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Abstract
In recent years, there has been a growing interest
in the fashion analysis (e.g., clothing matching)
due to the huge economic value of the fashion
industry. The essential problem is to model the
compatibility between the complementary fashion
items, such as the top and bottom in clothing
matching. The majority of existing work on
fashion analysis has focused on measuring the
item-item compatibility in a latent space with
deep learning methods. In this work, we aim to
improve the compatibility modeling by sketching
a compatible template for a given item as an
auxiliary link between fashion items. Specifically,
we propose an end-to-end Auxiliary Template-
enhanced Generative Compatibility Modeling (AT-
GCM) scheme, which introduces an auxiliary com-
plementary template generation network equipped
with the pixel-wise consistency and compatible
template regularization. Extensive experiments on
two real-world datasets demonstrate the superiority
of the proposed approach.

1 Introduction
According to Statista, the online fashion retail sales of the
United States have reached 103 billion dollars in 20181,
which reflects the great demand for online clothing shopping.
Intuitively, people tend to match compatible complementary
fashion items (e.g., a shirt and trousers) and make proper
outfits. Owing to the recent advances in representation
learning, many research efforts have been dedicated to
the compatibility modeling between complementary fashion
items to assist people in clothing matching.

In a sense, existing methods mainly focus on learning the
latent compatibility space [Yang et al., 2019] with advanced
neural networks to bridge the gap between complementary
fashion items, where the item-item compatibility can be
directly measured. In fact, the latest remarkable performance
of Generative Adversarial Networks (GAN) in various image
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generation tasks [Huang et al., 2019] has enabled us to
rethink the solution for automatic clothing matching. Imagine
that given a top and a bottom, if we first sketch a compatible
bottom template for the given top as an auxiliary link between
the complementary items, then we can further measure their
compatibility from the item-template perspective.

In the light of this, in this work, we aim to boost
the performance of compatibility modeling between fashion
items with the help of the auxiliary complementary template
generation. We argue that the task of template-enhanced
compatibility modeling is non-trivial. The main challenge
lies in how to seamlessly integrate the auxiliary template
generation into the primary item-item compatibility modeling
and boost the performance. Also, how to accurately generate
a compatible bottom template for the given top to guide
the item-template compatibility modeling arises the second
challenge. As each fashion item involve multiple modalities
(e.g., visual and textual modalities), both of which can
convey important message regarding the item features, how to
effectively fuse the multi-modal cues poses the last challenge.

To address the aforementioned challenges, we propose
an Auxiliary Template-enhanced Generative Compatibility
Modeling network (abbreviated as AT-GCM) as shown in
Figure 1. The scheme comprehensively measures the
compatibility between fashion items from the primary item-
item perspective and the auxiliary item-template perspective
simultaneously. On the one hand, we devise the item-
item compatibility modeling component with a dual-path
neural network, where each path corresponds to one modality
of the fashion item. On the other hand, we introduce
an auxiliary complementary template generation network
equipped with the pixel-wise consistency and compatible
template regularization, working on transferring the given top
image to a compatible bottom template image.

Our contributions can be summarized in three-fold. 1)
We propose an auxiliary template-enhanced generative com-
patibility modeling scheme, which seamlessly integrates the
primary item-item compatibility modeling and the auxiliary
item-template compatibility modeling. To the best of our
knowledge, we are the first to explore the potential of GAN in
the context of fashion compatibility modeling. 2) We propose
an auxiliary complementary template generation network,
which is able to sketch a compatible bottom template for
a given top and hence facilitate the final compatibility
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Figure 1: Illustration of the proposed auxiliary template-enhanced generative compatibility modeling scheme.

modeling. And 3) extensive experiments on two real-world
datasets demonstrate the superiority of our AT-GCM over
the state-of-the-art methods in compatibility modeling, where
improvements of 3.56% and 4.87% on AUC and MRR can be
achieved by our AT-GCM over the best baseline, respectively.

2 Related Work
2.1 Generative Models
Recent mainstream generative models for automatic image
generation include the Variational AutoEncoder (VAE) [Pu et
al., 2016] and GAN [Goodfellow et al., 2014]. Variational
methods work on introducing the deterministic bias to
optimize the lower bound of the logarithmic likelihood
with probabilistic graphical models. Despite its compelling
performance in various image generation tasks, VAE tends
to generate blurry samples due to its KL divergence
minimization between the samples and the input data [Jin
et al., 2019]. Pertaining to the GAN that usually consists
of a generator and a discriminator, the key to its remarkable
success lies in its min-max optimization strategy, where the
generator tries to synthesize a realistic image to fool the
discriminator, while the discriminator attempts to distinguish
the generated image from the real one. Despite the huge
success in various research tasks [Song et al., 2018; Li et
al., 2019; He et al., 2019], the potential of GAN in the
compatibility modeling remains largely untapped, which is
a major novelty of our work.

