
Efficient Community Search over Large Directed Graphs:
An Augmented Index-based Approach

Yankai Chen1 , Jie Zhang2 , Yixiang Fang3∗ , Xin Cao3 and Irwin King1

1Department of Computer Science and Engineering, The Chinese University of Hong Kong
2School of Computer Science and Engineering, Nanyang Technological University
3School of Computer Science and Engineering, The University of New South Wales

{ykchen, king}@cse.cuhk.edu.hk, zhangj@ntu.edu.sg, {yixiang.fang, xin.cao}@unsw.edu.au

Abstract
Given a graph G and a query vertex q, the topic of
community search (CS), aiming to retrieve a dense
subgraph of G containing q, has gained much at-
tention. Most existing works focus on undirected
graphs which overlooks the rich information car-
ried by the edge directions. Recently, the problem
of community search over directed graphs (or CSD
problem) has been studied [Fang et al., 2019b]; it
finds a connected subgraph containing q, where the
in-degree and out-degree of each vertex within the
subgraph are at least k and l, respectively. How-
ever, existing solutions are inefficient, especially on
large graphs. To tackle this issue, in this paper we
propose a novel index called D-Forest, which al-
lows a CSD query to be completed within the op-
timal time cost. We further propose efficient in-
dex construction methods. Extensive experiments
on six real large graphs show that our index-based
query algorithm is up to two orders of magnitude
faster than existing solutions.

1 Introduction
With the rapid development of information technologies,
large graphs are ubiquitous in various areas (e.g., social net-
works and biological science) [Li et al., 2015b; Hu et al.,
2017; Zhu et al., 2019; Hu et al., 2019; Wan et al., 2020].
Finding communities over these graphs is fundamental to
many real applications, such as event organization, recom-
mendation, and network analysis. In recent years, the topic
of community search (CS) has gained much attention (e.g.,
[Sozio and Gionis, 2010; Cui et al., 2014; Huang et al., 2014;
Fang et al., 2019c; Fang et al., 2019a]), which aims to find
dense communities containing the query vertex q from a
graph G in an online manner.

Earlier CS works (e.g., [Sozio and Gionis, 2010; Cui et al.,
2013; Cui et al., 2014]) mainly focus on undirected graphs,
where the graph edges do not have directions. They often re-
quire the community to be a connected subgraph satisfying
a particular metric of structure cohesiveness (e.g., each ver-
tex within the community has a degree of k or more). Later
∗Corresponding author

A

B

C

D
E

F

G

H

I J

K L

(1,1)-core

Community C1

Community C2

A

B

C

D
E

F

G

H

I J

K L

(1,1)-core

Community C1

Community C2

Figure 1: A directed graph.

on, the attributes (e.g., influence values [Li et al., 2015a], key-
words [Fang et al., 2017a], locations [Fang et al., 2017b], and
profiles [Chen et al., 2019]) of graphs have also been consid-
ered for CS. However, all these works ignore the directions of
edges. As pointed out in [Malliaros and Vazirgiannis, 2013;
Zhang et al., 2014], the ignorance of directions of edges, fail-
ing to capture asymmetric relationships implied by the direc-
tions, may lead to noise and inaccurate results.

To remedy the issue above, Fang et al. [2019b] studied the
problem of CS over directed graphs, or CSD problem. Specif-
ically, given a query vertex q of a directed graph G, and two
integers k and l, it aims to find a maximum connected sub-
graph containing q, where the in-degree and out-degree of
each vertex within the subgraph are at least k and l, respec-
tively. For example, in Figure 1, let q=B and k=l=2; then,
the subgraph C1 will be returned; if k=l=3, then the subgraph
C2 is the answer. The minimum degree constraints have also
been used in the (k, l)-core [Giatsidis et al., 2011], or the
maximum subgraph in which each vertex’s in-degree and out-
degree are at least k and l, respectively. Note that the (k,
l)-core may not be a connected subgraph.

To answer a CSD query, an online method is to iteratively
peel vertices that do not satisfy the degree constraints until
finding the subgraph satisfying both the connectivity and min-
imum degree constraints. Obviously, this iterative approach
could be costly. To improve efficiency, Fang et al. [2019b]
develop indexes, which pre-compute all the (k, l)-cores and
then organize them compactly. Given a CSD query, they first
find the (k, l)-core using the indexes, and then compute the
maximum connected subgraph containing q from the (k, l)-
core. Clearly, since this maximum connected subgraph is of-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3544

ten much smaller than the (k, l)-core, their solutions are inef-
ficient if the (k, l)-core is very large. For example, on a graph
with about 4 billion edges, they may take over 33 minutes to
answer 200 queries as shown by our experiments.

To facilitate efficient CSD queries, in this paper we develop
a novel index structure, called D-Forest, which not only com-
pactly organizes all the (k, l)-cores, but also takes the connec-
tivity into consideration. Specifically, we first compute all the
(k, l)-cores sequentially where k and l range from 0 to their
maximum values. Then, for each value of k, we compute
their connected components and organize them into a tree
structure, where each tree node corresponds to a connected
(k, l)-core. As a result, the index is a forest, consisting of a
list of trees. Given the D-Forest, to answer a CSD query, we
first find the k-th tree and then return the connected (k, l)-core
containing q. Clearly, the query takes the optimal query time
cost, i.e.,O(|C|), whereC is the set of vertices in the commu-
nity. Experiments on six real large graphs show that our index
construction process takes comparable time cost with those of
existing algorithms, and our query algorithm takes only 14.4
seconds to answer 200 queries on a graph with around 4 bil-
lion edges.

