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Abstract
With the recent advances in both machine learn-
ing and embedded systems research, the demand
to deploy computational models for real-time exe-
cution on edge devices has increased substantially.
Without deploying computational models on edge
devices, the frequent transmission of sensor data
to the cloud results in rapid battery draining due
to the energy consumption of wireless data trans-
mission. This rapid power dissipation leads to a
considerable reduction in the battery lifetime of the
system, therefore jeopardizing the real-world util-
ity of smart devices. It is well-established that
for difficult machine learning tasks, models with
higher performance often require more computa-
tion power and thus are not power-efficient choices
for deployment on edge devices. However, the
trade-offs between performance and power con-
sumption are not well studied. While numerous
methods (e.g., model compression) have been de-
veloped to obtain an optimal model, these meth-
ods focus on improving the efficiency of a “sin-
gle” model. In an entirely new direction, we in-
troduce an effective method to find a combination
of “multiple” models that are optimal in terms of
power-efficiency and performance by solving an
optimization problem in which both performance
and power consumption are taken into account.
Experimental results demonstrate that on the Im-
ageNet dataset, we can achieve a 20% energy re-
duction with only 0.3% accuracy drop compared to
Squeeze-and-Excitation Networks. Compared to a
pruned neural network for human activity recogni-
tion, while consuming 1.7% less energy, our pro-
posed policy achieves 1.3% higher accuracy.

1 Introduction
With the world witnessing an unprecedented growth in both
Internet of Things (IoT) and Artificial Intelligence (AI), new
research avenues at the confluence of these two areas are
emerging. On one hand, the number of connected IoT de-
vices is expected to reach 41.6 billion by 2025 [Shirer and
MacGillivray, 2019]. On the other hand, the worldwide

spending on AI systems is projected to reach $98 billion
in 2023 [Daquila and Shirer, 2019]. These trends suggest
that the intersection of IoT and AI, intelligent edge, is one
of the most promising and demanding future research di-
rections. It is already expected that the AI edge processors
will reach a unit shipment of 1.5 billion by 2023 [Shirer and
Palma, 2019]. There are several motivations behind perform-
ing machine learning on the edge systems. These motivations
include latency, connectivity, energy consumption, security,
and privacy. For example, transmitting data over wireless net-
work raises security concerns in mission-critical systems such
as security cameras and health monitoring systems. More-
over, for privacy-preserving reasons, the demand to push the
computation from the cloud to the edge has increased as users
prefer not to share their private data.

However, in a burgeoning era that promises integration of
machine learning models and IoT devices, various challenges
emerge in realizing the vision of intelligent edge. One promi-
nent challenge arises from stringent-constrained resources
(e.g., compute power, battery capacity, memory) that are
available on the edge devices. For instance, current high-
performance deep learning models for image recognition in-
clude millions of parameters and billions of operations per
inference [He et al., 2015]. While this amount of computa-
tion is within the computing budget of a powerful cloud-based
server, it is beyond the capability of an embedded computer.
In addition to the limited compute power of an edge device,
we note that many of these devices (i.e., wearable sensors,
health trackers, security cameras) are battery-powered neces-
sitating days or even weeks of continuous operation prior to
a battery recharge.

To address the aforementioned challenges, much effort has
been made. Several special-purpose processor chips are de-
signed to perform training or inference on edge devices with
improved performance [Jouppi et al., 2017; Franklin, 2019].
Furthermore, techniques such as weight pruning [Zhu and
Gupta, 2017], quantization [Jacob et al., 2017], and knowl-
edge distillation [Hinton et al., 2015] are developed to com-
press the models. Additionally, advances in neural architec-
ture search introduce models with much fewer parameters
while delivering a performance comparable to gigantic hand-
crafted models [Pham et al., 2018].

The methods for model compression, however, focus on
obtaining a single model, optimized according to a particular
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objective such as accuracy or power-efficiency, for deploy-
ment on the device. We argue that the efficient deployment of
multiple models can outperform the performance of the sin-
gle model approach. To the best of our knowledge, no prior
study has been conducted on the optimal deployment strategy
of machine learning models.