2.2 Fashion Compatibility Modeling
Due to the huge economic value of the fashion indus-
try, increasing research attention has been paid to the
complementary clothing recommendation [Chen and He,
2018; Wang et al., 2018] and outfit assessment [Cucurull
et al., 2019; Ma et al., 2017]. For example, Song et
al. [2017] proposed a content-based neural scheme with
the Bayesian Personalized Ranking (BPR) framework to

model the compatibility between two fashion items. In
addition, to handle the outfit compatibility assessment that
involves multiple fashion items, Han et al. [2017] presented
a Bidirectional Long Short-Term Memory (Bi-LSTM) model
that is able to sequentially predict the compatibility among
items of an outfit. Later, Vasileva et al. [2018] introduced
an end-to-end method working on jointly learning the item
similarity and compatibility. In a sense, the above studies
focus more on the non-generative item-item compatibility
modeling, but overlook the potential of incorporating an
auxiliary bridge between fashion items using the generative
models. Towards this end, Lin et al. [2019] proposed
a novel outfit recommendation framework with the co-
supervision of fashion generation, which aims to boost the
recommendation performance by generating the auxiliary
bottom image with VAE based on the given top and the
desired bottom description. Different from it, in this work,
we focus on generating an auxiliary complementary template
based on GAN rather than VAE to enhance the compatibility
modeling from the item-template perspective. Moreover, to
promote the model flexibility in practical applications, we
devise the generative network to simply take the given top
image as the input, making the description of the desired
bottom, which is essential to [Lin et al., 2019], unnecessary.

3 Methodology
3.1 Problem Formulation
Suppose we have a set of tops T = {t1, t2, · · · , tNt} and
bottoms B = {b1, b2, · · · , bNb

}, where Nt and Nb stand
for the number of tops and bottoms, respectively. Let
Iti(Ibj ) and cti(cbj ) represent the visual image and the
textual description of the top (bottom) ti (bj), respectively.
Let P = {(ti1 , bj1), (ti2 , bj2), · · · , (tiM , bjM )} stands for
the set of positive top-bottom pairs, where M refers to the
total number of pairs. We define mij as the compatibility
between the top ti and bottom bj , based on which we can
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Figure 2: Details of the generator network with three components: encoder, transformer and decoder.

generate a ranking list of bottoms for a given top to make
compatible outfits. Essentially, our goal is to devise an end-
to-end auxiliary template-enhanced generative compatibility
modeling scheme C with the set of to-be-learned parameters
ΘC , which is capable of comprehensively measuring the
compatibility between the given top and bottom by generating
an auxiliary bottom template Ĩbi .

3.2 Auxiliary Complementary Template
Generation

Intuitively, the underlying philosophy for introducing the
auxiliary complementary template generation is that for a
given top, we can sketch a compatible bottom template to
guide the final retrieval of the compatible bottoms. In fact,
inspired by the edges-to-photos [Xian et al., 2018], male-to-
female [White, 2016], attributes-to-faces [Liu et al., 2017],
generating the compatible bottom template for a given top
can be cast as an image-to-image translation problem (i.e.,
top-to-bottom translation). Moreover, GAN has become the
mainstream approach for the image-to-image translation task.
Accordingly, we adopt GAN as the backbone to transfer the
given top image Iti from the source domain T to the bottom
template image Ĩbi in the target domain B as follows:

G(Iti |ΘG)→ Ĩbi , (1)
where ΘG refers to the parameters of generator G. Similar
to [Zhu et al., 2017], we design the generator with three key
components: encoder, transformer and decoder. The detailed
network architecture is shown in Figure 2. The encoder,
comprising three convolution layers, is employed to learn the
visual feature encoding Vti of the given top ti as follows:

Hk = φ(WkHk−1 + bk), k = 1, · · · ,K, (2)
where we compile Θenc = {Wk,bk | k = 1, · · · ,K} as
the parameters of the encoder. We set K = 3 and H0 = Iti .
We treat the output of the last layer as the visual encoding,
i.e., Vti = HK ∈ Rw×h×c, where w × h × c refers to the
shape of the encoding. In this work, we adopt the ReLU as the
activation function φ(·). In a similar manner, we can derive
the visual encoding Vbj ∈ Rw×h×c for the bottom bj .