In summary, our main contributions are as follows:

• We develop a novel index D-Forest, based on which a
CSD query can be completed in optimal time cost.

• To build the D-Forest, we propose a basic algorithm, and
an advanced algorithm by introducing an auxiliary data
structure called Core-based Union-Find (or CUF).

• We perform extensive experiments on six real large
graphs; results show that our query algorithm is up to
two orders of magnitude faster than existing solutions.

2 Related Works
Community detection (CD). Generally, CD aims to detect
all the communities from an entire graph. Earlier classic so-
lutions (e.g., [Fortunato, 2010; Newman and Girvan, 2004])
rely on edge-based analysis (e.g., modularity maximization)
to discover these communities. However, most of them focus
on undirected graphs. Recent works start to detect commu-
nities from directed graphs. In [Leicht and Newman, 2008;
Kim et al., 2010], the concept of modularity maximiza-
tion [Newman and Girvan, 2004] is extended for CD on di-
rected graphs. In [Lancichinetti and Fortunato, 2009], au-
thors introduced new benchmark graphs to test CD meth-
ods over directed graphs. Yang et al. [2010] introduced a
new stochastic block model called PPL to find communities
in directed graphs; they also detected overlapped communi-
ties in directed graphs [Yang et al., 2014]. Besides, there
are also some local CD methods (e.g., [Flake et al., 2000;
Ning et al., 2016]). A recent survey of CD solutions on di-
rected graphs can be found in [Malliaros and Vazirgiannis,
2013]. However, these CD methods are often time consum-
ing, especially on large graphs, and also it is not clear how
they can be adapted for online CS.

Community search (CS). CS finds the community from a
large graph in a fast and online manner, based on a query

request. To measure the structure cohesiveness of communi-
ties, the k-core metric is often employed, requiring that each
vertex of the community should have a degree of k or more,
where k is a given integer [Batagelj and Zaversnik, 2003;
Sozio and Gionis, 2010; Cui et al., 2014; Li et al., 2015a;
Fang et al., 2017a; Fang et al., 2017c; Fang et al., 2017b;
Chen et al., 2019; Wang and Zhu, 2019; Fang et al., 2019d;
Fang et al., 2020]. Other cohesiveness metrics have also been
considered for CS, such as k-clique [Cui et al., 2013], k-
truss [Huang et al., 2014; Huang et al., 2015; Huang and Lak-
shmanan, 2017; Ebadian and Huang, 2019] and k-ECC [Hu
et al., 2017], pagerank-based [Andersen and Lang, 2006], etc.
A survey of CS over graphs can be found in [Fang et al.,
2019a]. However, most of these works focus on undirected
graphs. A recent work [Fang et al., 2019b] has studied CS
over directed graphs, but its solutions are still inefficient for
large graphs, calling for more efficient CS approaches.

3 Problem Definition
We consider a directed graphG(V,E) with a vertex set V and
an edge set E. The sizes of V and E are respectively denoted
by n and m. The in-degree and out-degree of a vertex v in G
are denoted by deginG (v) and degoutG (v). Next, we introduce
the core model on directed graphs.

Definition 1 ((k, l)-core [Giatsidis et al., 2011]). Given a di-
rected graph G(V,E) and two non-negative integers k and l,
the (k,l)-core of G is the largest subgraph G′ of G, such that
∀v ∈ G′, deginG′(v) ≥ k and degoutG′ (v) ≥ l.

In the (k, l)-core, each vertex has at least k in-neighbours
and l out-neighbours, so it is well engaged in the subgraph
especially when k and l are large. This implies that the (k, l)-
core is a cohesive subgraph, and thus can be used to model the
cohesiveness of the community [Fang et al., 2019b]. How-
ever, the (k, l)-core may not be a connected subgraph, so the
connectivity constraint should be further imposed to model
the community. Note that for simplicity, we denote a con-
nected (k, l)-core by (k, l)-ĉore.

Based on the discussions above, Fang et al. [2019b] for-
mally introduced the problem of Community Search over
Directed graphs (CSD) problem:

Problem 1 (CSD problem [Fang et al., 2019b]). Given a di-
rected graph G(V,E), a query vertex q, and two positive in-
tegers k and l, return the (k, l)-ĉore containing q.

For example, in Figure 1, the (1, 1)-core, (2, 2)-core, and
(3, 3)-core are marked in three different colors, where the (1,
1)-core has three connected components. If q=B and k=l=3,
then the (3, 3)-ĉore C2 is returned as the community.

4 Our Index-based Approach
To enable efficient CSD queries, in this paper we propose a
novel index, called D-Forest, which allows the targeted com-
munity to be retrieved directly without examining the (k, l)-
core. As a result, the query time cost is optimal. Meanwhile,
the index is space efficient since it takes O(m) space cost. In
the following sections, we first give an overview of D-Forest,
and then present two algorithms to build D-Forest.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3545

4.1 Index Overview
We begin with an interesting lemma.

Lemma 1 ([Fang et al., 2019b]). Given a directed graph G,
for any (k, l)-core with l>0, it is a subgraph of the (k, l−1)-
core, i.e., the (k, l)-core is nested within the (k, l−1)-core.

