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Abstract
Most of the unsupervised hashing methods usually
map images into semantic similarity-preserving
hash codes by constructing local semantic similar-
ity structure as guiding information, i.e., treating
each point similar to its k nearest neighbours. How-
ever, for an image, some of its k nearest neigh-
bours may be dissimilar to it, i.e., they are noisy
datapoints which will damage the retrieval perfor-
mance. Thus, to tackle this problem, in this pa-
per, we propose a novel deep unsupervised hashing
method, called MLS3RDUH, which can reduce the
noisy datapoints to further enhance retrieval perfor-
mance. Specifically, the proposed method first de-
fines a novel similarity matrix by utilising the in-
trinsic manifold structure in feature space and the
cosine similarity of datapoints to reconstruct the lo-
cal semantic similarity structure. Then a novel log-
cosh hashing loss function is used to optimize the
hashing network to generate compact hash codes
by incorporating the defined similarity as guiding
information. Extensive experiments on three pub-
lic datasets show that the proposed method outper-
forms the state-of-the-art baselines.

1 Introduction
With the unprecedented growth of image data, hashing based
approximate nearest neighbour (ANN) searching have at-
tracted more and more attention due to their high retrieval
efficiency and low storage cost. The main idea of hashing
methods is to project high dimensional data points into com-
pact binary codes, meanwhile, preserve the semantic similar-
ity of original datapoints.

Generally, hashing methods can be grouped into super-
vised and unsupervised categories. The supervised hashing
[Li et al., 2016; Wang et al., 2018; Huang et al., 2019] meth-
ods mainly utilize semantic labels as supervised information
to train models to get remarkable performance. However,
they extremely rely on vast labeled datapoints to train their
models. Thus, it means supervised hashing methods are not
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Figure 1: The two images belong to two different categories.

suitable to the cases where there are no labeled training data-
points.

Unsupervised hashing [Gong et al., 2012; Huang et al.,
2017; Tu et al., 2019; Yang et al., 2019] methods, which
can be used in the cases, learn hashing functions with unla-
beled datapoints. Most of the unsupervised hashing methods
usually project datapoints into semantic similarity-preserving
hash codes by constructing local semantic similarity structure
as the guiding information, i.e., treating a datapoint similar to
its k nearest neighbours. The k nearest neighbours are the
top k datapoints ranked by the natural distance, such as the
Euclidean distance and the cosine similarity of their features.
However, among the k nearest neighbours of an image, some
of them are dissimilar to the image, i.e., they are noisy data-
points which will damage the retrieval performance. For ex-
ample, as shown in Figure 1, the two images are mostly the
same except their core objects that the core object of Figure
1 (a) is a bird and the one of Figure 1 (b) is an airplane. It
means the two images are semantic dissimilar, but their natu-
ral distance is small. Then, Figure 1 (a) is probably one of the
k nearest neighbours of Figure 1 (b), and Figure 1 (a) will be
misjudge as similar to Figure 1 (b) which will misguide the
hashing model and damage the retrieval performance.

Intuitively, we can use the intrinsic manifold structure in
the feature space of datapoints to reduce the noisy datapoints.
For example, as shown in Figure 2, among the k nearest
neighbours of the query red “circle” point which defined by
the natural distance, the brown “triangle” points which are
the noisy datapoints are on different manifolds with the red
“circle” point. Thus the manifold similarities, defined on the
manifold structure, between the red “circle” point and the
brown “triangle” points are large. It means the noisy data-
points can be distinguished from the k nearest datapoints by
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Figure 2: The “triangle” points and the “circle” points are belong to
different manifolds, i.e., different categories “triangle” and “circle”,
respectively. The red “circle” point is a query points, and its k near-
est neighbours are the brown points. The brown points are divided
into two groups by the manifold structure. Best viewed in color.

