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Abstract
Community detection, aiming at partitioning a net-
work into multiple substructures, is practically im-
portance. Graph convolutional network (GCN), a
new deep-learning technique, has recently been de-
veloped for community detection. Markov Ran-
dom Fields (MRF) has been combined with GCN
in the MRFasGCN method to improve accuracy.
However, the existing GCN community-finding
methods are semi-supervised, even though commu-
nity finding is essentially an unsupervised learn-
ing problem. We developed a new GCN approach
for unsupervised community detection under the
framework of Autoencoder. We cast MRFasGCN
as an encoder and then derived node community
membership in the hidden layer of the encoder. We
introduced a community-centric dual decoder to
reconstruct network structures and node attributes
separately in an unsupervised fashion, for faithful
community detection in the input space. We de-
signed a scheme of local enhancement to accom-
modate nodes to have more common neighbors and
similar attributes with similar community mem-
berships. Experimental results on real networks
showed that our new method outperformed the best
existing methods, showing the effectiveness of the
novel decoding mechanism for generating links and
attributes together over the commonly used meth-
ods for reconstructing links alone.

1 Introduction
Real-world systems often appear in the form of networks. Ex-
amples include social networks, power grid and world trade
networks. Real networks have modular structures or commu-
nities [Fortunato, 2010], which are densely connected sub-
graphs with nodes of close relationships and similar proper-
ties. Identification of network modular structures is an ef-
fective means to understanding the underlying organizational
principles and functions of the system that the network rep-
resents. Community detection has been an active area of re-
search, as surveyed in [Falih et al., 2018; Fortunato, 2010;
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Fortunato and Hric, 2016], and many community detection
methods have been proposed, including that based on statis-
tical modeling [Chen et al., 2018], modularity optimization
[Yang et al., 2016], matrix factorization [Wang et al., 2017].

Deep learning has recently been adopted in network anal-
ysis [Kipf and Welling, 2017; Yang et al., 2016; Jin et al.,
2018; Monti et al., 2018; Pan et al., 2018]. In particular,
Graph Convolutional Networks (GCN) has attracted a great
deal of attention lately due to its success on supervised and
semi-supervised classification of nodes in a graph [Li et al.,
2018; Kipf and Welling, 2017] which can be adopted for com-
munity detection. Of particular relevance to the current study
is MRFasGCN [Jin et al., 2019], a state-of-the-art GCN-
based semi-supervised community detection method, which
incorporates a Markov Random Fields (MRF) modeling of
communities in the GCN framework.

Community detection is in essence an unsupervised learn-
ing problem. Real-world networks are typically unique – the
training data from one network can be hardly used adequately
for another network. As a corollary to this observation, when
finding communities in a network, the only data available for
analysis are the information on the network itself. A scheme
of semi-supervised learning, such as the MRFasGCN method,
can apply in such a way that partial label information on some
of the nodes in a given network can be used to predict the
community identities of the remaining unlabeled nodes in the
same network. However, for most application problems, even
such partial training data are costly and arduous to gather.

Therefore, to advance the state-of-the-art of community
detection, it is of great technical significance and paramount
practical importance to develop GCN-based algorithm for
unsupervised community detection by exploiting the great
power of automatic feature learning and effective optimiza-
tion that deep learning can offer. It also remains to be seen if
an end-to-end deep learning approach can outperform the ex-
isting methods that use statistical methods and other machine
learning techniques for community finding.

We developed a novel GCN-based approach for Unsuper-
vised Community Detection in attribute networks, referred to
as GUCD. In this method, we incorporated network model-
ing method of MRFasGCN in the Autoencoder framework
and introduced a special neural network architecture suitable
for learning network communities and node semantics at the
same time. We further introduced a local enhancement to the
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latent communities, i.e. we first constructed an aggregated
graph combining the information of both topology and at-
tributes, and then made each pair of connected nodes in this
graph have similar community distributions. We conducted
experiments on some real networks to compare the new ap-
proach with the best existing methods and analyzed the fea-
tures of the new approach. To our best knowledge, GUCD is
the first GCN method for unsupervised community finding.