By Lemma 1, we can conclude that for any specific value
of k, all the (k, l)-cores where l ranges from 0 to its maxi-
mum value can be organized into a chain such that each one is
nested within its previous one. Similarly, the nested property
above holds for the connected components of (k, l)-cores; that
is, for any (k, l)-ĉore with l>0, it is nested within a particular
(k, l–1)-ĉore, so we can get a chain for each (k, l)-ĉore. Con-
sequently, for each value of k, we can build a tree structure
called k-tree, by hierarchically organizing all these chains,
such that each subtree corresponds to a (k, l)-ĉore.

For example, all (k, l)-ĉores in Figure 1 can be organized
into 4 trees, as depicted in Figure 2, where the k-tree is built
for the value of k and each subtree contains all the vertices of
a particular (k, l)-ĉore. For instance, in the 1-tree, the subtree
rooted at node 1 p, as shown in the dashed box, contains ver-
tices {F,G,H} and {A,B,C,D}, which are the vertices in
the (1, 2)-ĉore. Note that the number attached in each node
indicates the value of l for the corresponding (k, l)-ĉore and
we use the root node t to keep the tree shape.

2

3

E
1
IJ

1

0-tree

2

3
ABCD

E
1
IJ

1

FGH

1-tree

2

3
ABCD

E
1

FGH

2-tree

3
ABCD

3-tree

KL
0

t t t

t

ABCDE FGH I J KL
vertex-node

map: ABCD E FGH I J ABCDE FGH ABCD

p
FGH

ABCD

Figure 2: An example D-Forest index.

To summarize, in the k-tree, each node has four elements:
(1) parent: a pointer to its parent node; (2) childList: a
list of pointers to its child nodes; (3) vSet: a set of vertices,
which are in the (k, l)-ĉore but not in the (k, l–1)-ĉore; (4)
coreNum: the value of l of the (k, l)-ĉore, which corre-
sponds to the subtree rooted at this node.

To enable efficient locating of the (k, l)-ĉore, for each tree,
we build an auxiliary map, where each key is a vertex and its
value points to the node containing the vertex in the tree.

Lemma 2 (Space cost). Given a directed graph G, its D-
Forest takes O(m) space.

Proof. For each vertex v, if its in-degree is k, then it appears
in at most k trees, and in each tree, it appears only twice (one
in the tree and one in the auxiliary map). Thus, the space cost
of v is bounded byO(deginG (v)). Hence, Lemma 5 holds.

Query algorithm. To answer a CSD query, we can first use
the auxiliary map to locate the tree node p which contains q,

1In this paper, we use “node” to mean the “index tree node”.

then find the root of the subtree corresponding to the (k, l)-
ĉore containing q, and finally return the set C of vertices in
the subtree. We denote the query algorithm above by IDX-Q.
Lemma 3 (Query cost). Given a D-Forest, IDX-Q completes
in the optimal time and space cost, i.e., O(|C|).

Proof. The lemma directly follows the observation.

Next, we present two index construction algorithms, which
work in the top-down and bottom-up manners, respectively.

4.2 A Top-Down Index Construction Method
In [Fang et al., 2019b], an efficient algorithm of decomposing
(k, l)-cores for a graph is developed. It enumerates k from 0
to its maximum value kmax, and for each k, it computes all
the (k, l)-cores where l ranges from 0 to its maximum value
lmax. Since D-Forest is comprised of (kmax+1) trees, we can
also enumerate k from 0 to kmax, and for each specific k, we
build the k-tree by the following the steps:

1. compute the (k, 0)-core, create a node with a set of ver-
tices in (k, 0)-core, and initialize l=1;

2. compute all the (k, l)-ĉores from the (k, l−1)-ĉores;
3. for each (k, l)-ĉore, create a node p (p.vSet contains

vertices in (k, l)-ĉore, p.coreNum=l), link p to its par-
ent node p′, and update p′.vSet as p′.vSet\p.vSet;

4. increase l by 1, and repeat steps 2 and 3 until l reaches
its maximum value.

Since the above method builds trees of D-Forest in a top-
down manner, we denote it by TopDown.
Lemma 4. Given a directed graph G, the time cost of build-
ing D-Forest using TopDown is O(m2).

Proof. Given a specific k, computing all the (k, l)-cores from
the (k, 0)-core takes O(m) time; besides, searching all the
(k, l)-ĉores from the (k, l−1)-ĉores takes O(m) [Fang et al.,
2019b]. Thus, it takes O(lmax · m) time to build the k-tree.
Since there are (kmax+1) trees, the total cost isO(kmax ·lmax ·
m). Meanwhile, kmax and lmax are at most (

√
4m+ 1−1)/2

[Fang et al., 2019b], so Lemma 4 holds.

4.3 A Bottom-Up Index Construction Method
While TopDown is easy to implement, it may suffer from the
low efficiency issue, as shown in Lemma 4. To further im-
prove the efficiency, we propose another more efficient index
construction method BottomUp, by introducing an auxiliary
data structure called Core-based Union-Find (or CUF), which
builds the trees in a bottom-up manner. Next, we first give an
overview of BottomUp, and then introduce the details.
Overview of BottomUp. Unlike TopDown, BottomUp
enumerates the values of k from kmax to 0, and builds each
tree in a bottom-up manner (i.e., create leaf nodes at first and
root node at last). Meanwhile, when building the k-tree, it
exploits the information generated in building (k+1)-tree.

