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Abstract
Enumerating maximal bicliques in a bipartite graph
is an important problem in data mining, with many
applications across different domains such as web
community, bioinformatics, etc. Although research
has been conducted on this problem, surprisingly,
we find that pivot-based search space pruning,
which is effective in clique enumeration, has not
been exploited in biclique scenario. Therefore, in
this paper, we explore the pivot pruning for biclique
enumeration. We propose an algorithm for imple-
menting the pivot pruning, powered by an effec-
tive index structure Containment Directed Acyclic
Graph (CDAG). Meanwhile, existing literature in-
dicates contradictory findings on the order of ver-
tex selection in biclique enumeration. As such, we
re-examine the problem and suggest an offline or-
dering of vertices that expedite the pruning. We
conduct an extensive performance study using real
world datasets from a wide range of domains. The
experimental results demonstrate that our algorithm
is more scalable and outperforms all the existing al-
gorithms across all datasets and can achieve a sig-
nificant speedup against the previous algorithms.

1 Introduction
A Bipartite graph is an interesting structure that can be used
to represent two disjoint sets of vertices. Let us consider a
bipartite graph G = (U ∪ V,E), where U and V are two
disjoint sets, and E ⊆ U × V . A biclique B = (X ∪ Y ),
X ⊆ U , Y ⊆ V is a complete subgraph of a given bipartite
graph G s.t. all the vertices of X are connected to all the
vertices of Y . The maximal biclique is the one, which is not
a proper subgraph of any other biclique in G. Figure 1 shows
the bipartite graph and a maximal biclique.

Consider an example in a Youtube network containing a
relationship between users and groups. A biclique in this sce-
nario consists of a set of users and the set of groups that con-
tain all the corresponding users. Exploring such biclique of
users who share a common interest can be proved valuable for
analyzing the behaviour and speculate the actions of a user in
the network. Generally, identifying maximal bicliques proves
to be useful, as they are not contained by any other bicliques.

G = (U ∪ V,E)

{v2, v4, v5}
B = {u3, u5},

U

V v1 v3 v6v2 v4 v5

u1 u2 u4 u6 u7u3 u5

Figure 1: Maximal biclique(B) in a bipartite graph(G).

Therefore, we study the problem of Maximal biclique enu-
meration {MBE} in a bipartite graph.

The domain of real world applications of MBE includes
community detection, bioinformatics, closed item sets, etc.
Some typical applications include detecting overlapping com-
munities in Noordin Top Terrorist Network for finding more
dangerous elements [Alzahrani and Horadam, 2019], dis-
covering large dense graphs in massive graphs for spam
group detection [Gibson et al., 2005], generating probabilis-
tic model for protein-protein interaction network analysis
[Schweiger et al., 2011], extracting gene-phenotype informa-
tion from transactional databases [Xiang et al., 2011], con-
structing the optimal phylogenetic tree [Driskell et al., 2004]
and gene expression [Kaytoue et al., 2011]. From the do-
main of closed item sets, MBE is used in association rule min-
ing from transactional databases [Vanahalli and Patil, 2019].
Some of the other applications include reducing the role min-
ing complexity in role-based access control system [Wu et
al., 2018], learning context-free grammars [Yoshinaka, 2011]
and providing a model with constraints for solving chemical
process scheduling problems [Mouret et al., 2011]. How-
ever, currently, there are not many algorithms which ad-
dress the problem of enumerating all maximal bicliques in
a bipartite graph. The previous algorithms were unable to
tackle some challenges associated with the biclique enumer-
ation, which are: (i) Inefficient pruning technique for the
large search space - the state-of-the-art algorithms iMBEA
[Zhang et al., 2014] and LCM-MBC [Li et al., 2007] have
deployed pruning techniques to reduce the search space to
some extent. However, the resulting search space is still large
and exacerbates the cost of enumeration. (ii) Inefficient or-
dering of vertices - the ordering of vertices plays a crucial
role in the enumeration of search space [Zhang et al., 2014;
Damaschke, 2014]. Although, the ordering proposed im-
proved the overall enumeration time, yet an extra overhead
of local ordering was introduced.

