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Abstract

Conceptual spaces are geometric meaning repre-
sentations in which similar entities are represented
by similar vectors. They are widely used in cog-
nitive science, but there has been relatively little
work on learning such representations from data.
In particular, while standard representation learning
methods can be used to induce vector space embed-
dings from text corpora, these differ from concep-
tual spaces in two crucial ways. First, the dimen-
sions of a conceptual space correspond to salient
semantic features, known as quality dimensions,
whereas the dimensions of learned embeddings
typically lack any clear interpretation. This has
been partially addressed in previous work, which
has shown that it is possible to identify directions in
learned vector spaces which capture semantic fea-
tures. Second, conceptual spaces are normally or-
ganised into a set of domains, each of which is as-
sociated with a separate vector space. In contrast,
learned embeddings represent all entities in a single
vector space. Our hypothesis in this paper is that
such single-space representations are sub-optimal
for learning quality dimensions, due to the fact that
semantic features are often only relevant to a subset
of the entities. We show that this issue can be miti-
gated by identifying features in a hierarchical fash-
ion. Intuitively, the top-level features split the vec-
tor space into domains, allowing us to subsequently
identify domain-specific quality dimensions.

1 Introduction
Vector space representations of entities, i.e. entity embed-
dings, play a central role in information retrieval [Deerwester
et al., 1990], natural language processing [Mikolov et al.,
2013] and machine learning [Norouzi et al., 2014], among
others. Accordingly, a wide variety of approaches have al-
ready been proposed for learning such representations, most
of which essentially try to learn vectors that represent the sim-
ilarity structure of the given domain. The use of geometric
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representations is also common in cognitive science [Shep-
ard, 1957; Nosofsky, 1986; Gärdenfors, 2000], with the con-
ceptual spaces framework by Gärdenfors being a particularly
prominent example [Gärdenfors, 2000]. Compared to entity
embeddings, conceptual spaces have a much richer structure,
allowing them to act as an interface between symbolic and
sub-symbolic representations. Essentially, we can think of a
conceptual space as being defined by a set of domains, such
as e.g. colour, shape or emotion, where each of them is asso-
ciated with a set of primitive semantic features, called quality
dimensions. For instance, the colour domain can be described
using the features hue, saturation and intensity. The vector
representation of a given domain is then given by the Carte-
sian product of these quality dimensions. When representing
a particular entity in a conceptual space, we need to specify
which domains it belongs to, and for each of these domains
we need to provide a corresponding vector. We note that con-
ceptual spaces have been used for two different purposes in
the literature. On the one hand, they are commonly used in
perceptual domains, e.g. for music cognition [Forth et al.,
2010; Chella, 2015], where quality dimensions are carefully
chosen to maximize how well the resulting conceptual spaces
can predict human similarity judgements. On the other hand,
they have also been considered as a more general intermedi-
ate representation in between neural representations and sym-
bolic ones [Gärdenfors, 1997]. We consider this more general
view in this paper, where our aim is add structure to embed-
dings in the form of semantically meaningful dimensions.

In contrast to conceptual spaces, most methods for learn-
ing entity embeddings only aim to capture similarity, and the
dimensions of the resulting vector spaces do not typically
have any particular meaning. However, despite the similarity-
centric nature of most embedding methods, learned vector
spaces often exhibit remarkable linear regularities. For ex-
ample, a well-known property of word embeddings is that
many syntactic and semantic relationships can be captured in
terms of word vector differences [Mikolov et al., 2013]. We
are particularly interested in the fact that important semantic
features from a given domain can often be modelled as direc-
tions in the corresponding entity embedding. More precisely,
for a salient semantic feature f , there often exists a vector
df such that df · a < df · b tends to hold if b has that fea-
ture to a higher extent than a, where we write a and b for
the vector representations of a and b. Note that only the di-
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rection of df matters in this case, which is why we say that
the feature is modelled as a direction rather than as a vec-
tor. For example, studying the word vector representations of
countries and cities, [Gupta et al., 2015] found directions in
the word embedding that highly correlate with (the rankings
induced by) properties such as the GDP, life expectancy and
military expenditure of a country. In another study, [Kim and
de Marneffe, 2013] identified directions that signify adjec-
tive scales such as hot–warm–cool–cold in the word embed-
ding. In addition to these supervised approaches, [Derrac and
Schockaert, 2015] proposed an unsupervised method which
uses text descriptions of the considered entities to identify se-
mantic features that can be characterized as directions. Their
core assumption is that words describing semantically mean-
ingful features can be identified by learning for each candi-
date word w a linear classifier which separates the embed-
dings of entities that have w in their description from the oth-
ers. The performance of the classifier for w then tells us to
what extent w describes a semantically meaningful feature1.
This allows learning a linear transformation from the given
embedding space to a “disentangled” representation, where
entities are represented as vectors whose coordinates corre-
spond to coherent semantic features. The dimensions of this
disentangled representation can intuitively be interpreted as
the quality dimensions of a conceptual space.