Algorithm 1 outlines BottomUp. We first initialize an
empty forest F , two arrays pre[], cur[], where pre[v] and
cur[v] are supposed to keep the maximum value of l such that
there is a (k, l)-core containing v. We also initialize the CUF

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3546

Algorithm 1 Index construction algorithm: BottomUp.
1: function BUILD(G)
2: F ← ∅, pre[]← ∅, cur[]← ∅, Ψ← ∅;
3: for k ← kmax to 0 do
4: map← ∅, P ← ∅;
5: cur[]← DECOMPOSE(G, k);
6: V0, · · · , Vlmax ← group vertices of cur[];
7: for l← lmax to 0 do
8: BUILDALEVEL(k, l, Vl, pre[], cur[], map, P , Ψ);
9: create root node t and link to nodes in P;

10: pre[]← cur[], F .add(〈t, map〉);
11: return F ;

data structure Ψ which will be introduced later (line 2). Then,
we enumerate k from kmax to 0 and for each k, we compute
all the (k, l)-cores (lines 3-5), by using the algorithm in [Fang
et al., 2019b]. We initialize the vertex-node map map, and a
set P for keeping the generated nodes for each level of k-tree
(line 4). After that, we group vertices into a list of sets, such
that Vl contains vertices which are in the (k, l)-core but not in
the (k, l–1)-core (line 6). Next, we build the k-tree by invok-
ing BUILDALEVEL to create nodes in the l-th level of k-tree
where l ranges from lmax to 0 (lines 7-8). Finally, we create
the root node with P , and update pre[] and F (lines 9-10).

Overview of function BUILDALEVEL. Given nodes in the
(l+1)-th level of k-tree, the function BUILDALEVEL creates
nodes in the l-th level and links them to the nodes in the (l+1)-
th level. Since each node corresponds to a (k, l)-ĉore, a naive
method to check the connectivity and create the node will
take O(m) time to re-explore the graph, i.e., executing steps
2 and 3 of TopDown. Consequently, using this naive method
totally takesO(lmax ·m) to build the k-tree, which is the same
as that of TopDown.

To improve the efficiency, we propose a novel data struc-
ture, called Core-based Union-Find (or CUF), which allows
the three key steps of BUILDALEVEL to be done efficiently:
(1) verifying the connectivity, (2) memorizing the connectiv-
ity, and (3) linking nodes. In the following sections, we first
introduce the CUF data structure, and then present our CUF-
based BUILDALEVEL, which allows the k-tree to be built in
O(α(n)·m) time, where α(n) is the inverse Ackermann func-
tion and α(n) < 5 for any practical value of n.

CUF data structure. CUF is extended from classic Union-
Find (UF) Forest2, which can efficiently verify the graph con-
nectivity and partition vertices into different connected com-
ponents. In the classic UF, each vertex has 2 elements, i.e.,
rank and parent, and the UF has 3 functions, i.e., MAKE-
SET, FIND and UNION, where MAKESET makes preparation
for each vertex, FIND returns the representative member of the
component to which the vertex belongs, and UNION merges
two disjoint components as one. By using the classic UF,
given a (k, 0)-core, we can verify the connectivity and se-
quentially find all (k, l)-ĉore’s by varying l from lmax to 0,
and then build all the levels of the k-tree accordingly. How-
ever, classic UF may have two main limitations.

2https://en.wikipedia.org/wiki/Disjoint-set data structure

Algorithm 2 Functions of the CUF data structure.
1: function MAKESET(v)
2: v.rank ← 0, v.parent← v;
3: v.hook ← v, v.group← v;

4: function FIND(v)
5: if v.parent = v then v.parent← FIND(v.parent);
6: return v.parent;
7: function UNION(u, v, cur[])
8: ru ← FIND(u), rv ← FIND(v);
9: if ru 6= rv then

10: if ru.rank < rv.rank then SWAP(ru , rv);
11: rv.parent← ru;
12: if ru.rank = rv.rank then ru.rank ← ru.rank + 1;
13: if cur[ru.group] < cur[rv.group] then
14: ru.group← rv.group;

15: function UPDATECUF(V , cur[])
16: for u ∈ V do
17: r ← FIND(v);
18: v.group← r.group;
19: if cur[r.hook] > cur[v] then r.hook ← v;

One limitation is that for a new node p in the l-th level,
classic UF can not efficiently find p’s all child nodes and link
them up. As observed in Section 4.1, each subtree below the
l-th level corresponds to a particular (k, l′)-ĉore where l′>l.
This means that to find p’s child nodes, we can first find all
(k, l′)-ĉore’s that are connected by vertices in p.vSet and
then link the root nodes of corresponding subtrees to p. To
efficiently locate these subtrees, we assign another element
hook to directly indicate these root nodes. For example, for
a vertex v in p.vSet, if v’s neighbour u is contained in a (k,
l′)-ĉore, we can locate the root node of the corresponding
subtree by referring hook and then link it to p.

