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Abstract

In this paper, we design and evaluate a new
substructure-aware Graph Representation Learning
(GRL) approach. GRL aims to map graph struc-
ture information into low-dimensional representa-
tions. While extensive efforts have been made for
modeling global and/or local structure information,
GRL can be improved by substructure information.
Some recent studies exploit adversarial learning to
incorporate substructure awareness, but hindered
by unstable convergence. This study will address
the major research question: is there a better way
to integrate substructure awareness into GRL? As
subsets of the graph structure, interested substruc-
tures (i.e., subgraph) are unique and representative
for differentiating graphs, leading to the high corre-
lation between the representation of the graph-level
structure and substructures. Since mutual infor-
mation (MI) is to evaluate the mutual dependence
between two variables, we develop a MI inducted
substructure-aware GRL method. We decompose
the GRL pipeline into two stages: (1) node-level,
where we introduce to maximize MI between the
original and learned representation by the intuition
that the original and learned representation should
be highly correlated; (2) graph-level, where we pre-
serve substructures by maximizing MI between the
graph-level structure and substructure representa-
tion. Finally, we present extensive experimental re-
sults to demonstrate the improved performances of
our method with real-world data.

1 Introduction

In this paper, we aim to design, implement, and evalu-
ate a new substructure-aware Graph Representation Learn-
ing (GRL) approach. GRL aims to quantify graph by encod-
ing structural information into low dimensional vectors. Due
to the impressive effectiveness and robustness of GRL, GRL
has drawn attentions in many application domains, such as
biomedical sciences, human behavior modeling, social net-
works, computer vision, etc [Cai er al., 2018].
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Unlike global or neighbor (local) connectivity structures,
substructures are a set of subgraphs (e.g., sub-circles, high-
degree sub-vertexes, etc.) that are represented by a subset
of vertexes and edges. Substructures usually demonstrate
unique patterns and semantics of graphs that can be used
to significantly improve GRL. For example, a mobile user
can be described by an activity graph, where nodes are Point
of Interests (POIs)! and an edge is the transition frequency
among two POls, a sub-circle (a type of substructure) repre-
sents a periodical activity sequence of the user, indicating the
job occupation and preference of the user. In this case, sub-
structure information can be used to enhance the quality of
mobile user profiling [Wang et al., 2019].

Extensive efforts have been made for preserving global and
local structures in GRL. For example, Graph Convolutional
Networks (GCNs) learn node representations by aggregating
neighbors; random walk-based methods decomposed graph
structures as a set of random walk paths sampled from a
graph [Cai er al., 2018]. However, there is limited studies
about preserving substructure information in GRL. In a recent
study [Wang et al., 2019], Wang et al. propose an adversarial
learning based framework to integrate substructures into GRL
with a CNN approximated substructure detector. But the per-
formances are significantly hindered by the low convergence
of the adversarial learning and the precision uncertainty of the
approximated detector.

Therefore, there is a compelling need to develop more ef-
fective method to model substructure awareness in GRL. Two
unique challenges arise in achieving this goal.

First, how should we guarantee the accountability for the
node-level representation? Despite a compressed and effec-
tive quantification of graph, the learned node representation
should be coherent with the original representation in depict-
ing graph. The coherence can be quantified by correlation
that the learned representations should be highly correlated to
the original ones. This motivates us to leverage Mutual Infor-
mation (MI), a powerful correlation measurement, to investi-
gate the correlation between the representations of the orig-
inal and learned node representations. However, due to the
untractable exact computation on continuous variables, M1 is
difficult to estimate and maximize, and cannot directly collab-

'In urban setting, Point of Interest (POI) is somewhere that users
show interests.
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orate with well-studied Graph Convolutional Network (GCN)
techniques for learning node representations. Fortunately, re-
cent studies on neural MI estimation [Belghazi et al., 2018;
Hjelm er al., 2018; Velickovic er al., 2018] propose to effec-
tively approximate M1 by designing a neural estimator, which
gives a great chance to elaborate MI estimation with learn-
ing graph representations. Therefore, besides to learn node-
level representations through the encode-decode paradigm,
we propose to guarantee the accountability of the learned
node representations by maximizing the mutual information
between the learned and original node representation.