In this paper, we aim to address the above two challenges.
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We propose Pivot-based Maximal Biclique Enumeration
(PMBE) algorithm for enumerating all maximal bicliques.
PMBE integrates the pivot pruning technique with LCM-
MBC for reducing the search space. An efficient implementa-
tion of the pivot pruning is guaranteed by our proposed Con-
tainment Directed Acyclic Graph (CDAG) index structure.
The semantics of ordering of vertices to enumerate maximal
biclique is also studied, and a heuristic ordering is proposed
for the heuristic pivot selection, which eventually optimizes
the algorithm. Our major contributions are listed as below:
• Optimized pivot-based pruning algorithm for enumerating

all maximal bicliques. We present an optimized algorithm
PMBE, which introduces the classical pivot technique for
expediting the search space pruning, for the enumeration
of all maximal bicliques.

• Efficient index structure for containment relationship. We
utilize an efficient offline structure called CDAG, for sys-
tematizing pivot pruning.

• Rev-Topological order for heuristic pivot selection. We
study semantics and analyze the ordering of vertices in
biclique generation, and suggest an offline ordering rev-
topological for efficient pivot pruning.
• Extensive performance studies across real world networks.

We conduct extensive experiments on 10 real datasets to
evaluate the efficiency of our proposed algorithms.

2 Preliminaries and Problem Definition
Let G = (U ∪ V,E) be a bipartite graph, where U and V
are two disjoint sets of vertices, and E is an edge set. A
biclique is a complete subgraph of the given graph G, which
is formalized as:
Definition 1. Bipartite Complete Graph or Biclique: A bi-
clique within G is a couple (set pair) (X,Y ) s.t. X ⊆ U, Y ⊆
V and ∀u ∈ X, v ∈ Y , (u, v) ∈ E.

A biclique is a maximal biclique if it cannot be contained
by any other biclique.
Problem definition. Given a bipartite graph G = (U ∪
V,E) with no multiple edges and no self-loops. We enumer-
ate all the maximal bicliques in G.

3 Methodology
This section explains how our approach works to tackle the
challenges discussed in Section 1. The pivot pruning ap-
proach has been first introduced by Bronn and Kerbosh [Bron
and Kerbosch, 1973] for finding cliques. It has proven to
be a simple, yet effective technique in pruning cliques. Sur-
prisingly, the technique has not been utilized, in the field of
bicliques. We now present a modified pivot pruning sup-
ported by ordering for an optimized enumeration of maximal
bicliques. We observed that the pivot pruning effectiveness
depends on the pivot selection. Therefore, an effective rev-
topological order is proposed for the same. The proposed
modification is achieved in the following steps. Firstly, the
framework for our algorithm is discussed which uses two
techniques namely pivot pruning and rev-topological order-
ing for optimization. Secondly, pivot pruning is explained
using the containment relationship (Definition 2). Thirdly,

Algorithm 1: Enumerate all maximal bicliques
Input : G = (U ∪ V,E)
Output: B is the maximal Biclique

1 Function EnumerateMaximalBiclique(U,V)
2 *Create a CDAG
3 *cand = Rev-Topological(V )
4 B = φ
5 PMBE(B,U, cand)
6 Function PMBE(B,Y,cand)
7 if cand.isEmpty then
8 return
9 *Pivot Selection

10 foreach v ∈ cand do
11 if rangefinder(p,v) 6= TRUE then
12 B = Γ(Γ(X ∪ {v}))
13 if B \ (X ∪ {v}) ⊆ cand then
14 Output (B,Γ(X ∪ {v}))
15 if (cand \B) isnotEmpty then
16 PMBE(B,Γ(X ∪ {v}), cand \B)

we propose the index CDAG, for the effective implementa-
tion of pivot pruning. Fourthly, we study the semantics of
the ordering of vertices and suggest a rev-topological order
for heuristic pivot selection. Lastly, the algorithm PMBE is
discussed which enumerates all the maximal bicliques.