The other limitation is that once the l-th level of the (k+1)-
tree is constructed, the connectivity of the corresponding
(k+1, l)-core is verified. When building the l-th level of
the k-tree, we have to traverse the corresponding (k, l)-core
and verify its connectivity from scratch. However, from
Lemma 1, (k+1, l)-core is a subgraph of (k, l)-core, which
implies that the connectivity of this (k+1, l)-core will be ver-
ified again. To cut off this redundant computation, we assign
an additional element group in CUF structure to “memorize”
the particular (k, l)-ĉore to which each vertex used to belong.
For instance, if vertex v is included in a certain (k+1, l)-ĉore,
v.group will be marked; and when processing the (k, l)-core,
by checking v.group, we would quickly know that v should
be gathered together with others who share the same value.

Algorithm 2 summarizes all CUF functions and underlines
our contribution. To maintain the two additional elements,
we propose a new function UPDATECUF. As shown in Algo-
rithm 2, for each vertex v, we find the representative member
r of the particular (k, l)-ĉore including v, i.e., FIND(v) (lines
16-17). Then we update v.group as r.group and set r.hook
as v if v has smaller value in cur[] (lines 18-19).
Lemma 5 (Space cost). Given a directed graph G, the CUF
data structure of all vertices costs O(n) space.

Proof. The lemma directly follows the observation.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3547

https://en.wikipedia.org/wiki/Disjoint-set_data_structure

Algorithm 3 Process vertices to create tree nodes.
1: function BUILDALEVEL(k, l, Vl , pre[], cur[], map, P , Ψ)
2: initialize Sv1 , · · · , Svi , · · · for vertices v1, · · · , vi, · · · ∈ Vl;
3: for v ∈ Vl do
4: for u ∈ N(v) do
5: if cur[u] > cur[v] then
6: ru ← Ψ.FIND(u);
7: p′ ← map.get(ru.hook);
8: Sv .add(p′), P .delete(p′);
9: V ′ ← ∅;

10: for v ∈ Vl do
11: if k 6= kmax and pre[v] = l then
12: v.parent← v, v.hook ← v;
13: v.rank ← 0, V ′.add(v);
14: else Ψ.MAKESET(v);
15: BATCHUNION(Vl\V ′ , cur[], Ψ);
16: for v ∈ V ′ do Ψ.UNION(v, v.group, cur[]);
17: for each set Ci ⊆ Vl with the same CUF root do
18: p← create tree node by using l and Ci;
19: P .add(p);
20: for each v ∈ Ci do
21: map.put(v, p);
22: link nodes in Sv with p;
23: Ψ.UPDATECUF(Ci , cur[]);
24: function BATCHUNION(V , cur[], Ψ)
25: for v ∈ V do
26: for u ∈ N(v) do
27: if cur[u] ≥ cur[v] then Ψ.UNION(u, v, cur[]);

Lemma 6 (Time cost of CUF functions). MAKESET takes
O(1) time; for UNION and FIND, the amortized time per op-
eration is O(α(n)); UPDATECUF takes O(α(n) · |V |) time.

Proof. Obviously, MAKESET for each vertex takes O(1). As
for UNION and FIND, since they use union by rank and path
compression optimization, the amortized time per operation
is O(α(n)) [Tarjan, 1979]. Thus, UPDATECUF totally takes
O(α(n) · |V |) for all vertices in V .

Details of function BUILDALEVEL. Algorithm 3 shows
the details. Firstly, we find root nodes of subtrees to be linked
to new nodes in this level. For each vertex v, we initialize
a set Sv; we visit v’s neighbour u to find the root p′ of the
subtree including u and collect it in Sv (lines 2-8). Then we
use CUF to verify the subgraph connectivity for this level.
We initialize a set V ′ to collect vertices if they has been pre-
viously processed in the l-th level of the (k+1)-tree (lines 9-
13). For vertices in V ′, we directly use their group to achieve
a quick UNION; for others, we visit their neighbours to check
the connectivity by invoking BATCHUNION (lines 15-16, 24-
27). After that, for each vertex set Ci sharing the same CUF
root, we create the node p and update P (lines 17-19). For
each vertex v in Ci, we update the vertex-node map map and
link child nodes in Sv to p (lines 20-22). Finally, we update
CUF for the constrcution of next level (line 23).

Lemma 7. Given a directed graph G, the time cost of build-
ing D-Forest using BottomUp is O(α(n) ·m ·

√
m).

Proof. Decomposing the (k, 0)-core for a specific k takes
O(m) time [Fang et al., 2019b]. Then BUILDALEVEL takes

O(α(n) ·ml), where ml is the edges visited in the l-th level.
This implies that building k-tree takes O(α(n) ·m) in total.
Thus BottomUp takes O(kmax · α(n) ·m), which is upper
bounded by O(α(n) ·m ·

√
m). Lemma 7 holds.

5 Experiments
5.1 Setup
We use six real large directed graphs in Table 1, where d is the
average degree of vertices. The Twitter dataset 3 is collected
by Kristina Lerman. The eu-2015, arabic, it-2004, sk-2005
and uk-2007 datasets [Boldi et al., 2014] are available in the
website4. We implement all the algorithms in Java, and run
the experiments on a Linux machine with Ten-core Intel E7-
4820 V3 CPU@1.90GHz and 300GB memory.

Graph n m d kmax lmax

Twitter 699,986 36,743,091 52.49 443 448
eu-2015 6,650,532 165,693,531 24.91 9,568 9,569
arabic 22,744,080 639,999,458 28.14 3,126 3,126
it-2004 41,291,594 1,150,725,436 27.86 3,198 3,197
sk-2005 50,636,154 1,949,412,601 38.50 4,502 4,502
uk-2007 110,123,614 3,944,932,566 35.82 10,027 10,027

Table 1: Datasets in our experiments.