Our contributions can be summarized as follows:

1. We define and formulate the optimal deployment prob-
lem as an optimization problem.

2. We provide a rigorous theoretical analysis of the deploy-
ment problem and its practical extensions.

3. By performing comprehensive experiments on different
machine learning tasks, we show the performance gain
of our proposed solution.

Many practical applications can benefit from our proposed
framework. For instance, our approach allows for easy de-
ployment of object detection models on security cameras with
the guarantee of operating for a week and still be sure that the
chosen models will provide the highest accuracy among all
other model combinations.

2 Background
In this section, we review some of the most important re-
search ideas, developed to overcome the challenge of deploy-
ing machine learning models on edge devices and their rela-
tion to our work.

Model Compression
There are various methods developed to compress machine
learning models. Generally, these methods are based on two
ideas. The first idea is to reduce the number of parame-
ters. Optimal Brain Surgeon [Hassibi et al., 1993] uses the
Hessian of the loss function to measure importance of the
parameters.[Han et al., 2015] prunes weights whose magni-
tude is lower than a threshold. The method in [Denton et al.,
2014] finds a low-rank approximation of weights with min-
imal accuracy drop. The same idea of reducing the number
of parameters is used in [Keerthi et al., 2006] to reduce the
number of support vectors for support vector machine mod-
els and thus reduce the complexity. The other idea is to work
with lower precision (fewer bits per weight). For instance,
BinaryNet [Courbariaux and Bengio, 2016] limits the param-
eters to have 1-bit representations. Recently, [Jayakodi et al.,
2020] proposed to design classifiers of increasing complexity
using pre-trained Convolutional Neural Networks to perform
input-specific adaptive inference.

Another related research direction is to use the teacher-
student learning paradigm for compression. Instead of reduc-
ing a large model into a smaller model, these methods start
with the smaller model as the student who tries to learn from
the large model as his teacher. Knowledge Distillation meth-
ods [Hinton et al., 2015; Mirzadeh et al., 2019] generalized
this idea where the student learns from both the teacher and
the data instead of learning only from the teacher. Knowledge
Distillation methods share some similar ideas with Transfer
Learning methods [Alinia et al., 2020].

Artificial Intelligence Chips
The undeniable and critical need for performing AI on edge
started a race on the design and development of AI chips.
Companies are developing custom builds for general- or
specific-purpose AI applications. From Nvidia’s Jetson fam-
ily [Franklin, 2019], to Intel’s Nervana Neural Network Pro-
cessor [Intel, 2019], all serve the same goal: fast and efficient
performance on the edge. These chips are already being used
in the production level.

One key takeaway from the mentioned works is that the
majority of the mentioned methods focused on one question:
“How to obtain a better model?”. Here, the word “better”
might means having a smaller model and thus less energy
consumption, and sometimes having better performance with
the same computation complexity. Besides, a majority of the
mentioned methods are focused on a single family of ma-
chine learning models. However, in this work, we present
a general framework that works with any machine learning
model, regardless of whether that model is a neural network
or a support vector machine. More importantly, our frame-
work provides bounded guarantees on energy consumption or
performance of its proposed model deployment, an important
requirement that has been overlooked by other researchers.

3 Optimal Deployment Policy
In this section, we first provide a statement of the optimal
deployment problem followed by a formal definition. Then,
we formulate and analyze the problem and its extensions from
several aspects such as time complexity and approximation
bounds.