3.1 The Framework
The proposed framework of our approach can be observed in
Algorithm 1. The framework uses the techniques of pruning
and ordering to optimize the algorithm. We explain the two
aspects of the framework, which are search space and enu-
meration. Some properties of enumeration are adapted from
LCM-MBC [Li et al., 2007].

Search Space. For a bipartite graph G = (U ∪ V,E), the
search space is restricted to one of the vertex sets (U, V ), as
it can be used to determine the corresponding adjacency list.
The search space of MBE is a set enumeration tree for a ver-
tex set, which systematically enumerates the power-sets of the
corresponding vertex set using a pre-imposed order. For the
set enumeration, a smaller vertex set, say V , is selected. Each
of the nodes in the search space represents a possible candi-
date for a maximal biclique. The root represents an empty
set. The sub search space (sub(X)) for a vertex set X is a
subtree that is rooted at the vertex set X. Given a vertex set
X , cand(X) denotes the candidates for node X in the search
space, containing only the vertex which comes later than the
last vertex set in X .

Before introducing enumeration, we first define some nota-
tions to simplify the explanation. The common neighborhood
for a vertex set X is denoted by Γ(X). For a given vertex set
X ∈ P (P is the power-set of V ), Γ(X) = {u|u ∈ U and
∀v ∈ X, (u, v) ∈ E}.
The Enumeration. It is accomplished by using two func-
tions as shown in Algorithm 1: (i) EnumerateMaximalBi-
clique and (ii) PMBE. EnumerateMaximalBiclique is respon-
sible for performing the rev-topological order for an efficient
pivot selection (line 3). PMBE which has been inspired by
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root

X = {1},
C = {3, 2, 5}

X = {2, 3},
C = {4, 5}

X = {2},
C = {6, 4, 5}

X = {5},
C = {6}

X = {1, 2, 3},
C = {φ}

X = {1, 2},
C = {φ},

X = {1, 5},
C = {φ}

X = {2, 3, 4, 5},
C = {φ}

X = {2, 4, 5},
C = {6}

X = {5, 6},
C = {φ}

X = {2, 4, 5, 6},
C = {φ}

a: PMBE, Pivot is represented by red vertices

root

X = {1},
C = {2, 3, 5}

X = {2},
C = {3, 4, 5, 6}

X = {3},
C = {4, 5}

X = {4, 5},
C = {6}

X = {5},
C = {6}

X = {6},
C = {φ}

X = {1, 2, 3},
C = {φ}

X = {1, 3},
C = {φ}

X = {1, 5},
C = {φ}

X = {2, 3},
C = {4, 5}

X = {2, 4, 5},
C = {φ}

X = {2, 4, 5},
C = {φ}

X = {2, 4, 5, 6},
C = {φ}

X = {5, 6},
C = {φ}

X = {2, 3, 4, 5},
C = {φ}

b: LCM-MBC

Figure 2: Enumeration tree for different algorithms. C is the cand at each level and red boxes are the duplicate bicliques

LCM-MBC for bipartite graphs, implements the pivot se-
lection (line 9) and performs the pivot pruning (line 11) to
enumerate all maximal bicliques. The framework includes
creating the structure CDAG (line 2) for supporting pivot
pruning and rev-topological ordering. Apart from the prun-
ing, PMBE ensures that a biclique generated is maximal iff
Γ(Γ(X)) = X (line 12) [Li et al., 2007]. The duplicate bi-
cliques are pruned using line 13 [Li et al., 2007]. The result-
ing optimized algorithm LCM-MBC enumerates the search
space shown in Figure 2b. LCM-MBC runs with an exponen-
tial complexity of O(|U ||V |β), where β = number of max-
imal bicliques. However, it still suffers from the following
two problems: firstly, the search space is still very large; sec-
ondly, there are numerous duplicate maximal bicliques gen-
erated (red boxes).