Second, after we obtain the accountable graph-level repre-
sentation, how should we preserve substructure information
for the graph-level representation? As subsets of the graph
structure, interested substructures are unique and representa-
tive for differentiating graphs. Thus, for the common goal of
quantifying graph, the representation of substructures should
be highly correlated to graph-level representation. In another
word, maximizing the correlation between the graph-level
and substructure representations would provide a direction to
enforce the graph-level representation to preserve substruc-
ture information. To quantify such correlation, similarly, we
also exploit to maximize M/ between the representations of
the graph-level and substructures. We first obtain the graph-
level representation and substructure representations by graph
pooling operation over the entire graph and substructure re-
spectively. We then maximize the MI between graph-level
and substructure representations to enforce the graph-level
representation preserve substructures.

Along these lines, in this paper, we develop a substructure-
aware graph representation learning framework. The pro-
posed learning framework includes two stages, (1) node-level
representation and (2) graph-level representation. The graph-
level representation is the final output that is expected to pre-
serve substructure information of graph. Specifically, we pro-
pose to guarantee the accountability in the node-level repre-
sentation by maximizing MI between the learned and origi-
nal representations to guide the encoding step. And then, we
propose to preserve the substructure information in the graph-
level representation by maximizing MI between the graph-
level and substructure representations. We apply the proposed
framework to the application of next activity type prediction
for mobile user profiling to evaluate the effectiveness with
real-world mobile checkin data.

2 Preliminaries

2.1 Mutual Information and Estimation

Mutual Information (MI) is a measurement to evaluate the
dependency between two random variables. Due to the
promising capability of capturing non-linear dependencies,
MI has been applied in various disciplines, such as cosmol-
ogy, biomedical sciences, computer vision, feature selection,
and information bottleneck [Belghazi et al., 2018].

However, untractable exact computation and limited
known distribution families hinder the further adaption of MI
for continuous variables [Belghazi er al., 2018]. To estimate
MI, non-parametric methods and approximate gaussianity of
data distribution are proposed, which perform poor in ex-
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panding data scales (i.e., sample size or dimensions) [Belg-
hazi et al., 2018]. A neural estimator MINE is then proposed
to exploit gradient descent over neural networks to estimate
MI, which is linearly scalable in dimensionality and sample
size [Belghazi et al., 2018]. Moreover, DIM [Hjelm et al.,
2018] combine the MI with deep representation learning for
learning better global and local representations for images.
Following DIM, DGI [Veli¢kovi¢ et al., 2018] further extends
MI neural estimation on learning graph representations. In
this paper, we follow the methodology of MINE, DIM and
DGI to exploit MI for learning graph representations with in-
corporating substructures.

2.2 Problem Statement

In this paper, we study the problem of learning graph rep-
resentations with preserving interested substructures. For-
mally, given a list of graph § = {Q(l),Q(Q), e ,Q(K)},
where G®) = {V*) EM®} we aim to learn a mapping
function f : G — h, that takes the graph G as input,
and outputs the vectorized graph-level representation h, =
{hgl)7 hg,Q), e ,h_f,K)} for each graph in G, while subject to
the special attention on preserving interested substructures.

3 Methodology

3.1 Model Intuition

We learn the substructure-aware graph representations on the
following intuitions.

Intuition 1: Accountability of Representations. For the
node-level representation, the learned representation should
be a summarized vector that is highly correlated to the orig-
inal representation. Therefore, we need to guarantee the ac-
countability of the learned representation.

Intuition 2: Substructure Preservation. For the graph-
level representation, substructures demonstrates specific pat-
terns of graphs, which would enrich the semantics of graph
representations. Therefore, we need to preserve substructures
in the graph-level representation.