2 Preliminaries
We first introduce some notations and define the problem of
community detection, and then discuss MRFasGCN [Jin et
al., 2019] (a GCN based semi-supervised community detec-
tion method) which serve as the bases of our new approach.

2.1 Notations and Problem Definition
An undirected and attributed network is represented as a
graph G = (V,E,W ) over a set of n nodes V =
{v1, v2, . . . , vn}, a set of e edges E with eij = (vi, vj) ∈ E
if an edge exists between nodes vi and vj , and a set ofm node
attributes W = {w1, . . . wm}. The topological structure ofG
is represented by an n × n adjacency matrix A = (aij)n×n,
where aij = 1 if eij ∈ E, or 0 otherwise. An n × m at-
tribute matrix X is used to denote the attributes of nodes,
where xit = 1 if a node has attribute wt, or 0 otherwise.

Given an attribute network G, community detection
is to partition the n nodes into K communities C =
{C1, C2, . . . , CK} so that each node vi has a community
identity or label ci ∈ L = {1, 2, . . . ,K}.

2.2 MRFasGCN
MRFasGCN [Jin et al., 2019] infers a partition of nodes in a
network in two main parts. First, they take the original two
convolutional layers of GCN [Kipf and Welling, 2017], that
is

X(2) = softmax
(
ÂReLU

(
ÂXH(0)

)
H(1)

)
(1)

as the first two layers of the neural network to infer an
initial assignment of node labels (X(2)), where Â =
D̃−1/2ÃD̃−1/2 (Ã = A + In and D̃ is a diagonal matrix
with d̃ii =

∑
j ãij) captures network topology, X is the at-

tribute matrix, and H(0) and H(1) are weight parameters of
the two convolutional layers to be trained.

MRFasGCN then incorporates a community-oriented MRF
as the third convolutional layer in the GCN. The central piece
of this MRF model is an energy function, E(C|A,X), with
two parts: the sum of unary potentials over all nodes and the
sum of pairwise potentials over all edges:

E(C|A,X)=α∗
∑
i

φu (ci)+(1−α)∗
∑
i6=j

φp (ci, cj)

=α∗
∑
i

−p (ci)+(1−α)∗
∑
i6=j

µ (ci, cj)τ(vi, vj)
(2)

where α is a parameter for balancing the unary and pairwise
potentials. The unary potential φu (ci) = −p (ci) measures
the cost for node vi taking label ci, where p (ci) = x

(2)
i,ci

is the

probability that vi has label ci, derived from GCN in Eq. (1).
The pairwise potential φp (ci, cj) = µ (ci, cj) τ (vi, vj) mea-
sures the cost for assigning labels ci and cj to nodes vi and
vj , where µ (ci, cj) denotes the semantic similarities between
communities ci and cj , and τ (vi, vj) the attribute similarity
or consistency between nodes vi and vj , defined as:

µ (ci, cj) = (−1)δ(ci,cj)h(2)cicj (3)

τ (vi, vj) = β ∗ ξ (vi, vj) + (1− β) ∗Ri (ζ (vi, vj)) (4)

where h(2)cicj is the parameter to be learned, δ (ci, cj) = 1
if ci = cj , or 0 otherwise, ξ (vi, vj) = didj/2e − aij
(di is the degree of node vi and e the number of edges),
and β is a tradeoff parameter that balances topology and at-
tributes. ζ (vi, vj) is defined by using the cosine similarity
between the attribute vectors of nodes vi and vj , and then an
asymmetric regularization is used to balance the difference
of the sum of similarity on every node, i.e., Ri (ζ (vi, vj)) =
ζ (vi, vj) /

∑n
t=1 ζ (vi, vt).