3.2 Pivot
The pivot technique for maximal clique enumeration is to
prune search branches that cannot result in a maximal clique
as early as possible. The pivoting consists of the following:
instead of iterating over each vertex and checking for maxi-
mal cliques, choose a pivot. The results will have to contain
either the pivot or one of its non-neighbors, since if none of
the non-neighbors of the pivot is included, then we can add
the pivot itself to the result. Hence, only the pivot and its non-
neighbors need to be tested in the enumeration space. The
properties of cliques and bicliques are distinct, hence select-
ing a pivot with the same notion will not be effective in the
case of bicliques. Consequently, the pivot selection approach
has to be modified for bicliques.

The motivation behind pivot pruning is to reduce the dupli-
cate biclique enumeration. In our context, a pivot is a vertex
selected among the candidates, which can be used to reduce
or prune the enumeration space of our problem without los-
ing any results. To define pivot formally, we first define the
containment relationship as:

Definition 2. Containment (⊂): For a given bipartite graph
G=(U ∪ V, E), let v1, v2 ∈ V. Then, v1 is contained by v2 iff
Γ({v1}) is a subset of Γ({v2}).

The containment relationship provides an elegant property
which can be utilized as a criterion for pivot selection.

Property 1. Given v1, v2 ∈ cand(X), if v1 ⊂ v2, then
sub(v2) contains sub(v1).

Proof. Given v1 ⊂ v2, we have Γ({v1}) ⊆ Γ({v2}), which
in turn implies Γ(Γ({v1})) ⊆ Γ(Γ({v2})). Here sub(v1) and
sub(v2) are the power sets of Γ(Γ({v1})) and Γ(Γ({v2}))
respectively. Hence we say sub(v2) contains sub(v1).

Therefore, using Property 1, we define the pivot as:

Definition 3. Pivot: Given a vertex set X, a vertex p ∈
cand(X) is a pivot if ∃ v ∈ cand(X), s.t. Γ({v}) ⊂ Γ({p}).

In the search space, at each level of recursion, i.e., vertex
set X , we intend to prune away all the contained vertices for
a corresponding selected pivot. Further, we propose the pivot
pruning as follows:

Proposition 1. At each recursion level in search space, se-
lecting one pivot p ∈ cand(X) and pruning all vertices con-
tained by p from cand(X) shall not lose any maximal biclique.

According to Property 1, the pivot sub search space already
contains sub search space of the pruned vertices. Therefore,
removing the contained vertices would reduce the overhead
of checking the branches that cannot result in maximal bi-
cliques, which would not affect the results. The example of
pivot pruning can be seen by comparing Figures 2b and 2a, at
level 1 vertices 4 and 6 are contained by pivot 5. The bicliques
enumerated (Figure 2b) from vertices 4 and 6 are redundant
and an unnecessary extra cost is utilized for handling them.
Once the pivot criterion is decided, we now apply the pivot
pruning. The naive method includes selecting each neighbor
of a vertex and finding it in the neighborhood of the pivot,
is expensive and inefficient. Therefore, to address the prob-
lem of pivot pruning efficiently, we propose an index structure
Containment Directed Acyclic Graph (CDAG).

3.3 Containment Directed Acyclic Graph
The containment directed acyclic graph (CDAG) is an offline
structure used to store the containment relationship (Defini-
tion 2). The challenge in implementing the pivot pruning
is proportional to answering the query of whether the vertex
v2 contains the vertex v1. CDAG addresses this problem
and provides the acknowledgment for the query in almost
constant time. It is composed of two components: directed
acyclic graph (DAG) and range index (R). A DAG is created
for a cand where the directed edges represent the contain-
ment relationship. The vertex v1 is said to be a child of v2
if there exists a direct edge from v2 to v1. Although, a DAG
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1 [(1, 1)] 2 [(2, 5)]

3
[(2, 2)]

4
[(3, 4), (6, 7)]

5
[(6, 8)]