3.2 Framework Overview

Figure 1 shows the overview of the proposed two-stage
framework. In the first stage, we first propose to learn node-
level representation with exploiting GCN through the encode-
decode paradigm by minimizing the reconstruction loss that
follows a contrastive learning-style convention. Then, we
maximize MI between the learned and original node-level
representation for guaranteeing the accountability. In the sec-
ond stage, we obtain the graph-level representation and sub-
structure representation with the graph pooling operation over
the node-level representation of the entire graph and inter-
ested subgraph respectively. Then, we propose to preserve
the substructure information by maximizing MI between the
graph-level and substructure representations. Details will be
introduced in the following.

Figure 1 shows an overview of the proposed framework.
The proposed framework includes three key component.
First, the graph is fed into an encode-decode paradigm to
learn the node representations by minimizing the contrastive
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Figure 1: Framework overview.

loss between positive and negative samples. Second, to guar-
antee the accountability of the learned representation, we aim
to maximize the mutual information between the original and
the learned node representations. Third, we obtain the graph-
level representation and substructured graph representation
by the pooling operation. We maximize the mutual informa-
tion between them to preserve the substructures in the graph-
level graph representation. Details will be introduced in rest
of the section.

3.3 Learning Node-Level Representation

For better generality, we learn node-level representation with
Graph Convolutional Network (GCN) in the unsupervised
fashion. We follow the idea of GAE [Kipf and Welling,
2016b] to learn representation in a encode-decode paradigm.
Specifically, the encoder is a o-layer GCN. At the [-th layer,

the node representation can be denoted as
S 1

h! = o(D"*AD"sh/"'W'"1), 1)
where A = A+1, A is the adjacency matrix. I is the identity
matrix, D;; = ZAij’ and W1 is the weight. Then, the

i

learned the representation is h,, = h'. The decoder is a inner
product of the learned representation to recover the adjacency
matrix .,

A = o(h,h7). Q)
The objective is to minimize the reconstruction loss between
the original adjacency matrix A and reconstructed adjacency
matrix A’

We follow the convention of contrastive learning approach
to minimize the reconstruction loss. We first sample posi-
tive nodes from neighbors, and negative nodes randomly from
non-neighbors. Then, we minimize the cross-entropy loss of
positive and negative node pairs

Lr = - IOg A;oos - log(]‘ - Alneg) (3)

where A;,OS and A;w o are derived from positive nodes pairs
and negative node pairs respevtively, based on Equation 3.
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3.4 Representation Accountability Guarantee

Intuitively, the learned low dimensional representation should
be highly correlated to the original representations. To guar-
antee such accountability, we exploit mutual information to
investigate the correlation between the learned representa-
tions h,, and the original representation x.

Following the idea from DIM [Hjelm et al., 2018] and
DGI [Velickovié et al., 2018], we define a Jensen Shannon
MI estimator to estimate and maximize the MI between x and
h, as

MI(x;h,) :=Ex[-sp(—D(x,h,))]+
Ex [sp(D(x,hy)]

where sp is the softplus function that sp(c) = log(1 + e¢), X
is the positive samples and X is the negative sample. We will
present how we generate positive and negative samples later.

Since the noise-contrastive type objective with a standard
binary cross-entropy (BCE) can effectively maximize mutual
information [Veli¢kovié et al., 2018], we define the loss func-

tion as:
L; == ExflogD(x{", b))
P

Ex[log(1 — D(x™, h(k)]

where D denotes a discriminator to provide probability scores

for sampled pairs. For the k-th graph, we regard the positive
(k)

()

“4)

(&)

samples as the pairs of (x; ', h,, ), and the negative samples

as the pairs of (xgk), h,,), where xl(»k) is a randomly picked

node from another graph. The objective is to minimize L;,
which is equivalent to maximize the mutual information.

3.5 Preserving Substructures in the Graph-Level
Representation

Substructures, which are pivotal for learning complete repre-
sentations for graphs [Cai ef al., 2018; Wang et al., 2019],
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are subset of global structures. In another word, the repre-
sentations of substructures should be highly correlated to the
graph-level representations for a given graph. Therefore, this
motivates us to exploit to maximize M/ between the graph-
level and substructure representations to provide a direction
to enforce the graph-level representation to preserve substruc-
ture information.