However, minimizing the above energy function in order
to yield the most probable community partition for a given
network is intractable, since the pairwise potentials are de-
fined over a complete graph rather than the sparse network.
Thus, a mean filed approximation is adopted to approximate
the exact distribution P (C|A,X). The updating procedure
for this approximation has four steps 1) initialization, 2) mes-
sage passing, 3) adding unary potentials and 4) normalization.
Following these steps, MRFasGCN can transform the MRF’s
inference into a layer of convolutional process (that is com-
patible with GCN of Eq. (1)), defined as:

Z = softmax
(
X(2) −ΥX(2)H(2)

)
(5)

where Υ = (τ (vi, vj))n×n is defined in Eq. (4), H(2) are
the weight parameters to be trained, and Z = (zici)n×K the
final community membership of nodes (where zici denotes
the probability that node vi belongs to community ci).

3 The Method
After a brief overview of our new method, we will introduce
an encoder based on MRFasGCN to derive node community
memberships and a dual decoder for reconstructing links and
attributes based on communities. We then discuss a regular-
ization to enhance community detection locally.

3.1 Overview
The new GCN-based approach for Unsupervised Community
Detection, short-handed as GUCD, adopts Autoencoder as its
overall architecture and includes three main parts (Fig. 1). In
the first part (the green box to the left of Fig. 1), we adopted
the three convolutional layers of MRFasGCN as the encoder
of GUCD, where the first two layers were to learn a deep rep-
resentation of the attribute network and the third layer was
to model and derive node community membership using both
the deep representation and network information. We then
designed a dual decoder as the second part of GUCD (the red
box to the right of Fig. 1), using the derived communities to
separately reconstruct network topology and node attributes.
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Figure 1: The architecture of GUCD. Part 1 to the left in the green box represents the encoder for deriving community membership of nodes.
Part 2 to the right in the red box represents the dual decoder for reconstructing links and node attributes using community membership. Part
3 in the middle in the purple box represents the local enhancement on communities.

We first reconstructed the network topology by requiring the
nodes within the same community to maintain the same link
pattern (with also considering the heterogeneity of node de-
grees) connecting to the rest of the network, which is suitable
for generating the coupling relationships between nodes. We
then generated node contents using topic modelling, i.e. we
assumed that the contents of nodes in the same community
share similar distributions of attribute words used. We for-
mulated the dual decoder to fully utilize (structural and con-
tent) data from diverse sources, making the decoding process
suitable for unsupervised community detection. In the third
part (in purple box in the middle of Fig. 1), we added a reg-
ularization of local enhancement to the latent communities,
i.e. we first constructed an aggregated graph combining the
information of both topology and attributes, and then made
each pair of connected nodes in this graph have similar com-
munity distributions. The model was trained as a whole using
the Adam optimizer [Kingma and Ba, 2015].

3.2 The Shared Encoder
We processed the network topology and node attributes to-
gether using the same encoder so as to extract hidden net-
work characteristics, particularly latent community structures
to be identified. To be specific, we adopted the three convolu-
tional layers of MRFasGCN [Jin et al., 2019] as the encoder
(the green box of Fig. 1). We used the first two layers to
derive a general embedding and then derived an initial node
community labels X(2) (defined in Eq. (1)) by using soft-
max on the embedding, which is not community-specific. We
used this initial solution X(2) to define unary potentials in
MRF, and then defined pairwise potentials of MRF to model
communities Z (defined in Eq. (5)) hidden in network topol-
ogy and attributes, leading to the third convolutional layer.
Through these three layers, the derived node community la-
bels Z not only utilize the deep representation but also are
smoothly community-oriented. The node to community as-
signments in Z will be learned when the whole model with
encoder and decoder is trained together; the high quality of
the reconstructed network will require an accurate commu-

nity structure at the end of the encoder.

3.3 The Dual Decoder
The dual decoder is the core part of the new method. It con-
sists of two decoders, one for reconstructing network topol-
ogy and the other for reconstructing node attributes.