6[(3, 3), (6, 6)]

a: Inefficient range index

1 [(1, 1)] 2 [(2, 5)]

3 [(2, 2)] 4
[(3, 4)]

5
[(6, 7),
(3, 4)]

6 [(3, 3)]

b: Efficient range index

Figure 3: Containment directed acylic graph(CDAG)

is sufficient for finding the containment relationship, we im-
prove the structure by integrating the range index.
Definition 4. The range index (Rv = [x, y], where x, y ∈
Integer) for a vertex v ∈ cand, is an interval assigned to the
corresponding vertex of a DAG during the traversal. x and y
denote the beginning and the termination of the traversal.

The range index is assigned to each vertex in the DAG and
can be utilized to find the containment relationship quickly.
The range indexing is performed using a depth first search
approach (DFS). We begin the traversal of the DAG with
each root vertex and assign the range index to the vertices
in a CDAG. For an efficient and non-redundant range in-
dexing, the transitive edges from the DAG are removed. The
vertices which are not contained by any other vertex are con-
sidered to be the root vertex, e.g., vertices 1, 2 and 5 in Fig-
ure 3a. However, if a vertex is contained by more than one
vertex, it can have more than one range index, e.g., ver-
tices 4 and 6 in Figure 3a. This unnecessary overhead of
range indexes on vertices 4 and 6 can be reduced by adopt-
ing a technique from [Agrawal et al., 1989]. We create two
types of range index for each vertex in a DAG, first, its own
(rangeindex) and second, obtained from the common chil-
dren (child rangeindex), which has been already visited.
The fundamental approach of creating a CDAG is to first
create a DAG and then implement the range indexing. For a
given graph cand a CDAG can be defined as:
Definition 5. ACDAG, C = (V̄ , Ē) is an acyclic graph, s.t.
∀v̄ ∈ V̄ , v̄ is composed of v ∈ cand and Rv , and ∀(v̄, ū) ∈
Ē, ū ⊂ v̄.

Figure 3b is the required CDAG for the cand. There are
some common terminologies regarding a CDAG. A path is
defined as a sequence of edges from one vertex to the other
in a CDAG. A vertex v of a CDAG is said to be reachable
from another vertex u, if there exists a path starting from u
and ending at v. Hence, reachability in a CDAG implies
the containment relationship in our problem. Therefore, we
conclude the following proposition.
Proposition 2. v is said to be reachable from x in a CDAG,
if range index of v lies within one of the range indexes of x.

To answer the query of containment relationship be-
tween vertices we contrive a function rangefinder (line 11)
in Algorithm 1. We exploit Proposition 2 to formulate
rangefinder, i.e., comparing the range index of the vertices
in a CDAG. The runtime complexity of the rangefinder is
O(|Rpivot||Rv|), where Rpivot is the number of range indexes
of pivot and Rv is the number of range indexes of vertex v.
Figure 2a displays at each recursive level in an enumeration
tree a pivot is selected and results in better pruning of the

enumeration space. However, the pruning power of a pivot
depends on the selection of the pivot. If a pivot selected does
not contain any vertex, then rangefinder will be overhead.
Therefore, we select a pivot at each recursive level without
any extra cost, s.t. it has the potential to contain more ver-
tices. We now discuss the pivot selection technique.