First, we obtain the graph-level representation and sub-
structure information from node representations generated by
the base model. Specifically, as shown in Figure 1, for the
k-th graph, on one hand, we exploit the pooling operator over
all the nodes representations to obtain the graph-level repre-
sentation hgk); on the other hand, the pooling operator is also
applied over the nodes associated with substructures to gen-
erate the representation of substructures hgk).

Then, we exploit to use neural network for estimating
and maximizing mutual information MI(hg;h) between
the graph-level representations hgk) and the representation of

substructures hgk) to guarantee the highly correlated relation-

ship. We have the similar noise-contrastive type loss function:

Ls=-— Z Z Ex/[log D(h:(;k)a hgk))]*
k i

Ex[log(1 — D", h)),

(6)

where D denotes a discriminator to provide probability scores

for sampled pairs, hgk) is the graph-level representations that
are not of k-th graph. We design the positive samples as the

pairs of (hgk), h(gk)), and the negative samples as the pairs

of (h{") h{¥). The objective is to minimize £, which is
equivalent to maximize M1 (hgy;hy). In this way, the optimal
graph-level representation h, would preserve substructures.

3.6 Optimization

The loss of the model includes: (i) the contrastive learning
loss for graph reconstruction (Equation 3); (ii) the represen-
tation accountability learning loss (Equation 5), and (iii) the
substructure preservation loss (Equation 6). The objective is
to minimize the overall loss £ as follows:

L=MLy+NLj+ ALy 7

where A, Aj, and A4 are the weights of £, £;, and L re-
spectively. We employ gradient descent to minimize L.

3.7 Comparison with Related Work

We discuss the differences between our proposed method and
recent studies from two perspectives: (1) structure preserv-
ing and (2) representation accountability. On one hand, GCN
variants (e.g., GCN [Kipf and Welling, 2016al, GAE [Kipf
and Welling, 2016b], DGI [Veli¢kovié et al., 2018]), and ran-
dom walk-based approaches (e.g., DeepWalk [Perozzi et al.,
2014]) are two main streams for graph representation learn-
ing that focus on preserving global and/or local structures
of graph, but substructures are not considered in these ap-
proaches, while StructRL [Wang er al., 2019] models the
substructures through adversarial learning that is limited by
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the bad convergence and accuracy of the pre-trained approxi-
mated detector. On the other hand, DGI first exploits mutual
information to guarantee the correlation between learned out-
put and original input to endow the accountability for repre-
sentations, while others ignores such important property. Dif-
ferent to the literature, in this paper, we simultaneously model
substructures and provide the accountability-guarantee to en-
hance the graph representation. The experiment later will
show the superior performance of our proposed framework.

4 Application: Mobile User Profiling For Next
Activity Type Prediction

As mentioned in Introduction, preserving substructures of
user activity graph can benefit mobile user profiling. There-
fore, to validate the effectiveness of preserving substructures,
we apply the proposed method to conduct mobile user profil-
ing with the task of predicting next activity type.

First, for each user, we follow the formulation from the
work [Wang ef al., 2019] to construct a user activity graph,
where the nodes are POI categories and edges are the nor-
malized visiting frequencies among POI categories. POI cat-
egories are regarded as activity types. User activity graph
demonstrates the preference and patterns of participating dif-
ferent activities. For simplicity, we only consider the “circle”
substructure [Wang et al., 2019] in this paper.

Then, we exploit the proposed method over the constructed
user activity graph to learn user representations as the fea-
tures, which is further fed into a classifier to predict the next
activity type. The more accurate the prediction, the better the
user profiling, and then, the better the proposed method pre-
serves substructures of user activity graph.

S Experiment

City # Check-ins | # POI Categories
New York 227428 400
Tokyo 573703 385

Time Period
12 April 2012 to 16 February 2013
12 April 2012 to 16 February 2013

Table 1: Statistics of the experimental data.

5.1 Data Description

We evaluate the performance over two real-world check-in
datasets [Yang et al., 2014] of New York and Tokyo. Table 1
shows the statistics of the dataset. The format of each dataset
is <User ID, Venue ID, Venue Category ID, Venue Category
Name, Latitude, Logitudem, Time>.