Then, the transformer plays a pivotal role in converting the
visual encoding Vti of the source top image Iti to the visual
encoding Ṽbi of the target bottom template Ĩbi . In particular,
we deploy the transformer with the deep residual networks
(ResNets) [He et al., 2016] as follows:

Rl = Rl−1 + F(Rl−1,Θtrans), l = 1, · · · , L, (3)

where Rl−1(R0 = Vti) is the input of the l-th residual block
and F refers to the residual function. Θtrans represents the
corresponding parameters. L refers to the total number of
blocks in the transformer, where we set L = 6. Similarly,
the output RL is treated as the transformed visual encoding
Ṽbi ∈ Rw×h×c for the generated bottom template Ĩbi .

Pertaining to the decoder, opposite to the encoder, it
devotes to restoring the low-level representation Ĩbi from
the transformed visual encoding Ṽbi with two deconvolution
layers and one convolution layer, where we use Θdec to
denote the decoder parameters. Ultimately, the generator G
is able to transform the given top Iti to a bottom template Ĩbi
with parameters ΘG = {Θenc,Θtrans,Θdec}.

Simply applying the standard GAN can only ensure the
generated bottom to be realistic. We take a step forward to
constrain the generated bottom template Ĩbi to be not only
natural but also compatible with the given top to facilitate the
following retrieval of compatible bottoms. To guarantee the
training stability and avoid the vanishing gradient [Xian et al.,
2018], we adopt the least square loss [Mao et al., 2017]:

LGAN (GT→B, DB) =min
Θ
{1
2
(1− t)(DB(Ibj )− 1)2

+
1

2
(DB(Ĩbi)− t)2}, (4)

where t = 1 refers to training the generator GT→B with
Θ = ΘGT →B , while t = 0 corresponds to optimizing
the discriminator DB with Θ = ΘDB . ΘGT →B and
ΘDB represent the parameters of the generator and the
discriminator, respectively. Meanwhile, we adopt the pixel-
wise L1 loss to prevent the blurring [Isola et al., 2017] of
the generated compatible bottom and further encourage the
generated bottom template to be compatible with the given
top by minimizing the pixel-level differences between the
bottom template Ĩbi and the positive bottom Ibj as follows:

Lpixel =
∥∥Ĩbi − Ibj

∥∥
1
. (5)

To alleviate the mode collapse problem [Li et al., 2017] of
the typical GAN, similar to [Zhu et al., 2017], we adopt the
cycle consistency loss to enforce that the source top image
Ĩti should be able to be restored by the generated bottom
template Ĩbi . Towards this end, we introduce an extra inverse
generator FB→T as follows:

FB→T (Ĩbi |ΘFB→T )→ Ĩti ≈ Iti , (6)
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where ΘFB→T represents the generator parameters. Then we
have the following adversarial loss LGAN (FB→T , DT ) =:

min
Θ
{1
2
(1− z)(DT (Iti)− 1)2 +

1

2
(DT (Ĩti)− z)2}, (7)

where z = 1 corresponds to Θ = ΘFB→T , while z = 0
refers to Θ = ΘDT . ΘDT represents the parameters of
the discriminator DT . As the restored top Ĩti should be
consistent with the source input Iti , we have the following
cycle consistency loss:

Lcycp =
∥∥Ĩti − Iti

∥∥
1
. (8)

3.3 Template-Enhanced Generative Compatibility
Modeling

We proceed to detail our proposed template-enhanced gener-
ative compatibility modeling component. Accordingly, the
compatibility mij can be measured from both the primary
item-item and auxiliary item-template perspectives.

As for the primary item-item compatibility modeling, we
aim to seek the latent representations for items that enable
us to accurately measure the compatible preference between
items. In a sense, it is natural to argue that compatible items
should follow certain visually distinguished patterns. For
example, the “Chiffon Blouse with Bow Detail” matches well
with the “High-waisted Pleated Design Midi Skirt”, while the
“Striped Shirt” goes well with the “Fray Hem Denim Wide
Leg Pants”. To well capture the distinguished features of
items, we adopt the global average pooling (GAP) [Lin et al.,
2013] for its powerful capability in locating the discriminant
areas of an image. According to GAP, each feature map
with the shape of w × h would be averaged to one value.
Therefore, we can derive the global visual feature vti(vbj ) ∈
Rc from the visual encoding Vti(Vbj ) ∈ Rw×h×c for the
top (bottom) ti (bj). Moreover, to enhance the nonlinear
compatibility modeling, we project the global visual feature
with a fully-connected layer to get the final latent visual
representation for each item. Taking the top as an example,
we fed vti to the following layer:

ṽti = σ(Wvvti + hv), (9)

where ṽti ∈ RDv represents the final visual representation of
the top ti. σ denotes the sigmoid activation function.