The Decoder for Reconstructing Network Topology
This novel decoder attempts to reconstruct network topol-
ogy based on the node community membership derived in
the latent space. It not only makes the decoder community-
oriented, but also achieves unsupervised learning for com-
munity detection. The idea is inspired by the block model
for blocks, groups, or communities in networks. That is, if
the community which a node vi belongs to is denoted as ci
(ci = 1, 2, . . . ,K), we can then define a K×K block matrix
Θ such that each element θrs in the matrix is the possibility
of having an edge between any two nodes vi and vj (with
ci = r and cj = s). In this case, the nodes in each of the
K communities (with label r) have the same link pattern, i.e.,
the nodes in the same community share the same link prob-
ability with any node vj in the network, i.e. θrcj . This idea
naturally describes the coupling relationship between nodes
in the network since it is defined to generate pairwise rather
than individuals based on community structure. The model
is further improved by considering the heterogeneity of node
degrees, i.e. the nodes with higher degrees should be more
likely to be connected. Therefore, the model can be revised
such that the possibility that nodes vi and vj are connected
is didjθcicj , where di is the degree of vi. This mechanism
is in concordance with the degree-corrected stochastic block
model (DCSBM) [Karrer and Newman, 2011] even though
the formulation is different.

Based on the above model, the expected number of links
between nodes vi and vj , which respectively belong to com-
munities ci and cj , can be written as

a
ci,cj
ij = sigmoid

(
zicizjcjdidjθcicj

)
(6)

where zici is the probability that vi belongs to community ci,
which is from the encoder, defined in Eq. (5). Considering
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all communities {(ci, cj) |ci, cj ∈ L}, we can then define the
expected number of links between nodes vi and vj as:

aij = sigmoid

 K∑
ci=1

K∑
cj=1

zicizjcjdidjθcicj

 (7)

By considering both the block modelling and heterogene-
ity degree of nodes, the model can well describe the coupling
relationship among nodes in the network with community
structures. The above model can be formulated as a layer of a
neural network in order to incorporate it into the Autoencoder
framework. As theK-dimensional vector ~zi = (zici)1×K de-
notes the probability distribution of vi belonging to different
communities, the link propensity between nodes vi and vj
can be revised to ai,j = sigmoid

(
di
(
~ziΘ~z

T
j

)
dj
)
, which can

also be written in a matrix form as:

A = sigmoid
(
DZΘZTDT

)
(8)

where D = diag (d1, d2, · · · , dn). Taking Θ as the weight
parameters of the neural network, Eq. (8) can then be repre-
sented by a layer of the neural network, i.e., the topological
decoder. The parameters Θ can be learned by minimizing the
difference between the observed adjacency matrix A and the
adjacency matrix A generated from the model. This differ-
ence can be defined by using the cross-entropy loss as:

Ltopo = −
n∑

i,j=1

[aij ln aij + (1− aij) ln (1− aij)] (9)

The Decoder for Reconstructing Attributes
Reconstruction of node attributes stems in topic modelling
[Blei et al., 2003]. Nodes with similar semantic attributes
are believed to be more likely to belong to the same commu-
nity. Thus, the nodes in the same community are more likely
to have similar distributions of attribute words, and different
communities in a network can be characterized as represent-
ing different semantic topics.

Let P (ci|vi) = zici be the probability that node vi be-
longs to community ci, where Z = (zici)n×K is the ma-
trix of node community memberships from the encoder; and
P (xit = 1|ci = k) = bkt the probability that the kth (ci = k)
community/topic selects an attribute word wt from the entire
word set wt ∈ W , where B = (bkt)K×m is to be learned.
Assume that every node-attribute pair 〈vi, wt〉 in the context
(with xit = 1) is generated independently. Then, given the
community ci of node vi, the probability for a node-attribute
pair 〈vi, wt〉 generated will be:

xciit = P (xit = 1|ci)P (ci|vi) (10)

Considering all communities, the probability that 〈vi, wt〉
appears in the context will be:

xit = P (xt|vi) =
∑
ci∈L

P (xit = 1|ci)P (ci|vi) (11)

The above generative process can be formulated as a layer
of neural network to serve as an attributed decoder. Using

X = (xit)n×m, the matrix form of the above model is:

X = Z ·B s.t.,
m∑
t=1

bkt = 1 (12)

whereB denotes the weight parameters in this neural network
layer to be trained. Then, the likelihood that the attribute ma-
trix X is generated by the above model is:

P (X|V)=
n∏
i=1

m∏
t=1

∑
ci∈L

P (xit = 1|ci)P (ci|vi)

=
n∏
i=1

m∏
t=1

(∑
ci∈L

zicibcit

)xit

=
n∏
i=1

m∏
t=1

(xit)
xit

(13)

where xit = 1 if node vi (vi ∈ V ) has attribute wt, or 0 oth-
erwise. Since the objective of the network generative process
is to maximize this likelihood, the negative log-likelihood is
then taken as the loss of this layer of the neural network,

Lattr = −
n∑
i=1

m∑
t=1

xit lnxit (14)

3.4 Local Enhancement
Different from the main model (e.g. the MRF part) which de-
scribes communities via global information, we further uti-
lize local information to enhance communities from a local
view. The rationale is that two nodes should have similar
node community membership if they are close to each other,
topologically and/or semantically, in the attribute network.

We implemented this local enhancement scheme by intro-
ducing pairwise constraints on nodes and a graph regulariza-
tion term to the objective function. We first built an aggre-
gated graph based on network topology and node attributes.
To measure the proximity of a pair of nodes, we introduced
a measurement method to combine their topological and at-
tribute similarities. We computed the set of the local neigh-
bors for each node vi, i.e.,

Γi = Γtopoi ∪ Γattri (15)

where Γtopoi is the set of neighbors directly adjacent to vi, and
Γattri the set of top-kattr most attribute-similar neighbors of
vi, where the TF-IDF cosine similarity is used to calculate the
attribute similarity of nodes. That is, let ~xi be the attribute
vector of node vi, then for attribute unit xit, its TF-IDF value
in a term vector ~xi is:
x′it = tf − idf (xit, ~xi)

=
√
tf (xit, ~xi) · log

1 + |V |/
|V |∑
j=1

tf (xit, ~xj)

 (16)

The cosine similarity of attributes between nodes vi and vj
is then defined as:

cosine
(
~x′i, ~x

′
j

)
= ~x′i · ~x′j/(‖~x′i‖ ·

∥∥~x′j∥∥) (17)

Thereafter, we added weights to the aggregated graph. We
calculated the proximity between a node and its direct neigh-
bors in this new graph using:

S = λzero−one
(
Stopo

)
+(1−λ)zero−one

(
Sattr

)
(18)
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Datasets Nodes Edges Communities Attributes
Texas 183 328 5 1,703
Cornell 195 304 5 1,703
Washington 217 446 5 1,703
Wisconsin 262 530 5 1,703
Twitter 171 796 7 578
Cora 2,708 5,429 7 1,433
Citeseer 3,312 4,732 6 3,703
UAI2010 3,363 45,006 19 4,972
Pubmed 19,729 44,338 3 500

Table 1: Datasets descriptions.

where Stopo =
[
stopoij

]
(stopoij = cosine (~ai,~aj)) and Sattr =[

sattrij

]
(sattrij = cosine (~xi, ~xj)) are respectively the topolog-

ical and attribute similarities between node vi and its direct
neighbor vj ∈ Γi, λ is a tradeoff parameter, and zero−one(·)
plays the role of normalization defined as:

zero− one(~y) = (yi −min(~y)) /(max(~y)−min(~y)) (19)

Given the similarity matrix S of the aggregated graph, we
defined the pairwise constraint as:

Lreg =
∑
i,j

sij ‖~zi − ~zj‖22 = 2 tr
(
ZTΨZ

)
(20)

where Ψ = F − S and F is a diagonal matrix with fii =∑
j sij . We then incorporated the pairwise constraint as

a graph regularization in the objective function to enhance
community detection locally.