3.1 Problem Statement
Given a supervised learning problem, letM = {m1, m2, . . . ,
mn} be a set of n trained models. We use the term “candi-
date models” or “model pool” throughout this paper to refer
to M. Let P = {p1, p2,. . . , pn} be the corresponding real-
valued performance measures for the models inM. Further-
more, let C = {c1, c2, ..., cn} represent the set of cost values
where the ci represents the cost due to making one inference
by executing model mi. Here, performance can be any nu-
meric metric (e.g., classification accuracy) used to assess the
performance of the models. Note that cost can refer to any
constraint (e.g., power consumption, inference time) for the
deployment of the model on an edge device. Our aim is to
deploy a combination of the models for an expected dura-
tion. To represent this duration, we can use the number of
inferences we expect our system to make in each time unit
and then multiple it by the number of time units to obtain the
total expected inferences, K. Finally, we want to maximize
our “objective” while we satisfy our problem “constraints”.
For deployment, there could be multiple “objectives” such
as maximizing performance or minimizing energy consump-
tion. Moreover, “constraints” represent our limitations, such
as available energy (e.g., battery capacity) or a minimum level
of desired performance.

We are interested in solving the problem with the discussed
constraints. Otherwise, for example, having no limit on en-
ergy consumption, we can choose the model with the high-
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Figure 1: An illustration of the optimal deployment problem.

est performance regardless of other limitations, an approach
which is unrealistic for embedded devices.

3.2 Problem Definition
In this section, we present a formal definition of the deploy-
ment problem prior to discussing the mathematical formula-
tion.

Definition 1. Optimal Deployment Problem Given n mod-
els, each with a performance pi and an inference cost ci, and
a maximum budget cost B to perform K inferences, the op-
timal deployment problem aims to find inference count xi for
each model mi such that the overall performance is maxi-
mized without exceeding the budget B.

We refer to the optimal values of the inference counts xi as
Optimal Policy. Note that prior research uses only one model
for all the K inferences, thus rendering a solution that con-
tains a single model mi where xi is set to the total number
of inferences K. In contrast, by viewing “Optimal Deploy-
ment” as an optimization problem, we find a combination of
the models whose overall performance outperforms the per-
formance of the single-model solution.

3.3 Problem Formulation
With the introduced notations in Section 3.1 and the problem
description, the natural objective would be to maximize the
expected performance. Despite being correct, this objective
neglects the fact that switching between models will also in-
cur model loading costs. To take such costs into account, we
propose to add a penalty term to the objective function. To
this end, we add an auxiliary binary variable yi, which will
be 0 whenever a model is chosen and thus the objective will
be penalized by the loading cost ui > 0 for model mi. The
penalty term can be controlled by a parameter, λ, depending
on the application. By adding this penalty term to the objec-
tive function, whenever a model is selected (i.e., xi > 0), yi
will be forced to be 0 to satisfy Constraint (4). Another inter-
pretation is that we reward the solutions that contain a fewer
number of different models (i.e., yi = 1).

maximize
n∑
i=1

pixi︸ ︷︷ ︸
expected performance

+λ
n∑
i=1

uiyi︸ ︷︷ ︸
penalty term

(1)

subject to :
n∑
i=1

cixi ≤ B (2)

n∑
i=1

xi = K (3)

xi ≤ K(1− yi) (4)
xi ∈ Z≥0 (5)
yi ∈ {0, 1} (6)

Note that (1) and (2) are in fact the expected performance
and expected energy consumption. The term

∑n
i=1 xi is re-

moved from the denominator because this value is set to be
constant in the constraint (3).

It is straightforward to derive a new formulation from (1) to
reach a policy where we obtain a lower-bound guarantee on
the performance (P ) while maximizing the battery lifetime of
the system by minimizing the energy consumption. To this
end, we can change (1) to “minimize

∑n
i=1 cixi” where

Constraint (2) will be replaced by “
∑n
i=1 pixi ≥ P ”. This

formulation will also be applicable in practice because there
are several power-bounded systems in security and health-
care domain that need to operate for as long as possible and
the performance will be the secondary concern as long as it
meets a minimum threshold.

3.4 Theoretical Analysis of the Problem
The objective function introduced in (1), is in the form of 2-
dimensional Knapsack problem where (2) represents the first
dimention, and (3) refers to the second dimension. More-
over, this very specific formulation is known as cardinality
constrained knapsack or Exact K-item Knapsack Problem(E-
KKP). This problem is proved to be NP-Complete [Kellerer
et al., 2004].

