4.6 Evaluation of Interpretability
Because our model employs tree decoding architecture, it
can give support for decision at each step while conventional
models can only provide support for final predictions. Here
we demonstrate the interpretability of our model with an ac-
tual clinical note from the dataset, and compare it with an-
other explainable model CAML [Mullenbach et al., 2018].

For K-BTD, each step’s support is chosen from words with

value ξi greater than a preset threshold. For CAML, we fol-
low the original settings. The results are shown in Figure 2.

We can see from results that support from both CAML and
our model catch similar important words such as “vomiting”
and “abdominal pain”. However, without stepwise inference,
CAML misdiagnoses upper respiratory infections because of
the shared symptoms between diseases (e.g. sore throat). Be-
sides, we can see that our model’s decision at each step has
different support. For example, the support for diseases of
the digestive system are “abdominal” and “vomiting”, and the
support for diseases of esophagus, stomach and duodenum
are “acid reflux”, “vomiting” and “chills”. This observation
demonstrates that our model pays attention to different parts
of the clinical notes at different positions in the decoding pro-
cess. The stepwise support brings more interpretability to fi-
nal predictions and can provide human doctors with better
assistance in diagnosis inference.

4.7 Ablation Analysis
External medical knowledge is a critical part of our model. To
further explore the role that external medical knowledge plays
in the whole architecture, we conduct three experiments:

Experiment #1. Randomly mask from 10% to 50% of the
knowledge texts for all nodes in the ICD-9 tree.

Experiment #2. Randomly shuffle the knowledge for 10%
to 50% nodes in the ICD-9 tree.

Experiment #3. Randomly replace the knowledge for 10%
to 50% nodes in the ICD-9 tree with totally irrelevant materi-
als.
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Figure 3: Results of ablation analysis. E1, E2 and E3 correspond to
experiment #1, #2 and #3. Micro means micro-F1 grade and macro
means macro-F1 grade.

Model Depth of the ICD-9 tree
0 1 2 3 4

K-BTD 0% 13% 23% 53% 11%
BERT 0% 16% 29% 42% 13%
AIC 0% 15% 27% 45% 13%

C-MemNNs 0% 14% 31% 43% 12%

Table 4: Results of error analysis.

We repeat each experiment five times to reduce the effect
of randomness, and use the mean value as final results. For all
three experiments, the model takes more epochs to converge
and the performance on both micro-F1 and macro-F1 of the
initial three to five epochs decreases a lot. The results are
shown in Figure 3.

We observe that the model performance decreases on all
three experiments, and the degree of decline increases from
experiment #1 to experiment #3. It’s clear that noise to ex-
ternal medical knowledge can decrease model performance.
The severer the noise is, the more the model performance
drops, which indicates that our model relies heavily on the
quality of external medical knowledge. We can safely predict
that external knowledge with better quality can bring further
improvement to model performance.

4.8 Error Analysis
To give better insight into out model’s performance, we cal-
culate the ratio of first-occurred errors that appear at different
depth in the ICD-9 tree. We define the depth of the root node
to be 0, and the maximum depth is 4. The results are shown in
Table 4. For baseline models without tree decoding, we use
the ICD-9 tree to locate the depth of the first-occurred error.

It’s clear that K-BTD make mistakes in deeper positions in
the ICD-9 tree compared with baselines. The deeper the first
error occurs in the decoding process, the closer the distance
between predictions and ground truth is, which again proves
the effectiveness of our model. The reason of low error ratio
in depth 4 is that the number of children of nodes in depth 3
is quite small.

5 Conclusion
In this paper, we propose K-BTD, a knowledge-based tree de-
coding model for automatic emergency diagnosis. To be spe-
cific, we utilize the medically significant ICD-9 tree structure
and formulate this task as a stepwise top-down decoding pro-
cedure. External knowledge is extracted to assist the decod-
ing process, and we have demonstrated its importance in our
model. The top-down decoding process enables our model to
give different support for each decision, which adds to the in-
terpretability and practicality of our model compared with ex-
isting single-step models. Experimental results on real-world
data show that our model outperforms baselines in all metrics,
which proves the effectiveness and robustness of our model.

In the future, we will focus on increasing the diagnosis ac-
curacy of infrequent diseases.
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