incorporating the manifold structure. Specifically, given an
image x, its k nearest neighbours, denoted as nnc

k(x), are
the top k points ranked by their cosine similarity with the im-
age x; and its o nearest points on manifold structure, denoted
as nnm

o (x), are the top o points ranked by the manifold sim-
ilarity which are measured by a random walk [Zhou et al.,
2004b] . Then, if a point in nnc

k(x) but not in nnm
o (x), it can

be defined as noisy points, i.e., it is dissimilar to x.
Thus, in this paper, we proposed a novel deep unsuper-

vised hashing method, called MLS3RDUH, which reduces
the noisy points by incorporating manifold structure to re-
construct the local semantic similarity structure. Specifically,
MLS3RDUH deems an image x similar to the points in the
set nnc

k(x) ∩ nnm
o (x), and dissimilar to the other points in

the set nnc
k(x). Furthermore, inspired by the recently work

[Girshick et al., 2014] that rich semantic informations are
contained in the features extracted by a pre-trained CNN,
MLS3RDUH defines the semantic similarity between the im-
age x and the datapoints that do not belong to nnc

k(x) by
the corresponding cosine similarity of their features extracted
by a pre-trained CNN. Finally, a novel log-cosh hashing loss
function is used to optimize the hashing network to generate
compact hash codes by using the defined similarity as guiding
information.

To sum up, our contributions can be outlined as follows:

• MLS3RDUH utilises the intrinsic manifold structure in
the feature space and cosine similarity to reconstruct the
local semantic similarity structure to define a novel sim-
ilarity matrix.

• A novel log-cosh hashing loss is proposed to optimize
the hashing network to improve the performance.

• Experiments on three public datasets show that the pro-
posed method outperforms the state-of-the-art baselines.

2 Related Work
A variety of hashing methods have been proposed in recent
years, and based on whether supervised information is needed
in the training phase, they can be broadly categorized into
supervised and unsupervised hashing methods.

Supervised hashing methods learn hashing functions by us-
ing not only the data representation but also the label informa-
tion in the training phase. A mass of methods in this category
have been proposed, such as Deep Supervised Hashing with
Pairwise (DPSH) [Li et al., 2016], HashNet [Cao et al., 2017]
and Deep Hashing With Gradient Attention (GAH) [Huang
et al., 2019]. HashNet alleviates data imbalance by adjusting
the weights of semantic similarity matrix to learn discrimi-
native hash codes. GAH utilizes a novel gradient attention
mechanism to train deep hashing model.

The unsupervised hashing methods can be divided into
traditional unsupervised hashing methods and deep unsuper-
vised hashing methods. The traditional unsupervised hashing
methods use hand-crafted features and shallow hash functions
to obtain binary hash codes. Numerous algorithms in this
category have been proposed, such as Spectral Hashing (SH)
[Weiss et al., 2009], and Circulant Binary Embedding (CBE)
[Yu et al., 2014]. However, limited by the hand-crafted fea-
tures and shallow hash functions, it is hard for them to gen-
erate high-quality hash codes for complex and high dimen-
sional real-world data. The deep unsupervised hashing meth-
ods utilize deep architecture to extract image features to learn
hash code. For example, Deepbit [Lin et al., 2016] get ro-
tation invariant and balanced binary hash codes by defined
a quantization loss. Semantic structure-based unsupervised
deep hashing (SSDH) [Yang et al., 2018] constructs seman-
tic structures based on a Gaussian estimation to guide hash-
ing network learning. DistillHash [Yang et al., 2019] learns
hashing models by distilling data pairs with confident seman-
tic similarity relationships as training set.

Compared with these methods, MLS3RDUH utilizes man-
ifold structure to reduce the noisy datapoints when defining
the similarity matrix, and a novel loss function is used to in-
corporate the defined similarity matrix into the training pro-
cess to get a better performance.

3 Our Method
In this section, we first give a problem definition in section
3.1. The whole architecture of MLS3RDUH will be intro-
duced in section 3.2. Then we discuss the detail of similarity
matrix definition and the object function in section 3.3 and
section 3.4, respectively. Finally, we will introduce the learn-
ing of parameters in section 3.5.