However, there are two critical factors that we need to con-
sider. First, from a practical point of view, our problem size is
not large and the exact solution can be computed in a reason-
able time. Specifically, it is shown that the E-KKP problem
with n items and U as the upper bound on the optimal solu-
tion value, can be solved to optimality by dynamic program-
ming inO(nKU) time andO(n+KU) space [Kellerer et al.,
2004]. Second, it is possible to apply linear programming re-
laxation techniques to achieve a near-optimal solution, which
will be the topic of the next subsection.

Linear Relaxation and Approximation Algorithms
In the exact k-item knapsack (E-KKP), we can change the
Constraint (5) to x ∈ R≥0 and obtain a linear program-
ming relaxation form. However, changing Constraint (6) to
y ∈ R[0,1] will not affect the problem because y is dependent
on x.
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Let the vector xLP = (xLP
1 , . . . , xLP

n ) ∈ Rn and the scalar
zLP ∈ R denote the solution of the linear relaxation problem
and the optimal value, respectively. Similarly, let the vec-
tor x∗ and the scalar z∗ be the optimal solution and its value
for the Integer Program in (1). Then we have the following
lemma:

Lemma 3.1. There exists an optimal solution vector xLP with
at most two fractional values. [Kellerer et al., 2004]

Using this Lemma, we can derive the following theorem on
an error bound for the linear relaxation approximation of the
optimal deployment problem.

Theorem 3.2. Let pi, pj , and pk i, j, k ∈ {1, 2, . . . , n} rep-
resent performance of the most-accurate model, second most-
accurate model and the model with the minimum energy con-
sumption, respectively. The approximation error of the lin-
ear relaxation algorithm, ε = z∗ − zLP, is upper-bounded as
stated by ε ≤ (pi+pj−2×pk)

K

Proof. From Lemma 3.1, we know that the vectors x∗ and
xLP are different at most two places where xLP at those places
are fractional. The maximum error will occur when these two
indices are i and j (top two high-performance models). Then,
by rounding xLP at these indices and adding the fractional
values to the index k, we obtain the maximum difference of
(pi−pk)+(pj−pk)

K and this completes the proof.

One important result of Theorem 3.2 is that ε will decrease
as K grows as we will observe this in practice in Section 5.3.
Furthermore, using this relaxation technique, followed by a
greedy algorithm for E-KKP, the run-time complexity will
be O(n) [Kellerer et al., 2004]. These results are promising
since the optimal deployment problem can be solved quickly
and accurately in practice.

There are several improved relaxation and rounding algo-
rithms developed to find fully polynomial time approxima-
tion scheme (FPTAS) for the E-KKP problem. The earliest
idea to construct a FPTAS for this problem was based on dy-
namic programming and profit scaling techniques, which run
inO(nK

2

ε ) time andO(n+ K3

ε ) space [Caprara et al., 2000].
The downside of such an algorithm is the dependence on the
cardinalityK. This has been improved recently toO(n+ z2

ε2 )
time andO(n+ z2

ε ) space where z = min{K, ε−1} [Li et al.,
2019].

4 Experiment Setup
4.1 Power Modeling
To measure the power consumption of different machine
learning models with different implementations, we utilized
Intel’s Running Average Power Limit (RAPL) [Weaver et
al., 2012] implemented in the Likwid library [Center, 2019].
RAPL allows us to monitor energy consumption on the CPU
chip and the attached DRAM. For a fair comparison, we used
only a single core and fixed the clock frequency at 1.5GHz
for all our experiments.

Moreover, to reduce the effect of loading models and the
dataset at the beginning of inference, and to achieve more ac-
curate measurements, we ran each model ten times and aver-
aged the energy consumption and run-time values. For each
model, we then subtracted the idle energy consumption of
CPU during the run-time of the inference. Finally, for each
experiment, we scaled the energy consumption of the mod-
els such that the energy consumption of the model with the
highest accuracy be a hundred.