Finally, the objective of the model is to minimize the fol-
lowing loss function::

L = γLtopo + (1− γ)Lattr + ηLreg (21)

where γ and η are the parameters that control the trade-
off between different parts of the loss. We used the back-
propagation (BP) algorithm and Adam optimizer to train the
model. At convergence, the algorithm produces the commu-
nity label for each node by:

ĉi = arg max
ci∈L

zici (22)

4 Experiments
We compared our approach with eight state-of-the-art meth-
ods on nine widely-used benchmark datasets. We also ana-
lyze the features of our method to appreciate its effectiveness.

4.1 Experiment Setup
To carry out an accurate comparison of the nine methods,
we used nine public datasets with known communities (Table
1). As the networks used have ground-truth communities, we
adopted two widely used metrics, i.e. accuracy (AC) [Liu et
al., 2012] and normalized mutual information (NMI) [Danon
et al., 2005], for performance evaluation. We applied Adam
optimizer in our GUCD method using TensorFlow.

4.2 Comparison with the Existing Methods
We first evaluated our GUCD against eight (unsupervised)
community detection methods. Depending on what network
information they use, these existing methods can be grouped

Datasets AC (%)
DCSBM EdMot-SC LDA Block-LDA PCLDC SCI MISAGA TLSC GUCD

Texas 48.09 48.09 56.28 54.10 38.80 62.30 46.99 65.02 67.76
Cornell 37.95 30.77 44.62 46.15 30.26 45.64 56.92 47.69 71.28
Washington 31.8 48.39 44.62 39.17 29.95 51.15 56.68 51.61 73.85
Wsicsonsin 32.82 32.06 44.62 49.62 30.15 50.38 66.79 49.23 76.72
Twitter 60.49 39.51 37.04 35.80 56.79 50.62 49.38 62.87 60.49 (2)
Cora 38.48 27.07 37.19 25.52 34.08 40.62 35.60 47.62 50.59
Citeseer 26.57 25.60 31.34 24.35 24.85 27.98 44.82 35.74 54.47
UAI2010 2.60 18.42 34.07 16.04 28.82 30.94 15.81 29.28 37.58
Pubmed 53.64 39.29 46.30 49.01 63.55 47.39 42.35 61.38 63.13 (2)
AVG 36.94 34.36 41.79 37.75 37.47 45.22 46.15 50.05 61.76

Table 2: Comparison of the nine methods in AC. Bold font indicates
the best result. The number in brackets is the rank of the algorithm.

Datasets NMI (%)
DCSBM EdMot-SC LDA Block-LDA PCLDC SCI MISAGA TLSC GUCD

Texas 16.65 18.79 31.29 4.21 10.37 17.84 26.56 23.92 29.65 (2)
Cornell 9.69 9.67 21.09 6.81 7.23 11.44 27.62 13.61 43.85
Washington 9.87 18.66 38.48 3.69 5.66 12.37 35.80 17.63 46.67
Wsicsonsin 3.14 11.28 46.56 10.09 5.01 17.03 37.06 16.65 47.56
Twitter 57.48 24.24 31.10 0.00 52.64 43.00 52.91 49.14 58.14
Cora 17.07 9.58 14.61 2.42 17.54 19.26 14.07 33.20 32.33 (2)
Citeseer 4.13 11.26 9.13 1.41 2.99 4.87 19.62 23.16 27.43
UAI2010 31.21 12.58 35.42 5.70 26.92 24.80 38.54 22.87 33.35 (3)
Pubmed 12.28 0.21 10.55 6.58 26.84 5.59 10.79 19.63 26.98
AVG 17.95 12.92 26.47 4.55 17.25 17.36 29.22 24.42 38.44

Table 3: Comparison of the nine methods in NMI.

into three types. The first type uses only network topology,
which includes DCSBM [Karrer and Newman, 2011] and
EdMot-SC [Li et al., 2019]. The second uses only node at-
tributes, including LDA [Blei et al., 2003]. The third uses
topology and attributes together, including Block-LDA [Bala-
subramanyan and Cohen, 2011], PCLDC [Yang et al., 2009],
SCI [Wang et al., 2016], MISAGA [He and Chan, 2018] and
TLSC [Zhang et al., 2018].