Apart from the visual cue, the textual information may
also convey important features (e.g., the category and
style) of fashion items and hence also merit our attention.
Accordingly, we define c̃ti(c̃bj ) ∈ RDt as the latent textual
representation for the top (bottom), which can be obtained
in a similar manner with the visual representation ṽti(ṽbj ).
Then, we define the item-item compatibility as follows:

mI−I
ij = µ(ṽti)

T ṽbj + (1− µ)(c̃ti)T c̃bj , (10)

where µ is used to balance the importance of the visual and
textual modalities.

Pertaining to the auxiliary item-template compatibility, we
argue that the compatible bottom candidates for a given top
should be semantically similar to the latent generated bottom
template. Accordingly, we define the auxiliary compatibility

as the similarity between the high-level visual encodings of
the generated bottom template and the given bottom. Then,

mI−T
ij =

∥∥Ṽbi −Vbj

∥∥
1
. (11)

Ultimately, the compatibility score mij between the top
and bottom can be defined as follows:

mij = mI−I
ij + αmI−T

ij , (12)

where α is the trade-off non-negative hyper-parameter.
Towards the final compatibility modeling, we build the
following triplet dataset:

E := {(i, j, k)|(ti, bj) ∈ P , bk ∈ B \ bj}. (13)

The triplet (i, j, k) indicates that the top-bottom pair (ti, bj)
in the positive top-bottom set P is more compatible than the
pair (ti, bk), where bk is randomly sampled from the bottom
set B. Adopting the BPR [He and McAuley, 2016], we model
the compatible relationship between fashion items as follows:

LBPR = −ln(σ(mij −mik)), (14)

where mik can be derived according to Eqn.(12). Essentially,
we expect the given top would share the higher compatibility
with the positive bottom as compared to the negative one.

Optimization. To boost the performance, we seamlessly
integrate the auxiliary complementary template generation
with the compatibility modeling in an end-to-end manner:

L =LBPR + LGAN (GT→B, DB) + LGAN (FB→T , DT )

+ βLcycp + γLpixel + δ ‖ΘC‖2 , (15)

where β, γ, δ are the non-negative hyper-parameters
controlling the strength of different components of AT-GCM.
Then, we adopt the back-propagation algorithm to learn the
network parameter ΘC .

4 Experiments
4.1 Experimental Settings
To evaluate the proposed AT-GCM, we conduct extensive
experiments on public datasets: FashionVC [Song et al.,
2017] and ExpFashion [Lin et al., 2019], which consist of
20, 726 and 853, 991 outfits, respectively. Each fashion item
involves an image and the textual context (i.e., corresponding
item categories and title description). The image is directly
fed into the generator network. Pertaining to the textual
information, we adopt TextCNN [Kim, 2014] and derive the
textual representation cti(cbj ) ∈ R400 for each fashion item.
Notably, to balance the two datasets, we randomly sample
20, 000 outfits instead of using the whole ExpFashion dataset.

For each dataset, we randomly select 80% for training,
10% for validation, and the rest for testing. To com-
prehensively show the effectiveness of our AT-GCM in
compatibility modeling, we adopt the area under the ROC
curve (AUC) and mean reciprocal rank (MRR) to evaluate its
performance in both triplet-wise compatibility modeling and
list-wise complementary item retrieval tasks, respectively.
We randomly sample 3 negative bottoms according to
Eqn.(13) to build the triplet dataset for the former task, while
9 negative bottoms together with the positive one to comprise
the bottom retrieval candidates for the latter one.
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FashionVC ExpFashion
Approach AUC MRR AUC MRR

POP 0.4364 0.1989 0.3823 0.2130
Bi-LSTM 0.5464 0.3299 0.5298 0.3261

IBR 0.6189 0.4391 0.6029 0.3715
IBR-VC 0.6807 0.4548 0.6591 0.4159

BPR-DAE 0.7826 0.6214 0.7454 0.5893
FARM 0.5842 0.3710 0.5540 0.3250
Pix2pix 0.8208 0.6579 0.8165 0.6253

CycleGAN 0.8292 0.6884 0.8243 0.6872
AT-GCM 0.8587 0.7219 0.8395 0.7058

Table 1: Performance comparison of different models in terms of
AUC and MRR on FashionVC and ExpFashion.