5.2 Experimental Results
We compare our approach with the state-of-the-art solu-
tions [Fang et al., 2019b] which propose three indices,
i.e., NestIDX, PathIDX and UnionIDX, and three cor-
responding query algorithms, i.e., Nest-Q, Path-Q and
Union-Q. Using the same evaluation strategy in [Fang et
al., 2019b], we respectively report the efficiency results of
index construction and queries in Figures 3 and 4. To evalu-
ate the efficiency of index construction, for each dataset, we
randomly select 20%, 40%, 60% and 80% of its vertices and
obtain the four subgraphs induced by these vertices.
Space cost of D-Forest. To measure the space cost of an
index, we store all the index elements, which can be used
to recover the index, into the disk. As shown in Figure 3
(a)-(f), with the sizes of sub-datasets growing, the space cost
of D-Forest and others increase steadily. Besides, D-Forest
uses comparable space cost as other indexes, meaning that
D-Forest is as space-efficient as the state-of-the-art solutions.
Time cost of index construction. From Figure 3(g)-(l), we
can observe that BottomUp takes similar time cost with
state-of-the-art solutions . For instance, on the largest dataset
uk-2007 (35.4GB in disk), BottomUp takes only 8.12 hours
to build D-Forest. And BottomUp always runs at least 10
times faster than TopDown. We remark that to save the com-
putational resources, for each test, we terminate TopDown if
it runs 10 times longer than BottomUp.
Scalability evaluation of CSD queries. In Figure 4(a)-(f),
we evaluate the scalability of CSD query algorithms over dif-
ferent sizes of datasets. As suggested in [Fang et al., 2019b],
for each sub-dataset, we randomly select 200 vertices which
are in the (8,8)-cores as the query vertices and set k=l=8.

3https://www.isi.edu/lerman/downloads/twitter/twitter2010.html
4http://law.di.unimi.it/datasets.php

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3548

https://www.isi.edu/lerman/downloads/twitter/twitter2010.html
http://law.di.unimi.it/datasets.php

20% 40% 60% 80%100%
(a) Twitter (space)

100

101

102

sp
ac

e
(M

B)

20% 40% 60% 80%100%
(b) eu-2015 (space)

100

101

102

103

sp
ac

e
(M

B)

20% 40% 60% 80%100%
(c) arabic (space)

101

102

103

104

sp
ac

e
(M

B)

20% 40% 60% 80%100%
(d) it-2004 (space)

102

103

104

sp
ac

e
(M

B)

20% 40% 60% 80%100%
(e) sk-2005 (space)

102

103

104

sp
ac

e
(M

B)

20% 40% 60% 80%100%
(f) uk-2007 (space)

102

103

104

sp
ac

e
(M

B)

D-Forest NestIDX PathIDX UnionIDX

20% 40% 60% 80%100%
(g) Twitter (time)

100

101

102

103

104

tim
e

(s
)

20% 40% 60% 80%100%
(h) eu-2015 (time)

100

101

102

103

104
tim

e
(s

)

20% 40% 60% 80%100%
(i) arabic (time)

101

102

103

104

tim
e

(s
)

20% 40% 60% 80%100%
(j) it-2004 (time)

101

102

103

104

105

tim
e

(s
)

20% 40% 60% 80%100%
(k) sk-2005 (time)

101

102

103

104

105

tim
e

(s
)

20% 40% 60% 80%100%
(l) uk-2007 (time)

102

103

104

105

tim
e

(s
)

TopDown BottomUp NestIDX PathIDX UnionIDX

Figure 3: The space cost of D-Forest and the time cost of index construction.

20% 40% 60% 80%100%
(a) Twitter (scalability)

10-1
100
101
102
103
104

tim
e

(m
s)

20% 40% 60% 80%100%
(b) eu-2015 (scalability)

10-1
100
101
102
103
104

tim
e

(m
s)

20% 40% 60% 80%100%
(c) arabic (scalability)

10-1
100
101
102
103
104

tim
e

(m
s)

20% 40% 60% 80%100%
(d) it-2004 (scalability)

10-1
100
101
102
103
104

tim
e

(m
s)

20% 40% 60% 80%100%
(e) sk-2005 (scalability)

10-1
100
101
102
103
104

tim
e

(m
s)

20% 40% 60% 80%100%
(f) uk-2007 (scalability)

10-1
100
101
102
103
104

tim
e

(m
s)

8 16 24 32 40
(g) Twitter (effect of k)

10-1
100
101
102
103
104

tim
e

(m
s)

8 16 24 32 40
(h) eu-2015 (effect of k)

10-1
100
101
102
103
104

tim
e

(m
s)

8 16 24 32 40
(i) arabic (effect of k)

10-1
100
101
102
103
104

tim
e

(m
s)

8 16 24 32 40
(j) it-2004 (effect of k)

10-1
100
101
102
103
104

tim
e

(m
s)

8 16 24 32 40
(k) sk-2005 (effect of k)

10-1
100
101
102
103
104

tim
e

(m
s)

8 16 24 32 40
(l) uk-2007 (effect of k)

10-1
100
101
102
103
104

tim
e

(m
s)

8 16 24 32 40
(m) Twitter (effect of l)

10-1
100
101
102
103
104

tim
e

(m
s)

8 16 24 32 40
(n) eu-2015 (effect of l)

10-1
100
101
102
103
104

tim
e

(m
s)

8 16 24 32 40
(o) arabic (effect of l)

10-1
100
101
102
103
104

tim
e

(m
s)

8 16 24 32 40
(p) it-2004 (effect of l)

10-1
100
101
102
103
104

tim
e

(m
s)

8 16 24 32 40
(q) sk-2005 (effect of l)

101

102

103

104

tim
e

(m
s)

8 16 24 32 40
(r) uk-2007 (effect of l)

10-1
100
101
102
103
104

tim
e

(m
s)

IDX-Q Nest-Q Path-Q Union-Q

Figure 4: The efficiency of answering CSD queries.