However, many semantic features do not make sense for
all entities. For instance, in an embedding of movies, we may
consider a feature that captures how closely a movie adheres
to the book it is based on. While meaningful for book adap-
tations, this feature would be non-sensical for other movies.
As an important practical implication, if quality dimensions
are learned from the full set of entities, while only being sen-
sical for a subset of these entities, we may expect them to be
sub-optimal. This problem is illustrated in Fig. 1, which dis-
plays a projection of an embedding of organisations. In Fig.
1a, the green dots correspond to those organisations whose as-
sociated description contains words such as political, politic,
party, parties, politicians. Because organisations whose de-
scription contains such words are more or less linearly sepa-
rable from other organisations, the method from [Derrac and
Schockaert, 2015] discovered this cluster as a semantic fea-
ture. Now consider Fig. 1b, where the yellow dots correspond
to organisations whose descriptions contain words such as
democratic and left-wings. While this cluster describes a fea-
ture that is intuitively clear (i.e. organisations associated with
left-wing political ideas), this feature is only relevant for a
subset of organisations (i.e. political ones). A key, and per-
haps surprising, observation is that this is reflected in the vec-
tor space. In particular, as can be seen in the figure, this fea-
ture cannot be characterized well using a single hyperplane.

Decomposing the embedding into different domains could
solve this issue, but finding a suitable decomposition is a
highly non-trivial problem, especially in unsupervised set-

1It may seem counter-intuitive to use binary classifiers to learn
representations of ordinal features. However, the occurrence or non-
occurrence of a word in the description is binary, and this is the most
important available signal. We experimented with statistics such as
pointwise mutual information, which did not lead to better results.

(a)

(b)

Figure 1: Projection of a 100-dimensional embedding of
organisations (see Section 4), showing (a) how organisa-
tions that are described with words such as political, poli-
tics,party,parties,politicians (shown in in green) are separated from
others; and (b) how organisations that are described using words
such as democratic, left-wings (in yellow) are separated from others.

tings [Locatello et al., 2018; Alshaikh et al., 2019]. Instead
of trying to find a hard decomposition of the entity embed-
ding into separate domains, we propose a simple but effective
method which is based on applying the method from [Derrac
and Schockaert, 2015] in a hierarchical fashion. In the exam-
ple from Fig. 1, for instance, we can view the feature political
as defining a domain. To obtain a suitable characterization of
the feature democratic, it then suffices to apply the method
from [Derrac and Schockaert, 2015] to that domain instead
of to the full space. In this way, we obtain a set of primary
features, and for each of these primary features we obtain a
set of sub-features. As confirmed by the experimental results,
by learning the features in such a hierarchical way, we ob-
tain semantically more meaningful representations than when
directly applying the method from [Derrac and Schockaert,
2015]. This shows that the intuitive hierarchical relationship
that exists between features (e.g. the fact that democratic is a
sub-feature of political) is effectively reflected in the structure
of the entity embedding. While in general it is well-known
that learned embeddings exhibit linear regularities, to the best
of our knowledge, this is the first paper to show that these lin-
ear regularities have an inherent hierarchical structure.
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2 Related Work
An improvement to the method from [Derrac and Schockaert,
2015] was recently proposed in [Ager et al., 2018], where a
(non-linear) fine-tuning step was introduced. In [Alshaikh et
al., 2019] the problem of clustering the learned dimensions
into different facets was studied, finding that this only ap-
pears feasible with an external supervision signal, in that case
coming from pre-trained word embeddings. Some methods
for learning entity embeddings directly incorporate the idea
that semantic features should correspond to vector directions.
For instance, [Jameel et al., 2017] learn entity embeddings
from Wikipedia based on a method that associates an ordinal
linear regression model with each word from the vocabulary.