GUCD is the best on 7 and 6 out of 9 datasets in terms of
AC (Table 2) and NMI (Table 3). On the remaining networks
where GUCD does not perform the best, it is still compet-
itive with the best baselines. These results demonstrate the
superiority of our new approach over the existing methods.

4.3 Deep Analysis of GUCD
Similar to most existing deep learning methods, GUCD has
multiple components affecting its performance. Moreover,
MRFasGCN is a major component of GUCD and can be ap-
plied in different ways. Here we report the results from differ-
ent combinations of different major components of GUCD.

Effects of Individual Components
We compared GUCD with six variations of GUCD. We first
considered two unsupervised variants of MRFasGCN, a ma-
jor component of GUCD: 1) the weight parameters H(0),
H(1) and H(2) in MRFasGCN is set to 1 without training (as
the most general way), namely MasG-U1, and 2) the weight
parameters is set randomly without training (as suggested as
an unsupervised usage in [Kipf and Welling, 2017]), namely
MasG-U2. We included in our comparison with another un-
supervised variant of MRFasGCN by adding the inner prod-
uct of node community membership for reconstructing links
as the decoder, namely MasG-IN. (Note that this is the most
common way used in unsupervised GCN models for network
embedding, a different albeit similar problem.) We also tested
three variants of GUCD. The first two reconstruct links and
attributes separately, named as GUCD-1 and 2. The third is
GUCD without the local enhancement, called GUCD-3.

The experimental results on nine benchmark problems re-
vealed that GUCD performed the best on 7 and 7 out of
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Datasets AC (%)
MasG-U1 MasG-U2 MasG-IN GUCD-1 GUCD-2 GUCD-3 GUCD

Texas 57.22 56.99 57.30 61.62 72.28 69.57 67.76 (3)
Cornell 43.72 43.43 44.16 47.47 70.26 67.18 71.28
Washington 48.42 48.42 63.76 66.36 71.43 72.02 73.85
Wsicsonsin 54.17 46.04 46.97 53.21 71.76 73.66 76.72
Twitter 55.30 31.00 51.85 50.00 55.56 56.79 60.49
Cora 34.96 32.50 36.40 37.27 49.17 51.29 50.59 (2)
Citeseer 48.81 24.86 32.49 28.60 48.18 52.46 54.47
UAI2010 16.25 16.72 16.34 15.96 34.00 36.12 37.58
Pubmed 39.98 39.95 50.84 51.41 62.09 61.33 63.13
AVG 44.31 37.77 44.46 45.77 59.41 60.05 61.76

Table 4: Comparison of GUCD with six variants (MasG-U1, MasG-
U2, MasG-IN, GUCD-1, GUCD-2 and GUCD-3) in AC.

Datasets NMI (%)
MasG-U1 MasG-U2 MasG-IN GUCD-1 GUCD-2 GUCD-3 GUCD

Texas 14.34 15.32 17.29 20.60 43.45 34.35 29.65 (3)
Cornell 9.33 9.05 6.80 9.22 41.65 38.10 43.85
Washington 10.35 10.35 24.25 28.07 46.16 37.59 46.67
Wsicsonsin 12.36 8.48 6.52 8.50 44.81 42.78 47.56
Twitter 38.02 21.36 48.60 35.18 55.36 47.60 58.14
Cora 13.03 7.08 12.43 19.38 27.31 29.76 32.33
Citeseer 22.43 5.74 12.07 9.08 21.40 27.03 27.43
UAI2010 5.35 5.61 5.50 5.42 32.50 33.90 33.35 (2)
Pubmed 0.34 0.37 9.55 8.89 23.76 24.27 26.98
AVG 13.95 9.26 15.89 16.04 37.38 35.04 38.44

Table 5: Comparison of our GUCD with the six variants in NMI.