3.4 Heuristic Pivot Selection
The pivot selection requires an approach to be fast yet effec-
tive at the same time. We propose a heuristic pivot selection,
where we select a vertex from cand(X) in constant time. To
ensure the effectiveness of the pivot, we study the ordering of
cand(X). Ordering of a vertex set manifests a critical role in
the pivot selection. The algorithms like MICA and LCM-
MBC have been using the lexicographical sort. The cur-
rent fastest algorithm for our problem iMBEA, suggests sort-
ing the vertices according to the non-decreasing order of the
number of common neighbors which incurs extra cost. The
contradicting conclusion for the same problem on efficiency
of discovering biclique is proposed in [Damaschke, 2014],
suggesting the non-increasing order. From these contradict-
ing techniques, we conclude that the better sorting technique
being opted is closely related to the algorithm being imple-
mented for the enumeration. We propose an offline ordering
which saves the cost at each recursion level and also ensures
the effectiveness of pivot selection at the same time. The or-
der follows the property that if v2 ⊂ v1 then v2 should occur
before v1. With this specific ordering, we can easily select
the pivot from the cand, which ensures that all pruned ver-
tices during the enumeration do not affect the results, as at the
end, pivot enumerates their collective search space (Proposi-
tion 1). The CDAG created stores the reachability informa-
tion and can be utilized to propose the required order which is
rev-topological order. The rev-topological order is one where
no vertex in a CDAG can occur before its reachable vertices.
The rev-topological order is achieved by exploiting the al-
ready known algorithm for topological ordering.

Proposition 3. The cand(X) is ordered using rev-
topological order offline using the CDAG to increase pivot
pruning power.

Following the selection of the ordering of vertices, we uti-
lize the heuristic approach to select a pivot among cand(X).
Since it is known that each vertex in cand(X) can reach only
the vertices before its occurrence, hence we select the last ver-
tex in cand(X). Therefore, given a list of vertices cand(X)
sorted in a rev-topological order, we heuristically select the
last element of cand(X) as the pivot. Rev-topological order-
ing visits all the root vertices in a CDAG and performs a
DFS to explore the subtrees of each root. The implementa-
tion of rev-topological can be achieved by performing a re-
verse topological sort, i.e., a parent in a CDAG appears be-
fore the child. Using Figure 3b as a running example, only
the vertices 1, 2, and 5 are pushed in the stack initially. The
rev-topological order obtained for the CDAG in Figure 3b is
{1, 3, 6, 4, 2, 5}, vertex 5 is selected as a pivot. The run time
cost of the rev-topological ordering is of linear order. In case
we have more than one choice for a node selection, a lexico-
graphical selection is incorporated to provide the uniqueness.
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Datasets |U | |V | |E| Bicliques LCM-MBC iMBEA PMBE PMBE pivot PMBE rev-top Index Construction

Corporate Leadership 20 44 99 66 0.002 0.003 0.003 0.004 0.002 0.005
Unicode 254 868 1255 460 0.028 0.03 0.028 0.031 0.025 0.025
UCforum 899 1421 33720 16261 1.068 1.299 0.77 1.1 0.76 0.063
Service 10106 16730 50632 49538 12.682 14.37 13.605 12.675 14.657 8.645
Movielens u-t (User-Tag) 4009 20537 95580 166380 594.952 857.364 438.126 623.333 474.09 3.989
Movielens u-i (User-Movie) 4009 11610 95580 2365457 31.919 43.651 29.016 33.021 29.913 5.789
MovieLens t-i(Tag-Movie) 16528 24129 95580 140266 244.309 220.508 201.62 246.628 193.478 14.159
Wikinews (News) 1408 26546 193618 27729 5.483 10.687 2.668 5.46 2.861 1.413
Wikibooks (Books) 2884 30997 201727 41713 6.636 13.323 4.265 6.753 4.629 2.315

Table 1: Real world datasets and their respective running time (sec.) for enumerating all maximal bicliques

After discussing the techniques for addressing the challenges
of pruning and ordering, we devise our algorithm PMBE.