The idea of disentangled representation learning has been
widely studied within the context of images. For example, the
seminal the InfoGAN model [Chen et al., 2016] uses a variant
of generative adversarial networks [Goodfellow et al., 2014]
to learn interpretable embeddings of images. Their main idea
is to use mutual information to force the individual dimen-
sions of the learned latent representation to correspond to in-
formative properties. When it comes to representations that
are learned from text, however, disentangled representation
learning has received far less attention. One notable exception
is [Jain et al., 2018], where a supervised approach is proposed
for learning disentangled document embeddings. As training
data, they use triples of the form (s, d, o)a, meaning that rela-
tive to aspect a, d is more similar to s than to o. In the context
of sentiment analysis, some work has been done on learning
representations that disentangle different aspects mentioned
in reviews [Ruder et al., 2016]. In [Esmaeili et al., 2019],
a general unsupervised disentangled representation learning
method is proposed, which is also applied to text. However,
this method is only evaluated intrinsically based on statistical
measures of disentanglement which do not reveal how seman-
tically meaningful the learned features are. The aforemen-
tioned methods focus on representations which are relatively
low-dimensional (e.g. typically involving 100 to 300 dimen-
sions). Besides such methods, several approaches have been
proposed for learning disentangled text representations which
are much higher-dimensional. For example, [Gabrilovich and
Markovitch, 2007] learn document vectors with one coordi-
nate for each Wikipedia page, encoding how related the doc-
ument is to the corresponding Wikipedia entity. Similarly,
[Camacho-Collados et al., 2016] proposed entity representa-
tions in which dimensions correspond to BabelNet synsets.

3 Identifying Feature Directions
The problem we consider is to derive a feature-based (i.e. dis-
entangled) description of a given set of entities. In particular,
we want to represent each entity e as a vector (fe1 , ..., f

e
k) ∈

Rk such that each of its components corresponds to a semanti-
cally meaningful feature. This amounts to identifying vectors
d1, ...,dk, in the given embedding, which represent the most
salient semantic features. The learned vectors will be referred
to as feature directions to emphasize the fact that only the or-
dering induced by the dot product di · e matters. The feature-
based representation of e is simply given by (e·d1, ..., e·dk).

Learning primary features. We first recall the method
from [Derrac and Schockaert, 2015] and propose two mod-
ifications. This method trains for each word w in the vocab-
ulary a linear classifier which predicts from the embedding
of an entity whether w occurs in its description. The words
w1, ..., wn for which this classifier performs sufficiently well
are then used as basic features. To assess classifier perfor-
mance, Cohen’s Kappa score, which can be seen as a correc-
tion of classification accuracy to deal with class imbalance,
is used. Each of the basic features w is associated with a cor-
responding vector dw (i.e. the normal vector of the separat-
ing hyperplane learned by the classifier). These directions are
subsequently clustered, which serves to reduce the total num-
ber of features. This is useful to keep the representation low-
dimensional (e.g. to avoid overfitting when training a classi-
fier on the resulting feature-based representation). By asso-
ciating features with clusters of words, rather than individ-
ual words, features are more likely to correspond to salient
properties of the domain. We noticed that irrelevant words
tend to be clustered together, resulting in a small number of
non-informative clusters, with most of the other clusters cor-
responding to semantically meaningful features. While [Der-
rac and Schockaert, 2015] used a variant of k-means, we use
affinity propagation [Frey and Dueck, 2007], which gives bet-
ter results and does not require us to specify the number of
clusters, which is crucial in our hierarchical setting.

Once the clusters C1, ..., Ck are obtained, the final step is
to associate with each of them a corresponding feature direc-
tion. In [Derrac and Schockaert, 2015], the direction dC for a
cluster {u1, .., um} is defined as the average of du1 , ...,dum .
We instead learn a new linear classifier, which tries to sep-
arate entities whose description contains at least one of the
words u1, ..., um from the other entities. We then define dC

as the normal vector of the corresponding hyperplane. This
was found to perform better, and it gives us a natural criterion
to select entities that have a given feature to a sufficient extent,
i.e. those that are classified as positive by this new classifier.
For a cluster C, we write posC and negC for the set of posi-
tively and negatively classified entities. We will also refer to
the clusters C1, ..., Ck as the primary feature clusters, and to
the associated directions dC as the primary feature directions.

Learning sub-features. To find sub-features of a given pri-
mary feature f with associated cluster Cf and direction df ,
we essentially re-apply the same method used for learning
the primary features, but now only considering the set of en-
tities in posCf

. In fact, we look for words that linearly sepa-
rate those entities that are deemed to have the corresponding
primary feature2. Specifically, for each word w from Cf , we
train a linear classifier using only the entities in posCf

. As be-
fore, we use the Kappa score to select those words for which
the associated classifier performs sufficiently well. The direc-
tions modelling the selected words are then again clustered
using affinity propagation. We crucially rely on the fact that
this does not require us to specify the number of clusters, as

2We also experimented with a variant in which the entities were
weighted by the probabilities predicted by a logistic regression clas-
sifier. We then trained the sub-feature classifier using a weighted
logistic loss, but noticed no consistent improvements.
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it would not be feasible to tune the number of sub-clusters for
each primary feature. Note that we could recursively repeat
the whole process to further refine the sub-features. In this pa-
per, however, we only consider two-level hierarchies, as these
were found to be sufficient for the considered datasets.