Generally, the running time of all algorithms increases as
the size of sub-datasets grows. Besides, our query algorithm
IDX-Q achieves the best performance on all the datasets. For
example, on uk-2007 dataset with around 4 billion edges,
IDX-Q takes 72ms on average to answer a query and runs
about 100 times faster than the existing solutions.

Effect of k and l in CSD queries. We depict the effect of
k and l on the efficiency of CSD queries in Figure 4(g)-(r).
For each dataset, we randomly select 200 vertices within the
(8,8)-cores to query. We see that as the value of k and l
increases, the returned communities become smaller, so the
time cost of all query algorithms decreases. Again, IDX-Q
is up to two orders of magnitude faster than the three existing
algorithms which generally achieve similar performance.

6 Conclusion
In this paper, we examine the CSD problem and design a
novel index D-Forest, based on which a CSD query can be
completed in the optimal time cost. To build the index, we
propose a basic algorithm TopDown, and an advanced algo-

rithm BottomUp by introducing the CUF data structure. The
experimental results on six real large graphs demonstrate the
efficiency of our solutions.

In the future, we will investigate how to extend other co-
hesiveness metrics, such as k-truss and k-clique, to search
communities in large directed graphs.

Acknowledgments
This work was conducted in CUHK supported by the Re-
search Grants Council of the Hong Kong Special Administra-
tive Region, China (CUHK 3133238 (Research Sustainability
of Major RGC Funding Schemes)) and Delta-NTU Corporate
Lab for Cyber-Physical Systems supported from Delta Elec-
tronics Inc and the National Research Foundation Singapore
under the Corp Lab@University Scheme. Xin Cao was sup-
ported by ARC DE190100663. We would like to thank Jiani
Zhang for her helpful discussion and proof-reading.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3549

References
[Andersen and Lang, 2006] R. Andersen and K. Lang. Communi-

ties from seed sets. In WWW, pages 223–232. ACM, 2006.

[Batagelj and Zaversnik, 2003] V. Batagelj and M. Zaversnik. An o
(m) algorithm for cores decomposition of networks. CoRR, 2003.

[Boldi et al., 2014] P. Boldi, A. Marino, M. Santini, and S. Vigna.
Bubing: massive crawling for the masses. In WWW, pages 227–
228, 2014.

[Chen et al., 2019] Y. Chen, Y. Fang, R. Cheng, Y. Li, X. Chen, and
J. Zhang. Exploring communities in large profiled graphs. TKDE,
31(8):1624–1629, 2019.

[Cui et al., 2013] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang.
Online search of overlapping communities. In SIGMOD, pages
277–288, 2013.

[Cui et al., 2014] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local
search of communities in large graphs. In SIGMOD, pages 991–
1002, 2014.

[Ebadian and Huang, 2019] S. Ebadian and X. Huang. Fast algo-
rithm for k-truss discovery on public-private graphs. In IJCAI,
pages 2258–2264, 2019.

[Fang et al., 2017a] Y. Fang, R. Cheng, Y. Chen, S. Luo, and J. Hu.
Effective and efficient attributed community search. VLDB Jour-
nal, 26(6):803–828, 2017.

[Fang et al., 2017b] Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu.
Effective community search over large spatial graphs. PVLDB,
10(6):709–720, 2017.

[Fang et al., 2017c] Yixiang Fang, Reynold Cheng, Siqiang Luo,
Jiafeng Hu, and Kai Huang. C-explorer: browsing communities
in large graphs. PVLDB, 10(12):1885–1888, 2017.

[Fang et al., 2019a] Y. Fang, X. Huang, L. Qin, Y. Zhang,
W. Zhang, R. Cheng, and X. Lin. A survey of community search
over big graphs. VLDB Journal, 2019.

[Fang et al., 2019b] Y. Fang, Z. Wang, R. Cheng, H. Wang, and
J. Hu. Effective and efficient community search over large di-
rected graphs. TKDE, 31(11):2093–2107, 2019.

[Fang et al., 2019c] Yixiang Fang, Zheng Wang, Reynold Cheng,
Xiaodong Li, Siqiang Luo, Jiafeng Hu, and Xiaojun Chen. On
spatial-aware community search. TKDE, 31(4):783–798, 2019.

[Fang et al., 2019d] Yixiang Fang, Kaiqiang Yu, Reynold Cheng,
Laks V.S. Lakshmanan, and Xuemin Lin. Efficient algorithms for
densest subgraph discovery. PVLDB, 12(11):1719–1732, 2019.