4.2 Datasets

UCI Human Activity Recognition

We used the “Human Activity Recognition Using Smart-
phones” (UCI-HAR) dataset [Anguita et al., 2013] which
contains sensor data such as accelerometer and gyroscope
data for 30 patients, each doing six different activities.
The sensor signals (accelerometer and gyroscope) were pre-
processed to minimize the effect of high-frequency noise and
then sampled in fixed-width sliding windows of 2.56 sec. and
50% overlap (128 readings/window).

We trained Decision Tree, Support Vector Machine, and
Gradient Boosting classifier with ten decision tree estimators
each with a maximum depth of 3. We adopted the scikit-
learn [Pedregosa et al., 2011] library to train and evaluate
the algorithms. In addition, we trained two 1-D Convolu-
tional Neural Networks(CNN) with two layers, both with 64
filters with a kernel size of 3. The first CNN was trained
normally, while the second neural network was trained using
low-magnitude pruning. Both neural networks were trained
using the Adam Optimizer [Kingma and Ba, 2014] with
Tensorflow library for 50 epochs with early stopping. For
the classification task on this dataset, we used the objec-
tive introduced in (1) where K is set to 1000 inferences,
λ = 0.1 × K = 100, and ui is set to the constant value
of 1 to penalize selecting many model. To solve the integer
and linear programming formulations, we used CVXPY li-
brary [Diamond and Boyd, 2016; Akshay Agrawal and Boyd,
2018] with the ECOS solver [Domahidi et al., 2013].

ImageNet

The ImageNet classification dataset [Russakovsky et al.,
2014] has 1.28 million training images and 50,000 valida-
tion images that includes of 1000 classes. We used the of-
ficial pre-trained models implemented in the Pytorch frame-
work [Paszke et al., 2019]. We also used VGG [Simonyan
and Zisserman, 2015] with and without batch normaliza-
tion [Ioffe and Szegedy, 2015], Resnet [He et al., 2015],
SE-ResNet [Hu et al., 2018], MobileNet-V2 [Sandler et al.,
2018], and ShuffleNet-V2 [Ma et al., 2018].

To measure the energy consumption of the models, we used
1000 random images of the validation images (one per each
class) and reported the scaled energy consumption in the re-
sults and repeated each experiment five times and reported the
average, as described in the power modelling section. Similar
to the activity recognition dataset, we used (1) as our objec-
tive with K = 1000 and λ = 100.
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Figure 2: Benchmark of different models on UCI-HAR

model cost
(energy consumption)

score
(accuracy)

Decision Tree 59.01 84.66
Optimal Policy 1 61.07 85.47

Gradient Boosting 79.18 82.99
CNN (with pruning) 81.29 89.27
Optimal Policy 2 79.51 90.57

CNN ( no pruning) 85.98 91.95
Optimal Policy 3 85.65 92.24

SVM 100 96.33
Optimal Policy 4 95.9 95.21

Table 1: Comparison of our proposed policy with other models on
UCI-HAR

5 Experiments and Results
In this section, we study several experiments that we con-
ducted and report the results. In the first part, we compare
the optimal policy with the scenario where only one type of
model is used. We report the results on both human activ-
ity recognition dataset and ImageNet dataset. In the second
part, we will discuss the effect of the penalty term introduced
in (1) on the performance and number of models that are se-
lected in the optimal policy. Finally, in the third section, we
will compare the accuracy of the integer programming for-
mulation with the discussed linear programming relaxation.
To have an easier comparison of the energy consumption of
different models, we scaled the energy consumption between
0 and 100 where the model with the highest energy consump-
tion is set to 100 and other models are scaled accordingly.
Finally, all the accuracy numbers that are reported, represent
the accuracy on validation data.

5.1 Effectiveness of the Optimal Policy
In this section, we compare the optimal policy with several
methods, for two different classification tasks.