4.2 Comparisons
To demonstrate the effectiveness of our proposed AT-GCM
for the task of compatibility clothing matching, we compare
it with the following state-of-the-art baselines.

POP: We measure the compatibility between top ti and
bottom bj by the number of bottoms that have been matched
with the given top ti in the dataset.

Bi-LSTM [Han et al., 2017]: This approach models the
outfit compatibility by exploring the sequential relationships
among fashion items in an outfit. We adapt this method to
deal with outfits that consist of only two fashion items (i.e.,
the top and bottom).

IBR [McAuley et al., 2015]: IBR models the relationships
between items with a linear latent style space, which is
learned simply based on the visual modality.

IBR-VC: We extend IBR to measure the compatibility
between fashion items with both the visual and textual
information. Specifically, we employ the TextCNN that is
also used in AT-GCM to encode the textual features.

BPR-DAE [Song et al., 2017]: This baseline is originally
designed to jointly model the compatibility between fashion
items and the coherent modality consistency of items. For the
sake of fairness, we adapt it in an end-to-end fashion, where
the Alexnet and TextCNN are used to extract the visual and
textual representations, respectively.

FARM [Lin et al., 2019]: This model aims to boost the
compatibility modeling by the item generation, where VAE is
adopted to generate the auxiliary bottom image based on the
given top and the bottom description. Notably, we disable the
input of the bottom text description, which is unnecessary in
our context.

CycleGAN [Zhu et al., 2017]: We replace the template
generative network in our model with CycleGAN, which
is devised to address the unsupervised image-to-image
translation problem with unpaired training data based on the
forward and backward cycle-consistency networks.

Pix2pix [Isola et al., 2017]: We utilize the pix2pix to
fulfill the auxiliary complementary template generation of our
scheme, which adopts the U-Net [Ronneberger et al., 2015]
architecture for its generator.

Table 1 shows the performance comparison with the state-
of-the-art methods in terms of AUC and MRR both on the
FashionVC and ExpFashion datasets, respectively. From this

Figure 3: Bottom templates generated by different generative
models. GT: ground truth.

table, we have the following observations. 1) Our AT-GCM
significantly outperforms all the other methods, verifying
the effectiveness of our proposed generative compatibility
modeling scheme. 2) The most naive baseline POP
achieves the worst performance, which is reasonable as
it may be inappropriate to match fashion items without
considering the item contents that intuitively capture the
item’s various features. 3) AT-GCM surpasses all the non-
generative content-based methods (i.e., IBR, IBR-VC, Bi-
LSTM and BPR-DAE), indicating the advantage of taking
into account the auxiliary compatible template generation
in the compatibility modeling. 4) AT-GCM achieves more
superior performance than Pix2pix and CycleGAN. This may
be due to the fact that the U-Net structure of Pix2pix tends to
learn the low-level information [Yi et al., 2017], while the
CycleGAN is more suitable for the image translation tasks
with the narrow domain gap (e.g., zebra to horse, summer
to winter) rather than the task with a large domain gap like
ours. 5) Surprisingly, the generative model FARM performs
worse than the conventional non-generative methods. The
possible explanations are twofold: a) the variational method
adopted by FARM may produce samples with the lower
quality [Goodfellow et al., 2014] and hence hurt the model
performance; and b) FARM highly relies on the given bottom
text description, which hinders its adaptability in our more
general and practical context.

To gain more deep insights regarding the effectiveness
of our proposed framework, we intuitively compare the
generated bottom templates of AT-GCM, FARM, pix2pix,
and CycleGAN with several examples in Figure 3. As we can
see, our AT-GCM outperforms the baselines by generating
more natural and compatible bottom templates for the given
top. In particular, we observe that the bottom templates
yielded by our AT-GCM can capture the shape of the desired
compatible bottom better than the texture. Interestingly,
even with the auxiliary bottom templates with fuzzy texture,
AT-GCM can boost the compatibility modeling performance
significantly (as shown in Table 1). One possible reason lies
in that shape is an important attribute of a fashion item, highly
correlated to other attributes, like the item category, style
design, sleeve length as well as the clothing fitness, and thus
plays an essential role in compatibility modeling.
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FashionVC ExpFashion
Approach AUC MRR AUC MRR

AT-GCM-V 0.8124 0.6680 0.7963 0.6534
AT-GCM-T 0.6413 0.5735 0.6092 0.4202
AT-GCM 0.8587 0.7219 0.8395 0.7058
(a) Performance on different modality configurations.