3.5 PMBE
The algorithm incorporates the pivot pruning and rev-
topological ordering of vertices, utilizing theCDAG for their
effective implementation. The heuristic approach is then sug-
gested for fast pivot selection.
Algorithm. Algorithm 1 is the pseudo code for our ap-
proach of enumerating all maximal bicliques. Given a bipar-
tite graph G = (U ∪ V,E), the vertex set V is considered as
the candidate initially. The algorithm is implemented in two
steps: firstly, we create CDAG and utilize it to order the can-
didate set cand offline (lines 2-3) and secondly, to enumerate
all the maximal bicliques for cand (line 5) using the function
PMBE. The first step has been discussed in detail already, we
further discuss the enumeration part. The inputs for enumer-
ation are initially vertex set B = φ, U , and cand = V .
Heuristic pivot selection. PMBE starts with the pivot se-
lection, using Proposition 3, we heuristically select the last
vertex from the sorted cand (line 9).
Pruning using the pivot. After selecting the pivot, PMBE
enumerates maximal bicliques for the cand (line 10-16) by
utilizing the optimized pivot pruning technique which uses
the function rangefinder (line 11). The rangefinder re-
turns true for a vertex v, if it is reachable from the pivot,
hence the sub search space of v is pruned. After pruning, the
maximal biclique is enumerated in line 12. Thus, eliminating
a vertex v optimizes the algorithm by removing the overhead
of biclique generation and duplicate verification.

Subsequently, the maximal biclique is reported in line 14.
The recursive call (line 16) with the reduced cand and in-
creased B is only proceeded if there are any candidates
present (line 15). The effectiveness of PMBE and LCM-MBC
can be compared by using Figure 2, which appreciates two as-
pects of the PMBE over LCM-MBC. First, the duplicate bi-
cliques (red boxes) have been decreased, second, the efficient
pivot selection is achieved using the rev-topological order.
Time Complexity. The effective run time of PMBE is from
line 7 to line 16 in Algorithm 1. The pivot selection line
9 is done using a heuristic approach in constant time. The
complexity of rangefinder isO(|Rpivot||Rv|), which is almost
constant. The function is recursively called only for the max-
imal bicliques and the total number of maximal bicliques is
β (line 16). Each maximal biclique corresponds to a node in
the search space with a cost of O(|V |dmax) each, dmax is the
maximum degree in V . Furthermore, the total running time

complexity of the algorithm is the same as of the enumeration
of the search space, i.e., O(|V |dmaxβ).
Space Complexity. The space complexity depends on the
implementation details. It is independent of the number
of maximal bicliques as we do not save them in memory.
The major contribution of space complexity is input bipar-
tite graph which requires O(|E|) space and the enumera-
tion in memory. Since we are using DFS the space for enu-
meration tree requires O(|V |dmax). Each node in the enu-
meration tree is a biclique which is O(|U | + |V |). The
CDAG created contains each vertex in cand, which re-
quires O(|U |) space. Therefore, the total space complexity is
O(|V |dmax + |E|+ |V |+ |U |+ |V |) = O(dmax|V |+ |E|).

4 Experimental Results
The previous sections laid the conceptual foundations for the
PMBE’s potential to efficiently enumerate all maximal bi-
cliques. In this section, we evaluate the efficiency of PMBE
by comparing with the other state-of-the-art algorithms on
real world datasets across numerous domains.
Experimental Setup. All the experiments were con-
ducted on Eclipse IDE, deployed on the platform 64x In-
tel(R)Core(TM) i5-6400T with CPU frequency 2.20GHz and
8 GB RAM, running Windows 10 Enterprise operating sys-
tem. To perform a fair and comprehensive comparison be-
tween the algorithms we only clock the running time of each
algorithm. The running time of each algorithm is averaged
over 10, 7 or 5 runs for datasets that can be finished within
10 minutes, half an hour or one hour. The experiments were
performed without using any kind of parallelism, i.e., single
core was used. All the algorithms were implemented in Java.
Datasets. To establish the dominance of our algorithm, we
have selected the datasets s.t. they cover diversified real world
application domains. Doing so will demonstrate the capabil-
ities of the PMBE algorithm to efficiently enumerate all the
maximal bicliques for a wide range of domains and graph
characteristics. The datasets were obtained from KONECT
repository [Kunegis, 2013]. Table 1 shows the list of datasets
and their corresponding properties.
Algorithms. We now proceed to inspect the performances
of the following five algorithms. Firstly, iMBEA, the algo-
rithm is inspired by the classical BK algorithm [Bron and
Kerbosch, 1973] with an exponential time complexity of
O(dmax|V |β). It employs non-decreasing sorting on cand
for efficient branching and pruning techniques to remove
paths that cannot lead to maximal bicliques. Secondly, LCM-
MBC, an optimized version of LCM-MBC [Li et al., 2007]
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Figure 4: Large real world datasets with thresholds