Activity Recognition
Figure 2 shows the energy consumption and accuracy of dif-
ferent models for the activity recognition task. Moreover, in

Figure 3: Benchmark of different models on ImageNet

model cost
(energy consumption)

score
(accuracy)

ShuffleNet V2 - 0.5× 10.2 60.36
Optimal Policy 1 12.0 63.64

MobileNet V2 28.51 71.88
Optimal Policy 3 28.16 72.8

Resnet 50 55.05 76.0
Optimal Policy 5 55.1 77.53

SE-ResNet 101 100 78.39
Optimal Policy 6 80.24 78.05

Table 2: ImageNet Comparison Results

Table 1, we have reported the results for several cases where
we solved the optimization problem (1) with a power budget
(B) close to the power consumption of available models so
we can have a fair comparison.

We were able to achieve comparable performance and en-
ergy consumption with many standard methods that are cur-
rently used for this dataset. In some cases, we could even
achieve better accuracy with a lower power budget. For in-
stance, “Optimal Policy 2” gives 1.3% higher accuracy than
a CNN with low-magnitude pruning of the weights with 1.7%
less energy. The models used for this policy are mostly SVM,
Decision Tree, and then CNN with pruning (also available on
Figure 5, under the normalized energy level of 79%).

Image Classification
Similar to the previous experiment, for ImageNet classifica-
tion task, we also compared the solution of optimal policy
with several efficient methods developed in recent years. An
overview of the energy consumption and performance of sev-
eral models are plotted on Figure 3. The exact numbers of
several important points in the mentioned figure, grouped by
similar energy consumption, are shown in Table 2.

Several impressive results can be observed in this exper-
iment. First, “Optimal Policy 3” consumes 0.35% less en-
ergy while achieving 0.92% accuracy gain, compared to a
very efficient neural network such as MobileNetV2. More
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Figure 4: λ = 0

Figure 5: λ = 0.1K

importantly, this is achieved by using only Resnet34 and
ShuffleNetV2-1× models. Second, “Optimal Policy 6”,
which uses both SE-ResNet50 and SE-ResNet101, can save
nearly 20% energy with only 0.34% accuracy drop.

5.2 Effects of Applying the Penalty Term
In this section, we study the effects of applying the penalty
term introduced in (1) with the same parameters we reported
in the experimental setup section.

Figure 4 visualizes the optimal deployment distribution
over different models in our model pool for the activity recog-
nition dataset. In other words, each row i and column j of this
figure shows what would the normalized value of xi be if the
normalized budget (B) is set to be j. Although there is a gen-
eral trend between two models with lower energy and higher
accuracy, we can observe that by adding the penalty term, the
number of selected models is reduced. We set λ = 0.1K
in (1) to enforce choosing as few models as possible as visu-
alized in Figure 5.

Another important aspect to discuss is the effect of apply-
ing the penalty term on accuracy. Table 3 compares the accu-

Energy
Consumption

Accuracy
(λ = 0.1K)

Accuracy
(λ = 0)

61.07 85.47 85.71
79.51 90.57 90.75
85.65 92.24 92.42
95.90 95.21 95.21

Table 3: Effect of applying penalty term on accuracy

racy of models with and without the penalty term. As we can
see, if we do not apply the penalty term, we can get higher ac-
curacy due to the fact that we are allowed to include as many
different models as we need in our solution to increase the
expected performance. Although the reported energy on the
first column only takes into account the energy consumption
of inference and not the energy due to loading the models,
the accuracy gain is visible if we do not penalize inclusion
of multiple models. However, if the number of expected in-
ferences is much less than the number of models, the penalty
term can be ignored. The reason is, we load at most n dif-
ferent models which is negligible compared to the energy we
need to spend for inference if n << K. Nevertheless, for the
sake of completeness, we reported the results with the penalty
term in the previous section.

5.3 Empirical Approximation Errors of
LP-Relaxation

As discussed in the Linear Relaxation and Approximation Al-
gorithms section, in practice, the solution to the linear pro-
gramming (LP) relaxation of the E-KKP problem is in an ac-
ceptable approximation range. In Table 4 and 5, we compare
the accuracy of the solutions to the optimal deployment pol-
icy problem for the two methods: integer linear programming
(ILP) formulation of (1) (with λ = 0); and linear program-
ming(LP) relaxation solution with the floor function as the
rounding mechanism. We compare these methods for differ-
ent values of K. The final column shows the results when we
apply the LP-relaxation.