the 9 networks in terms of AC (Table 4) and NMI (Table
5). Specifically, GUCD is on average 17.45% (and 24.49%)
and 23.99% (and 29.18%) more accurate than MasG-U1 and
MasG-U2 in AC (and NMI). By some extra experiments
we also observed that to achieve similar performances with
GUCD, MRFasGCN needs almost 30%, 30%, 30%, 30%,
20%, 0.2%, 0.8%, 2% and 0.05% supervised information
for the nine datasets respectively in training. This validates
not only the effectiveness of our unsupervised framework us-
ing Autoencoder, but also the soundness of the community-
oriented dual decoder, i.e. we use different while the most
suitable mechanisms to reconstruct links and attributes re-
spectively for community detection. Besides, GUCD is on
average 17.3% (and 22.55%) more accurate than MasG-IN in
AC (and NMI). This further validates the soundness of the
new decoding mechanisms (i.e. we reconstruct links by mod-
elling that nodes in the same community share the same link
pattern, and reconstruct attributes based on topic modelling)
over the existing methods for reconstructing links alone via
the inner product operation. In addition, GUCD is on average
15.99% (and 22.4%), 2.35% (and 1.06%), and 1.71% (and
3.4%) more accurate than GUCD-1, GUCD-2, and GUCD-3
in terms of AC (and NMI). This demonstrates that the topo-
logical and attributed decoders both are effective. The strat-
egy for local enhancement also helps meliorate overfitting
caused by the sparsity of networked data.

Qualitative Analysis
To further validate the effectiveness of our new decoding
mechanism over the one that most commonly used in net-
work embedding, we further compared GUCD and MasG-
IN by showing the results of AC and NMI as a function of
the number of iterations. Consider the results on Twitter as
an example. As shown in Fig. 2, the GUCD results match
more closely to the ground truth than MasG-IN, and the re-
sult of the former is more stable than that of the latter with
more training cycles, suggesting that the new decoding mech-
anisms are suitable for unsupervised community detection.

Figure 2: AC and NMI values as a function of iterations on Twitter.

5 Related Work
The current work of GCN focuses primarily on node classi-
fication [Kipf and Welling, 2017], which has been adopted
for semi-supervised community detection [Li et al., 2018;
Jin et al., 2019]. However, community detection is, in
essence, an unsupervised problem since little training data
are available for most applications. It is imperative to develop
novel GCN methods for unsupervised community finding.

A related line of work is network embedding using GCN.
For example, the ARGA method [Pan et al., 2018] adopts an
adversarially regularized graph Autoencoder, which uses the
same encoder and decoder as GAE [Kipf and Welling, 2016]
while introduces an adversarial module to force the node rep-
resentation to follow a suitable prior distribution. The ARGA
method has also been extended to use graph convolution, in-
stead of inner product, as the decoder to reconstruct links;
the resulting method can reconstruct links better than recon-
structing both links and attributes [Pan et al., 2019]. For unsu-
pervised learning, most of the existing methods focus primar-
ily on reconstructing network structures, as their performance
degrades when being used to reconstruct links and attributes
together. These existing methods seem to be suitable for rep-
resentation learning, e.g., embedding, but not adequate for
unsupervised community detection, a more difficult learning
task. This has been experimentally shown by the comparison
between GUCD and its variant MasG-IN (using inner product
to reconstruct links), as shown in Fig. 2 and Tables 4 & 5.

6 Conclusion and Discussion
This is the first approach extending GCN effectively to un-
supervised community detection. Using the Autoencoder
framework, we focused on community identification rather
than network embedding in the encoder; and used the most
suitable mechanisms to reconstruct links and attributes sepa-
rately. We also introduced a local enhancement to ameliorate
the issue of overfitting brought by the sparsity of networked
data. We carried out experiments and demonstrated the supe-
riority of the new approach. We further showed the effective-
ness of the novel decoding mechanism for generating links
and attributes against the most commonly used methods for
reconstructing links alone. Even though the new approach
was designed for community detection, the underlying idea
may be readily extended to GCN-based network embedding
as discussed in Related Work.
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