for bipartite graphs. The optimized version does not require
any unnecessary post-processing and duplicate biclique enu-
meration [Zhang et al., 2014]. Thirdly, PMBE, pivot based
algorithm which is proposed in this paper. Lastly, to establish
the effectiveness of pivot pruning and rev-topological order-
ing individually we use PMBE pivot and PMBE rev-top,
where an algorithm uses only the pivot technique or the or-
dering technique individually. The runtime complexity of
PMBE pivot and PMBE rev-top are of the same order of
PMBE. Apart from the running time of the algorithms, the in-
dex construction time which includes the creation of CDAG
and performing rev-topological ordering is also shown in Ta-
ble 1. We observe the improvement in the performance of
PMBE with the increase in the size of the dataset (Table 1).

Results and Discussion. Table 1 illustrates the perfor-
mance of all the algorithms on real datasets. From these
experiments, we conclude that PMBE has outperformed iM-
BEA and LCM-MBC in almost all the scenarios. However,
for Unicode and Service the PMBE rev-top and PMBE pivot
outperforms all the other algorithms. We observe, at least one
of the versions of PMBE has outmatched iMBEA and LCM-
MBC. The results of the experiments also imply the following
conclusions: (i) we perceive that ordering plays a more cru-
cial role than the pivot as the efficiency obtained from pivot
pruning is less, compared to rev-topological order. (ii) Al-
though the individual algorithms are less efficient, the com-
bination of the two techniques enhances the algorithm PMBE
further. We extend PMBE to find large maximal bicliques in
large datasets, i.e., GitHub (|U | = 56519, |V | = 177386 and
|E| = 440237) and Youtube (|U | = 94238, |V | = 124325
and |E| = 293360). Figure 4 displays the results of the al-
gorithms which are all in our favor. The threshold for a bi-
clique is the number of minimum vertices in the two sets of
a maximal biclique. p and q are the thresholds for each of
the biclique vertex sets [Li et al., 2007]. An essential finding
from these experiments is the superiority of the PMBE across
the entire domain of the datasets.

5 Related Work
Even though an enormous amount of research has been un-
dertaken for the problem of enumerating maximal bicliques
in general graphs, there are only limited algorithms which
are directly applied to our problem of enumerating all max-
imal bicliques. Zhang [Zhang et al., 2014] proposed the al-
gorithm iMBEA, inspired by the traditional BK algorithm for
clique enumeration. It has demonstrated better efficiency and
scalability as compared to LCM-MBC in their paper. How-
ever, it still generates many duplicate bicliques, which reduce
its efficiency. Many algorithms like [Makino and Uno, 2004;
Zaki and Hsiao, 2002; Uno et al., 2004] proposed converting
the biclique problem to some other domain, such as clique
or frequent item set. The drawback of these conversion tech-
niques lies in their implementations, which require either pre
or post processing steps to obtain corresponding bicliques.
Hence, reductions to other domains present practical and scal-
ability problems [Zhang et al., 2014], and may not be fully
utilized. Recently, Apurba [Das, 2019], proposed ParMBE,
which is a parallelized biclique enumeration algorithm.

6 Conclusions
In this paper, the problem of enumerating all maximal bi-
cliques from a bipartite graph has been explored in detail.
We present the PMBE algorithm which incorporates the pivot
pruning using the CDAG structure and propose the rev-
topological ordering for heuristic pivot selection. The PMBE
proposed contains advanced pruning and ordering techniques,
which reduce the search space without introducing any lo-
cal extra cost. We conduct extensive experiments on real
datasets across various domains to demonstrate the superi-
ority of PMBE over the previous algorithms.
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