Let D1, ..., Dkf
be the sub-feature clusters that were found

for the primary feature f , and let df
D1
, ...,df

Dkf
be the corre-

sponding sub-feature directions. To define the feature-based
representation of a given entity, we now associate one com-
ponent with each primary feature and one component with
each sub-feature. To compute the value corresponding to a
given sub-feature for an entity e, we simply take the dot prod-
uct e · df

Di
, i.e. the feature values are computed in exactly

the same way as for primary features. Note that while the
features are discovered in a hierarchical way, the resulting
feature-based representation is thus essentially flat. An alter-
native would be to combine e · df

Di
with e · df to define the

value of the sub-feature. In initial experiments, however, this
was found to perform poorly. One reason is that the classi-
fication of entities into posCf

and negCf
is not perfect. For

instance, an organisation could be a borderline instance of
the category of political organisations, but still be a represen-
tative example of a left-wing organisation (e.g. a newspaper
with a strong left-wing bias), even if in general we tend to
think of left-wing as a sub-feature of political. Another rea-
son is that by simply using the value e ·df

Di
, we minimize the

redundancy between the information captured by the primary
feature f and the information captured by this sub-feature.

Inspired by this latter view, we also consider a variant in
which we require each sub-feature direction df

Di
to be or-

thogonal to the corresponding primary feature direction df ,
as a way to directly impose the idea that primary features and
sub-features should provide complementary information. To
this end, we first obtain a sub-feature direction df

Di
as before,

and then compute the orthogonal decomposition of this vec-
tor w.r.t. the vector df . In particular, as the final sub-feature
direction, we then use the following vector:

d̃f
Di

= df
Di
−

(
df
Di
· df

df · df

)
df (1)

4 Evaluation
To evaluate whether the discovered features are semantically
meaningful, we test how similar they are to natural categories,
by training depth-1 decision trees (meaning that only a single
feature can be used for prediction) on our feature-based repre-
sentations. For instance, in the movie domain, we should ex-
pect to see common movie genres among the features. Depth-
1 decision trees should thus be able to predict these genres
well. Following [Ager et al., 2018], we also evaluate how well
natural categories can be characterized using a small set of
features, based on the performance of depth-3 decision trees.

Methods. We compare two versions of our method: the
standard version (Sub) and the version where the orthogo-
nal decomposition (1) is used (Ortho). We also consider three
baselines. First, we use a model that only uses primary fea-
tures (Primary). Second, we use a model in which feature

Dataset Entities Attributes

Movies 13978 Keywords (100 classes), Genre (23 classes),
Ratings (6 classes)

Place-types 1383 Foursquare (9 classes), Geonames (7 classes),
OpenCYC (20 classes)

Band 11448 Genres (22 classes), Country of origin (6 classes),
Loc. of formation (4 classes)

Organisation 11800 Country (4 classes), Headquarter Loc. (2 classes)
Building 3721 Country (2 classes), Administrative loc. (2 classes)

Table 1: Overview of considered datasets.

directions are randomly chosen (Random), by sampling each
coordinate from a standard normal distribution (which after
normalization is equivalent to sampling from a uniform dis-
tribution on the hypersphere). Note that while using random
directions may seem naive, related methods such as using
random projections for dimensionality reduction often per-
form surprisingly well [Bingham and Mannila, 2001]. As the
third baseline, we use average-link Agglomerative Hierarchi-
cal Clustering (AHC) to cluster word directions instead of
affinity propagation. To obtain a two-level clustering from
the dendrogram, we tune distance cut-offs d1 and d2 to deter-
mine the set of primary clusters and their corresponding sub-
clusters. Once the clusters are determined, we learn a corre-
sponding cluster direction in the same way as how the cluster
directions for primary features are learned with our method.
We also experimented with Hierarchical LDA, but found it
too slow to be used on our datasets.