FashionVC ExpFashion
Approach AUC MRR AUC MRR
-noCyc 0.8308 0.6766 0.8172 0.6586
-noPixel 0.8133 0.6678 0.7840 0.6403
-noTemG 0.7599 0.6472 0.7362 0.6265
AT-GCM 0.8587 0.7219 0.8395 0.7058

(b) Performance on different component configurations.

Table 2: The ablation study of AT-GCM in terms of AUC and MRR
on FashionVC and ExpFashion.

4.3 The Ablation Study

To comprehensively verify our AT-GCM, we further conduct
the ablation study, where the model performance with differ-
ent modality and component configurations are evaluated.

On Modality Comparison. To demonstrate the advan-
tages of incorporating the multiple modalities of fashion
items, we introduce two derivatives of our model: AT-GCM-
V and AT-GCM-T, where only the visual and textual modality
is adopted in our framework, respectively. Table 2(a) shows
the evaluation results with different modality configurations
on FashionVC and ExpFashion. As can be seen, our AT-GCM
significantly outperforms AT-GCM-V and AT-GCM-T. Even
for the better derivative AT-GCM-V, improvements of 5.69%
and 8.06% can be achieved by AT-GCM regarding the AUC
and MRR, respectively. This well demonstrates the benefits
of incorporating both the visual and textual modality into the
compatibility modeling. Moreover, we notice that AT-GCM-
V performs better than AT-GCM-T, confirming the visual
modality conveys more intuitive features (e.g., the color and
shape) of fashion items and is more reliable for compatibility
modeling. In addition, this may be attributed to the fact that
the visual information contributes to the auxiliary template
generation more than the textual modality.

On Component Comparison. To gain deep insights
regarding our AT-GCM, we study the effects of its several
key components. In particular, to evaluate the auxiliary
template generation component, we introduce the baseline -
noTemG, where the bottom template generation network is
disabled, resulting in the model to measure the compatibility
simply from the item-item perspective. In addition, to further
check the impacts of the pixel-wise L1 regularization and the
cycle generative network in the auxiliary template generation
component, we adapt our method to -noPixel and -noCyc by
setting γ to 0 and removing the cycle generative network
FB→T , respectively. As can be seen from Table 2(b), AT-
GCM significantly outperforms -noTemG, demonstrating the
necessity of the auxiliary template generation component for
AT-GCM. In addition, both -noPixel and -noCyc surpass -
noTemG, implying that both the pixel-wise consistency and
the cycle generative network are essential to the auxiliary

Figure 4: Illustration of the ranking results in term of MRR with
-noTemG and AT-GCM. The clothing items highlighted in the red
boxes are the ground truth.

template generation component of AT-GCM. Figure 4 visual-
izes the ranking results of -noTemG and AT-GCM in the task
of complementary item retrieval with two examples. As can
be seen from the first example, given the top “Short Sleeve T-
shirt”, the positive bottom “Ripped Light Jeans” is ranked at
the third place by -noTemG, but promoted to the first place by
AT-GCM taking the bottom template generation into account.
Indeed, the auxiliary bottom template generated by AT-GCM
does help to identify the jeans as the positive compatible
bottom rather than the “Stripe Mini Dress” and the “Petal
Black Skirts”. Similar observations can be also found in the
second example, where the generated bottom template help
to promote the ranking of the positive item.

5 Conclusion
In this work, we present an end-to-end auxiliary template-
enhanced generative compatibility modeling scheme (AT-
GCM), which is able to comprehensively model the com-
patibility between fashion items from both the item-item and
item-template perspectives. As a major novelty, we introduce
an auxiliary complementary template generation network
to help sketch a template and enhance the compatibility
modeling, where the pixel-wise consistency and compatible
template regularization are jointly modeled. Extensive exper-
iments on two real-world datasets demonstrate the advantage
of taking into account the item-template compatibility
modeling. Currently, we sketch the auxiliary complementary
template simply by the visual cue but overlook the textual
message. In the future, we plan to further consider the
textual context to promote the template generation quality and
enhance the compatibility modeling performance.
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