In the experiment, we chronologically extract POI category
visit sequence for each user. We reserve the last visit POI
category as the prediction target, and use all of the previous
ones to construct user activity graph.

5.2 Evaluation Metrics

We use the prediction accuracy to evaluate the performance.
The evaluation metric Accuracy@N is defined as: let 7; de-
note the target POI category that the user actually visited,
P} denote the topN predicted POI category list ranked in
a descending order based on the predicted visit probabilities
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@2 Outperform @3 Outperform @4 Outperform @5 Outperform
MI-StrutRL | 0.0646 - 0.1200 - 0.1477 - 0.1570 -
DGI 0.0462 +39.9% 0.0554  +116.6% | 0.0923 +60.0% 0.1108 +41.7%
GAE 0.0646 +0% 0.0923 +30.0% 0.1293 +14.2% 0.1477 +6.3%
StructRL | 0.0462 +39.9% 0.0646 +85.8% 0.0831 +77.7% 0.0923 +70.1%
DeepWalk | 0.0369 +75.1% 0.0462 159.7% 0.0646  +128.6% | 0.0739  +112.4%
Table 2: Overall comparison of Accuracy @N (%) on the New York dataset.
@2 Outperform @3 Outperform @4 Outperform @5 Outperform
MI-StrutRL | 0.1526 - 0.1614 - 0.1701 - 0.1788 -
DGI 0.1352 +12.9% 0.1439 +12.2% 0.1614 +5.4% 0.1701 +5.1%
GAE 0.1439 +6.0% 0.1570 +2.8% 0.1701 +0% 0.1744 +2.5%
StructRL | 0.0392 +39.9% 0.0436  +270.2% | 0.0567  +200.0% | 0.0785  +127.8%
DeepWalk | 0.1265  +289.3% | 0.1396 15.6% 0.1483 +14.7% 0.1614 +10.8%

Table 3: Overall comparison of Accuracy @N (%) on the Tokyo dataset.

for user i, we consider the prediction is a success once the
T; € PN. Then

1
AccuracyQN = mz(Ti e PN), (8)

where |U| denote the user numbers. We report Accuracy@2,
Accuracy@3, Accuracy@4. Accuracy@5 in this paper.

5.3 Baseline Algorithms

(1) GAE. The Graph Autoencoder [Kipf and Welling,
2016b] learned node representations in the encode-decode
paradigm with GCN as the encoder and inner production
to recover adjancacy matrix as the decoder. In the experi-
ment, we set the number of GCN layer = 2, the input feature
size=100, the output feature size = 40, learning rate = 0.001.

(2) DeepWalk. The DeepWalk model [Perozzi et al., 2014]
extends the word2vec model [Mikolov et al., 2013] to the
scenario of network embedding by truncated random walks.
We set the number of walks = 50, the size of representation =
40, the walk length = 40, and the window size = 10.

(3) DGL. Deep Graph Infomax [Veli¢kovié et al., 2018] ex-
tends learning representations with MI maximation to graph
embedding by modeling global and local structures. We set
the input feature size=100, the output feature size = 40, learn-
ing rate = 0.001.

(4) StructRL. StructRL [Wang ef al., 2019] learns graph
representations with attention on substructures without con-
sidering the accountability of learned representations. We set
the input feature size=100, the output feature size is 40, learn-
ing rate = 0.001.

All the baseline algorithms and our proposed method are
unsupervised learning approach. In the experiment, we first
exploit each algorithm to learn graph features for each user.
Then, we train a fully connected neural network to predict
the visiting probability for each POI category. We conduct
10-fold cross validation and report the average Accuracy @N.

5.4 Overall Performance

We compare our method with the baseline methods in terms
of Accuracy@N. In general, Figure 2 and 3 show our model
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outperforms other baseline methods for both the New York
and Tokyo dataset. One interesting observation is that with
N increasing, the improvement of our proposed model is less
significant.