3.1 Problem Definition
Suppose a dataset has n images X = {xi}ni=1, and the ith
image is xi. The goal of unsupervised hashing is to learn
a hashing model which maps an image xi into a similarity-
preserving hash code bi ∈ {−1, 1}l where l is the length of
hash codes, such that an input image xi will be encoded into
a l bit binary code bi.

3.2 Design Overview
As shown in Figure 3, MLS3RDUH consists of a similarity
generating part and a hashing network part. In the similar-
ity generating part a pre-trained AlexNet [Krizhevsky et al.,
2012] is used to extract features for training images to gen-
erate a similarity matrix. Then by using the generated simi-
larity matrix as guiding information, the hashing network can
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Figure 3: The architecture of MLS3RDUH. The solid arrows indicate forward-propagation, and the dotted arrows indicate back-propagation.

be trained well to generate hash codes for images. More-
over, the hashing network contains five convolutional layers
and three fully connected layers. The first seven layers are
the same with the first seven layers of AlexNet, and the third
fully-connected layer has l units.

3.3 Similarity Matrix Generating
For each image xi, we first select its k nearest neighbours
nnc

k(xi) based on their cosine similarity. The cosine similar-
ity is formulated as follows:

sc(xi,xj) =
fT
i f l

|f i| ·
∣∣f j

∣∣ (1)

where f i is the feature of image x which is extracted by a
pre-trained CNN such as Alexnet [Krizhevsky et al., 2012]
and VGG [Simonyan and Zisserman, 2014]. |·| denotes the
length of a vector.

Then, inspired by [Zhou et al., 2004b], we measure the
manifold similarity between datapoints by utilizing a random
walk on the nearest neighbour graph. The nearest neighbour
graph is undirected weighted which is constructed by using
the n image X as nodes and can be represented by sparse
symmetric adjacency matrix G ∈ Rn×n which is formulated
as follows:

gij =

{
0, xi 6∈ nnc

k(xj) ∨ xj 6∈ nnc
k(xi),

sc(xi,xj), otherwise.
(2)

Moreover, the diagonal elements of G are zero. With the
nearest neighbour graph, for each node xi, the random walk
follows the iteration:

r
(t)
i = αĜr

(t−1)
i + (1− α)hi (3)

where α ∈ [0, 1) is a hyper-parameter; Ĝ = D−1/2GD−1/2

and D = diag(G1) where 1 is a vector whose elements are
1; r(0)i ∈ Rn is an arbitrary vector; hi is a one-hot vector that
only the ith element of hi equals to 1, and the others equal to
0. According to [Zhou et al., 2004a], the sequence {rti}∗t=0
can converges to the solution r∗i , then we have:

r∗i = αĜr∗i + (1− α)hi (4)

r∗i = (1− α)(I − αĜ)−1hi (5)
where I is an identity matrix. Then, we use r∗ij , the jth el-
ement of r∗i , denotes the manifold similarity between image
xi and image xj . Finally, for each image xi, we rank the
other points by the manifold similarity from large to small
and nnm

o (xi) are the set of the top o datapoints.
Then, with the constructed nnm

o (xi), we can reconstruct
nnc

k(xi) that divide the k nearest neighbours into two groups:
the datapoints in one group are similar to image xi, and
the datapoints in the other group are dissimilar to image xi.
Specifically, for each datapoint in the nnc

k(xi), if it also be-
long to the nnm

o (xi), then it is similar to xi, otherwise, it is
dissimilar to xi; for the other datapoints that are not in the
nnc

k(xi), their similarity with the image xi are fuzzy. Thus,
we can define a similarity matrix Ŝ as follows:

Ŝij =

{
1, xj ∈ nnc

k(xi) ∧ xj ∈ nnm
o (xi),

−1, xj ∈ nnc
k(xi) ∧ xj 6∈ nnm

o (xi),
0, otherwise.