We can observe that as the expected number of inferences
(K) increases, the LP-relaxation solution converges to the op-
timal value. Note that the rounding mechanism is unsophisti-
cated and the value of K does not have to be very large as we
found even with 1000 of expected inference. Yet, the approx-
imation error of the linear relaxation solution is acceptable.
However, in practice, the expected number of inferences we
expect a deployed model to perform is significantly higher.

Energy
Consumption Accuracy

K=10
(ILP)

K=10
(LP)

K = 100
(ILP)

K = 100
(LP)

K= 1000
(ILP)

K = 1000
(LP)

65 86.68 78.01 86.78 85.92 86.8 86.7
70 88.05 79.1 88.13 87.22 88.15 88.07
75 89.38 61.13 89.49 88.64 89.52 89.43
80 90.82 81.27 90.87 89.94 90.88 90.79
85 92.11 83.44 92.2 91.35 92.24 92.15
90 93.48 84.53 93.6 92.65 93.61 93.52
95 94.68 85.61 94.96 94.06 94.97 94.88

100 96.33 86.7 96.33 95.37 96.33 96.23

Table 4: Empirical Approximation Errors for UCI-HAR
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Energy
Consumption Accuracy

K=10
(ILP)

K=10
(LP)

K=100
(ILP)

K=100
(LP)

K=1000
(ILP)

K=1000
(LP)

20 70.65 63.71 70.67 69.95 70.68 70.61
30 73.21 66.2 73.27 72.57 73.27 73.2
40 74.85 59.58 75.02 74.29 75.03 74.95
50 76.48 69.06 76.66 75.92 76.68 76.61
60 77.64 69.87 77.7 76.93 77.71 77.63
70 77.86 70.1 77.88 77.1 77.88 77.8
80 78.02 70.25 78.05 77.27 78.05 77.97
90 78.17 70.4 78.22 77.44 78.22 78.15

100 78.39 70.56 78.39 77.61 78.39 78.32

Table 5: Empirical Approximation Errors for Imagenet

6 Discussion and Future Work
We introduced a new research problem at the intersection
of machine learning and edge devices, namely how to find
an optimal allocation of machine learning models subject to
a given energy budget. We showed that this optimization
problem is NP-Complete and designed an approach to obtain
near-optimal solutions. Our extensive analyses using real-
data on two emerging applications, including image and ac-
tivity recognition tasks, demonstrated the superiority of our
approach over the state-of-the-art models.

There are several promising future directions that we plan
to pursue. In particular, “Power Modeling” deserves further
investigation. We measured the power consumption using
an accurate interface, which may initially seem impractical.
However, it is feasible to estimate the power consumption
of models with acceptable precision. As shown in Table 6,
the number of required FLOPS gives a close estimation of
the actual energy consumption for several models. Note that
the number of required arithmetic operations for other ML
models can easily be calculated and is not limited to neural
networks. Furthermore, modeling system load and through-
put of the system, which can affect the power consumption,
can be incorporated into the optimization problem in special
applications.

Another interesting future direction is to extend the objec-
tive function for a more generic case where energy consump-
tion is not linear and is a function of time and other factors
such as system load. This optimization problem can model
scenarios where energy depletion of the system is not linear.
Moreover, this function can take system throughput into con-
sideration. However, this extended optimization problem is
relatively harder to solve, and the efficiency gain due to more
exact power modeling might be negligible.

We believe that by showing the effectiveness of the optimal
deployment, we can engage others to work on this challeng-
ing and unexplored research problem.
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Model FLOPS Actual Energy
Consumption

resnet18 23.8 18.4
resnet50 54.0 55.0
resnet101 100.8 98.5
se resnet50 51.1 55.7
se resnet101 100 100

Table 6: FLOPS of a model gives a close estimation of actual energy
consumption.
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