Comparing to DeepWalk, which is the representative of
random walk-based methods, graph convolution-based meth-
ods (GAE, DGI, our proposed method) and autoencoder-
based methods (GAE, StructRL) perform better in modeling
structure information of user activity graph. Comparing to
GAE, which is the base model of our proposed framework,
our proposed framework additionally considers substructures
and the accountability of the learned representation, thus, en-
hance the quality of learned representations. Comparing to
DGI, which only models global and local structures, the in-
corporation of substructures improving the graph representa-
tion is validated by the better performance of our proposed
method. Comparing to StructRL, which only incorporates
substructures, accountability-guarantee provided by our pro-
posed method further elevates the reasonability of the learned
representations; and also, mutual information quantifies the
non-linear relationship among structures, while only linear
relations between countersamples are considered in StructRL.

In summary, the results validate that incorporating sub-
structures and accountability can improve the quality of graph
representations.

5.5 Analysis of L, L

To analyze the contribution of representation accountability
and substructures preserving, we define two variants of our
proposed model: (1) MI-StructRL-J, which only adds £; to
the base model for incorporating accountability of the learned
representations; (2) MI-StructRL-S, which only adds L to
the base model for incorporating substructures. We com-
pare the base model, MI-StructRL-J, MI-StructRL-S, and MI-
StructRL in the experiment.

As shown in Figure 2 and 3, when N is relatively small, the
improvement by incorporating substructures is more signifi-
cant than the representation accountability. When N is getting
larger, the improvement by the representation accountability
is more significant than incorporating substructures. The re-
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sults indicate that incorporating substructures is more impor-
tant for top short range prediction.

6 Related Work

Graph Representation Learning. Graph representation
learning aims to learn representations of graph structures,
which can be categorized into matrix factorization based,
deep learning based , edge reconstruction based, graph ker-
nel based and generative models [Cai et al., 2018]. Specif-
ically, matrix factorization based methods mainly exploit
graph laplacian eigenmaps [Cai et al., 2007] and node prox-
imity matrix factorization [Cao et al., 2015] to learn graph
representations; deep learning based methods are a huge
group in which many works on random walk [Perozzi et al.,
2014] Edge reconstruction based methods carry the insight
that the edge connectivity constructed based on embedding
and original features should be as similar as possible [Zhang
and Wang, 2016]; graph kernel based method aim to model
graph structures from the perspectives of graphlet [ Yanardag
and Vishwanathan, 2015] and substree patterns [Shervashidze
et al., 2011]; generative models aim to learn representations
by maximizing the joint distribution of the input features and
the target labels [Bernardo et al., 2007].

Human mobility modeling. Our work has connection with
human mobility modeling. Human mobility modeling aims
to learn human patterns from the human mobility data, which
has been applied into various applications. For example,
Wang et al. propose to learn the representation of urban
residential communities by modeling human mobility pat-
terns [Wang et al., 2018b; Fu et al., 2019; Zhang et al.,
2019]. Wang et al. propose to analyze the driving behav-

ior by modeling the human mobility from the perspectives of
peer and temporal dependencies [Wang et al., 2018al. Liu
et al. propose to predict the travel destination by modeling
the patterns of Mobike users with coupling among multi-view
spatio-temporal contexts[Liu et al., 2018].

7 Conclusion

Substructures are pivotal for improving graph representa-
tions. While recent studies on graph representation learn-
ing mainly focus on modeling global and/or local structures
of graph, fewer efforts have been made on preserving sub-
structures. Therefore, in this paper, we decompose the GRL
pipeline into two stages, (1) node-level and (2) graph-level. In
the node-level stage, to further guarantee the accountability of
representation, we propose to maximize the mutual informa-
tion between the learned and original node representations.
In the graph-level stage, motivated by the intuition that the
representation of substructures should be highly correlated to
the graph-level representation, we preserve the substructures
by maximizing the mutual information between the substruc-
tures and the graph-level structures. We simultaneously opti-
mize the learning procedure of node representations, account-
ability and substructures. The experimental results show that
preserving substructures via maximizing mutual information
between substructures and graph-level structures effectively
enhance the performance of graph representations.
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