(6)

where Ŝij is the ith row jth column of Ŝ. When Ŝij = 1, it
means image xi is similar to image xj ; when Ŝij = −1, it
means image xi is dissimilar to image xj ; when Ŝij = 0, it
means the similarity between image xi and image xj is fuzzy.
The defined Ŝ may be an asymmetric matrix, then to ensure
the symmetry, we further update it as Ŝ following the rules:
if Ŝij = 1 or Ŝji = 1, then Ŝij = Ŝji = 1; if Ŝij = 0 and
Ŝji = 0, then Ŝij = Ŝji = 0; otherwise Ŝij = Ŝji = −1.

Furthermore, recently work [Girshick et al., 2014] shows
that rich semantic information is contained in the feature ex-
tracted by a pre-trained CNN. It means that some semantic
similarity information can be mined from the feature of im-
ages. Thus, for the similarity fuzzy image pairs, i.e., Ŝij = 0,
we further define their similarity by the cosine similarity of
their features. Then, we can get the final similarity matrix S
which can be formulated as follows:

Sij =

{
Ŝij , Ŝij 6= 0,
2sc(xi,xj)− 1, otherwise.

(7)

Thus, the similarity between two images can be divided into
three types: completely similar Sij = 1, completely dissimi-
lar Sij = −1, and partly similar Sij ∈ (−1, 1).
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3.4 Objective Function
The goal of hashing model is to map the images into hash
codes which can preserving the constructed similarity S, i.e.,
if image xi and image xj are similar, the Hamming distance
d(bi, bj) =

1
2 (l−bTi bj) should be small otherwise should be

large. To achieve this goal, we used a novel log-cosh hashing
loss which can be formulated as follows:

min
W
L1 =

n∑
i=1

n∑
j=1

log(cosh(
1

l
bTi bj − Sij))

s.t. bi = sign(F(xi;W )).

(8)

whereF(xi;W ) denotes the output of the hash network with
image xi as input, and W represents the set of parameters of
hashing network; cosh(a) = ea+e−a

2 ; sign(·) is an element-
wise sign function which returns 1 if the element is positive
and returns −1 otherwise.

By minimizing Formula (8), its goal is to make 1
l b

T
i bj =

Sij , i.e., it can make the hamming distance between two com-
pletely similar points as small as possible, and simultaneously
make the hamming distance between two completely dissim-
ilar points as large as possible. Meanwhile, it can make the
partly similar images xi and xj have the suitable hamming
distance complying with the similarity Sij .

However, the sign(·) function is in-differentiable at zero
and the derivation of it will be zeros for a non-zero input. It
means that the parameters of hashing model will not be up-
dated with the back-propagation algorithm when minimizing
the loss function L1. Thus, we directly discard the sign(·)
function to ensure the parameters of our hashing model can
be updated, and use tanh(·) to approximate the sign(·) func-
tion to make each element of output of hashing network can
be close to “+1” or “-1”. Then the final objective function can
be formulated as follows:

min
W
L =

n∑
i=1

n∑
j=1

log(cosh(
1

l
b̂
T

i b̂j − Sij))

s.t. b̂i = tanh(F(xi;W )).

(9)

3.5 Optimization
To optimize the proposed hashing model, we first construct
the similarity matrix by using Formula (7), then minimize
Formula (9) by using the mini-batch stochastic gradient de-
scent (SGD) and update the parameter of hashing model with
the back propagation (BP) algorithm. The details of the learn-
ing procedure are shown in Algorithm 1.