[Fang et al., 2020] Yixiang Fang, Yixing Yang, Wenjie Zhang,
Xuemin Lin, and Xin Cao. Effective and efficient community
search over large heterogeneous information networks. PVLDB,
13(6):854–857, 2020.

[Flake et al., 2000] G. W. Flake, S. Lawrence, and C. L. Giles. Ef-
ficient identification of web communities. In SIGKDD, volume
2000, pages 150–160, 2000.

[Fortunato, 2010] S. Fortunato. Community detection in graphs.
Physics reports, 486(3-5):75–174, 2010.

[Giatsidis et al., 2011] C. Giatsidis, D. M. Thilikos, and M. Vazir-
giannis. D-cores: Measuring collaboration of directed graphs
based on degeneracy. In ICDM, pages 201–210, 2011.

[Hu et al., 2017] Jiafeng Hu, Xiaowei Wu, Reynold Cheng, Siqiang
Luo, and Yixiang Fang. On minimal steiner maximum-connected
subgraph queries. TKDE, 29(11):2455–2469, 2017.

[Hu et al., 2019] Jiafeng Hu, Reynold Cheng, Kevin Chen-Chuan
Chang, Aravind Sankar, Yixiang Fang, and Brian YH Lam. Dis-
covering maximal motif cliques in large heterogeneous informa-
tion networks. In ICDE, pages 746–757. IEEE, 2019.

[Huang and Lakshmanan, 2017] X. Huang and L. Lakshmanan. At-
tribute driven community search. PVLDB, 10(9):949–960, 2017.

[Huang et al., 2014] X. Huang, H. Cheng, L. Qin, W. Tian, and
J. Yu. Querying k-truss community in large and dynamic graphs.
In SIGMOD, pages 1311–1322, 2014.

[Huang et al., 2015] X. Huang, L. Lakshmanan, J. X. Yu, and
H. Cheng. Approximate closest community search in networks.
PVLDB, 9(4):276–287, 2015.

[Kim et al., 2010] Y. Kim, S. Son, and H. Jeong. Finding commu-
nities in directed networks. Phys. Rev. E, 81(1):016103, 2010.

[Lancichinetti and Fortunato, 2009] A. Lancichinetti and S. Fortu-
nato. Benchmarks for testing community detection algorithms
on directed and weighted graphs with overlapping communities.
Phys. Rev. E, 80(1):016118, 2009.

[Leicht and Newman, 2008] E. A Leicht and M. E. Newman. Com-
munity structure in directed networks. Phys. Rev. letters,
100(11):118703, 2008.

[Li et al., 2015a] R. Li, L. Qin, J. Yu, and R. Mao. Influential com-
munity search in large networks. PVLDB, 8(5):509–520, 2015.

[Li et al., 2015b] Zhenguo Li, Yixiang Fang, Liu Qin, Jiefeng
Cheng, Reynold Cheng, and John C.S. Lui. Walking in the cloud:
parallel simrank at scale. PVLDB, 9(1):24–35, 2015.

[Malliaros and Vazirgiannis, 2013] F. Malliaros and M. Vazirgian-
nis. Clustering and community detection in directed networks: A
survey. Physics Reports, 533(4):95–142, 2013.

[Newman and Girvan, 2004] M.E. Newman and M. Girvan. Find-
ing and evaluating community structure in networks. Phys. Rev.
E, 69(2):026113, 2004.

[Ning et al., 2016] X. Ning, Z. Liu, and S. Zhang. Local com-
munity extraction in directed networks. Phys. A: Statist. Mech.
Appl., 452:258–265, 2016.

[Sozio and Gionis, 2010] M. Sozio and A. Gionis. The community-
search problem and how to plan a successful cocktail party. In
SIGKDD, pages 939–948, 2010.

[Tarjan, 1979] R. E. Tarjan. A class of algorithms which require
nonlinear time to maintain disjoint sets. Journal of computer and
system sciences, 18(2):110–127, 1979.

[Wan et al., 2020] Guojia Wan, Bo Du, Shirui Pan, and Jia Wu.
Adaptive knowledge subgraph ensemble for robust and trustwor-
thy knowledge graph completion. WWW, 23(1):471–490, 2020.

[Wang and Zhu, 2019] C. Wang and J. Zhu. Forbidden nodes aware
community search. In AAAI, pages 758–765, 2019.

[Yang et al., 2010] T. Yang, Y. Chi, S. Zhu, Y. Gong, and R. Jin.
Directed network community detection: A popularity and pro-
ductivity link model. In SIAM, pages 742–753, 2010.

[Yang et al., 2014] J. Yang, J. McAuley, and J. Leskovec. Detect-
ing cohesive and 2-mode communities indirected and undirected
networks. In WSDM, pages 323–332. ACM, 2014.

[Zhang et al., 2014] J. Zhang, C. Wang, and J. Wang. Who pro-
posed the relationship?: recovering the hidden directions of undi-
rected social networks. In WWW, pages 807–818, 2014.

[Zhu et al., 2019] Qikui Zhu, Bo Du, and Pingkun Yan. Multi-
hop convolutions on weighted graphs. arXiv preprint
arXiv:1911.04978, 2019.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3550

	Introduction
	Related Works
	Problem Definition
	Our Index-based Approach
	Index Overview
	A Top-Down Index Construction Method
	A Bottom-Up Index Construction Method

	Experiments
	Setup
	Experimental Results

	Conclusion