After the similarity matrix S is constructed, we use the
mini-batch SGD method to learn the parameters W of hash-
ing network. Specifically, we can calculate the gradient of the
loss function L with regard to b̂i as follows:

∂L
∂b̂i

=
2

l

n∑
j=1

tanh(
1

l
b̂
T

i b̂j − Sij))b̂j (10)

where tanh(a) = ea−e−a

ea+e−a .
Then by using the chain rule, the gradients of the loss func-

tion L with regard to the parameters W can be calculated as

Algorithm 1 Learning algorithm for MLS3RDUH
Input: Images X , the length of hash codes k.
Output: Parameters of hashing network W , hash codes
B.

1: Initialize parameters: W , α, k, o. learning rate: lr, it-
eration number: T , mini-batch size z (see Section 4.1).

2: Extract 4,096-dimensional deep features for images by
Alexnet model which is pre-trained on ImageNet dataset.

3: Construct the semantic structure S by using Formula (7).
4: for i = 1 : T do
5: for j = 1 : n

z do
6: Randomly sample z image from database as a mini-

batch.
7: Generate b̂i with image xi as input by hash network.
8: Update parameters of hash network W by Formula

(11) with back propagation algorithm.
9: end for

10: end for
11: Generate image hash codes B.

follows:
∂L
∂W

=
∂L
∂b̂i
· ∂b̂i
∂W

(11)

4 Experiments
In this section, we conduct extensive experiments on three
commonly used image retrieval datasets to evaluate the pro-
posed method against the state-of-the-art baselines.

4.1 Datasets and Settings
Three benchmark image retrieval datasets are used for evalu-
ation, i.e., NUS-WIDE [Chua et al., 2009], MS COCO [Lin
et al., 2014] and CIFAR10 [Krizhevsky et al., 2009], which
are described below.

NUS-WIDE dataset contains 269,648 images crawled
from Flickr. Each image is annotated with one or multiple
labels from 81 concept labels. To ensure sufficient samples
in each category, only 195,834 images that belong to the 21
most frequent concepts are selected for our experiment. We
randomly sample 5,000 images as the test set and use the
remaining images as the database, 10,500 images from the
database as the training set.

MS COCO contains about 82,783 training images and
40,504 validation images, where each image is labeled by
some of the 80 categories. After pruning images with no
category information, we obtain 12,2218 images by combin-
ing the training and validation images. We randomly sample
5,000 images as the test set and use the other images as the
database, 10,000 images from the database as the training set.

CIFAR10 is a popular image dataset which contains 60,000
images in 10 classes. We randomly sample 1,000 images as
the test set and use the remaining images as the database,
5,000 images from the database as the training set.

Our proposed method is an unsupervised method, thus we
compare our method with eight classical and state-of-the-art
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Method NUS-WIDE MS COCO CIFAR10
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

LSH 0.369 0.386 0.396 0.359 0.380 0.382 0.126 0.143 0.162
SH 0.412 0.402 0.418 0.377 0.381 0.383 0.173 0.178 0.182

PCAH 0.352 0.356 0.358 0.366 0.370 0.375 0.135 0.143 0.143
CBE 0.345 0.391 0.407 0.360 0.372 0.377 0.132 0.152 0.160

CNN+LSH 0.408 0.449 0.523 0.429 0.456 0.526 0.171 0.189 0.261
CNN+SH 0.571 0.551 0.565 0.487 0.510 0.535 0.280 0.284 0.295

CNN+PCAH 0.614 0.608 0.616 0.551 0.563 0.584 0.238 0.237 0.243
CNN+CBE 0.408 0.460 0.546 0.418 0.462 0.511 0.164 0.203 0.254

Deepbit 0.391 0.406 0.499 0.399 0.410 0.475 0.115 0.161 0.165
UTH 0.450 0.495 0.549 0.438 0.465 0.508 0.175 0.206 0.215

SSDH 0.580 0.593 0.610 0.540 0.562 0.586 0.262 0.271 0.280
DistillHash 0.627 0.656 0.671 0.546 0.566 0.593 0.285 0.294 0.308

MLS3RDUH 0.713 0.727 0.750 0.607 0.622 0.641 0.369 0.394 0.412
Table 1: MAP of Hamming Ranking for Different Number of Bits on the Three Image Datasets.

unsupervised hashing methods: four traditional shallow unsu-
pervised methods LSH [Gionis et al., 1999], SH [Weiss et al.,
2009], PCAH [Wang et al., 2010] and CBE [Yu et al., 2014];
four deep unsupervised hashing methods: Deepbit [Lin et al.,
2016], UTH [Huang et al., 2017], SSDH [Yang et al., 2018]
and DistillHash [Yang et al., 2019]. The four traditional
shallow unsupervised hashing methods use 512-dimensional
GIST features of images as inputs for all the datasets, and
the four deep hashing methods use the raw images as their
inputs. For fair comparison, we adopt the AlexNet architec-
ture [Krizhevsky et al., 2012] for all the deep hashing meth-
ods. Moreover, we extract 4,096-dimensional deep features
by Alexnet model which is pre-trained on ImageNet [Rus-
sakovsky et al., 2015] dataset as the inputs of the four shallow
hashing methods and denote them as LSH+CNN, SH+CNN,
PCAH+CNN and CBE+CNN, respectively.

In our implementation of MLS3RDUH, we utilize the
AlexNet architecture [Krizhevsky et al., 2012] and imple-
ment it based on Pytorch framework. The parameters in the
first seven layers of hashing model are initialized with the
parameters of the first seven layers of Alexnet which is pre-
trained on ImageNet, and the parameters in the eight layer of
hashing model are initialized by Xavier initialization [Glorot
and Bengio, 2010]. We use mini-batch stochastic gradient
descent (SGD) with 0.9 momentum and the learning rate is
fixed to 0.04. The iteration number is 150. We fix the mini-
batch size of images as 128 and the weight decay parameter
as 10−5. We set k=0.06N, o=0.06N where N is the number
of training datapoints, and following [Zhou et al., 2004b], the
hyper-parameters α is set as 0.99.

4.2 Evaluation Criterions
We evaluate the retrieval quality based on three evaluation
metrics: Mean Average Precision (MAP), Precision curves
with respect to the number of top returned results (P@N)
and Precision-Recall curves (PR). The first two criterions are
based on Hamming ranking which sorts the datapoints based
the Hamming distance to the query datapoint. Specifically,
MAP is one of the most widely-used criteria for evaluating
retrieval accuracy. Given a query and a list of R ranked re-
trieval results, the average precision (AP) for this query can
be calculated. MAP is the average APs of all queries. P@N

is defined as the precision of the top N retrieved instances. In
our experiments, following the settings in [Yang et al., 2018],
R is set to 5,000. and N is set to 1,000. PR curve is based on
hash lookup which aims to return retrieval data in radius of a
certain Hamming distance to the query datapoint.

Moreover, in our experiments, two images are considered
as similar if they share share at least one common label, oth-
erwise they are dissimilar.

4.3 Experimental Results
For Hamming ranking, the results of MAP for MLS3RDUH
and all the baselines on all the three datasets are shown in
Table 1 with hash code numbers varying from 16 to 64, and
P@N curves of the proposed method and all baselines over
the three dataset on 64 bits are shown in Figure 4 (a), (c)
and (e), respectively. In general, from Table 1 and Figure
4 (a), (c) and (e), three observations can be got: (1) Our
proposed method outperforms all the baselines for different
length of hash codes. For example, on NUS-WIDE dataset,
comparing with the best traditional competitor PCAH+CNN
on 64-bits, the MAP of MLS3RDUH have a increases of
13.4%, and comparing with the best deep competitor Dis-
tillHash, MLS3RDUH achieves a increase of 7.9%. More-
over, as shown in Figure 4, the P@N curves of the proposed
method are better than all baselines on all the three datasets.
(2) The performance of most shallow architecture methods
with deep feature as input are better than the ones with hand-
crafted features as input. For example, on MS COCO dataset,
CNNH+SH which used deep features as input outperforms
SH which whose inputs are hand-crafted features by 11%
on 16 bits. (3) When there are not enough supervisory sig-
nals, deep hashing methods may not outperform the shal-
low architecture hashing methods with deep feature as in-
put. For example, on CIFAR10 dataset, the MAP results of
CNN+SH and CNN+PCAH which are shallow architecture
hashing methods with deep feature as input are higher than
the results of deep hashing methodes DeepBit and UTH.

For hash lookup, the PR curves of the proposed method
and all baselines over the three dataset on 64 bits are shown
in Figure 4 (b), (d) and (f). It can be found that the curves of
MLS3RDUH are higher than all the baselines’ on the whole
which demonstrates MLS3RDUH outperforms all the base-
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Figure 4: Precision-recall curves on the two datasets dataset

Method NUS-WIDE MS COCO CIFAR10
MLS3RDUH 0.750 0.641 0.412

MLS3RDUH-1 0.691 0.596 0.349
MLS3RDUH-2 0.687 0.573 0.328

Table 2: MAP Comparison of MLS3RDUH and Its Variants for 64
bits on the Three Image Datasets.

lines in hash lookup.

4.4 Ablation Study
We investigate two variants of MLS3RDUH: (1)
MLS3RDUH-1 is a variant of MLS3RDUH that only
used manifold based reconstructed local semantic similarity,
i.e., Ŝij , as guiding information. (2) MLS3RDUH-2 is a
variant of MLS3RDUH that only use the cosine similar-
ity between datapoints, i.e., without the manifold based
reconstructed local semantic similarity part as guiding
information. The MAP results on 64 bits over three datasets
are shown in Table 2. From the results, there are two points
can be observed: (1) the manifold based reconstructed local
semantic similarity can improve the retrieval performance.
For example, MLS3RDUH outperforms MLS3RDUH-2
by 6.3%, 6.8% and 8.4% on NUS-WIDE dataset, MS

(a) (b)

Figure 5: Precision-recall curves on the two datasets dataset

COCO dataset and CIFAR10 dataset, respectively. (2) Deep
features of images extracted by a pre-trained CNN contains
semantic information which can be used to improve retrieval
performance. For example, compared with MLS3RDUH-1,
MLS3RDUH which use the cosine similarity of deep features
as additional guiding information has a increases of 5.3%,
4.5% and 6.2% on NUS-WIDE dataset, MS COCO dataset
and CIFAR10 dataset, respectively.

4.5 Sensitivity to Hyper-parameters
We investigate the influence of the hyper-parameters k and o.
Figure 5 shows the effect of these two hyper-parameters over
NUS-WIDE dataset on 64 bits. To investigate the influence of
k, we fix o = k and evaluate the MAP values of the proposed
method by varying k from 0.01N to 0.5N where N is the num-
ber of training datapoints. The results are shown in Figure 5
(a). It can be found the performance first increases and then
decreases as k varies, and can get a good performance in the
range of [0.05N, 0.07N]. Then in order to investigate the in-
fluence of o, we set k = 0.06N and vary the ratio between o
and k from 0.25 to 16. The results are shown in 5 (b). It can
be find when the ratio equals to 1, i.e., k = o, MLS3RDUH
can get the best performance. Then, for the proposed method,
the parameters k and o are both set as 0.06N .

5 Conclusion
In this paper, we have proposed a novel Deep Unsupervised
Hashing via Manifold based Local Semantic Similarity Struc-
ture Reconstructing, called MLS3RDUH. MLS3RDUH first
construct a novel similarity matrix by utilizing manifold and
cosine similarity between datapoints to reconstruct seman-
tic similarity structure, then a log-cosh loss is used to opti-
mize the hashing model by incorporating the defined similar-
ity matrix into the training process. Extensive experiments
on three real-world public datasets have shown that the pro-
posed MLS3RDUH outperforms the state-of-the-art unsuper-
vised baselines.
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