Apart from how the feature directions are constructed, the
overall number of features also has a strong impact on the
result, where increasing the number of features increases the
chance that one of them reflects a natural category (even if
directions are chosen by chance), but at the risk of overfit-
ting. For the random baseline, we directly tune the number
of directions on a held-out development set, considering val-
ues from {100, 500, 1000, 1500, 2000, 2500}. We also veri-
fied that no further improvements were possible by choos-
ing more than 2500 or fewer than 100 directions. For the
methods which use affinity propagation, we can only in-
fluence the number of clusters indirectly, by changing the
so-called preference parameter of this clustering algorithm.
As is usual, this parameter is chosen relative to the me-
dian µ of the affinity scores. For the methods Sub and Or-
tho, we considered values from {0.7µ, 0.9µ, µ, 1.1µ, 1.3µ}.
For the Primary method, we considered a larger set of val-
ues to verify that no further improvements were possible:
{0.5µ, 0.7µ, 0.9µ, µ, 1.1µ, 1.3µ, 1.5µ}. In the case of AHC,
to make the results as comparable as possible to those of our
model, we tune the cut-offs d1 and d2 such that the number
of selected clusters is as close as possible to the optimal num-
bers obtained with affinity propagation. We also tried tuning
the cut-off values directly, but this did not give better results.

Datasets. Learning disentangled entity representations
only makes sense in domain-specific contexts: while it is nat-
ural to think about meaningful features for comparing differ-
ent movies (e.g. genres), there are few features that would be
meaningful in an open-domain setting. To test our method,
we focus on five different domains, where for each domain a
number of classification problems are considered. The first

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3576



Feat. Random AHC Primary Sub Ortho
Pl

ac
e

ty
pe

s Foursquare D1 0.39±0.01 0.36 0.36 0.43 0.45
D3 0.50±0.01 0.46 0.48 0.54 0.57

Geonames D1 0.23±0.02 0.22 0.24 0.20 0.28
D3 0.27±0.02 0.29 0.27 0.32 0.34

OpenCYC D1 0.28±0.01 0.29 0.29 0.31 0.30
D3 0.32±0.01 0.33 0.31 0.35 0.35

M
ov

ie
s

Keywords D1 0.24±0.001 0.26 0.26 0.25 0.26
D3 0.26±0.001 0.27 0.27 0.28 0.28

Genres D1 0.36±0.005 0.38 0.36 0.43 0.41
D3 0.40±0.02 0.43 0.42 0.44 0.45

Ratings D1 0.44±0.01 0.44 0.45 0.48 0.47
D3 0.46±0.01 0.46 0.47 0.50 0.49

B
an

ds

Genres D1 0.10±0.003 0.16 0.16 0.17 0.15
D3 0.11±0.004 0.14 0.15 0.16 0.15

Country
of origin

D1 0.29±0.02 0.33 0.34 0.40 0.38
D3 0.28±0.02 0.33 0.33 0.43 0.39

Loc. of
formation

D1 0.13±0.01 0.15 0.14 0.17 0.17
D3 0.14±0.01 0.16 0.14 0.16 0.19

O
rg

. Country D1 0.40±0.01 0.50 0.67 0.66 0.67
D3 0.44±0.01 0.57 0.65 0.71 0.69

Headquarter
loc.

D1 0.17±0.01 0.23 0.21 0.23 0.22
D3 0.18±0.01 0.26 0.23 0.27 0.25

B
ui

ld
in

gs Country D1 0.53±0.03 0.72 0.74 0.74 0.74
D3 0.60±0.02 0.75 0.80 0.81 0.80

Adm. loc.
D1 0.27±0.03 0.33 0.37 0.49 0.46
D3 0.29±0.03 0.30 0.31 0.45 0.37

Table 2: Performance in terms of F1 score for depth 1 (D1) and 3
(D3) decision trees, considering embeddings learned using MDS.

two domains are obtained from [Derrac and Schockaert,
2015]: a movies dataset, where the text descriptions corre-
spond to movie reviews, and a place types dataset, where the
text descriptions correspond to bags of Flickr tags. In addi-
tion, we considered the organisations and buildings datasets
that were introduced in [Alshaikh et al., 2019]. In both cases,
the text descriptions correspond to Wikipedia articles and the
entities were selected based on Wikidata semantic types. The
associated classification tasks similarly correspond to predict-
ing Wikidata attributes of the entities. We used the same pro-
cess to construct a fifth dataset, focusing on the domain of
music bands3. Table 1 provides statistics about the datasets.

Entity embeddings. For the movies and place type do-
mains, we used the embeddings that were shared by [Der-
rac and Schockaert, 2015]. These are 100-dimensional vec-
tor spaces obtained using multi-dimensional scaling (MDS),
which is a common approach for learning semantic spaces in
cognitive science. For the other domains, we generated 100-
dimensional embeddings using both MDS and Doc2Vec [Le
and Mikolov, 2014], the latter being a popular neural network
model for document embedding. In initial experiments, we
also considered document embeddings learned by the neural
variational document model [Miao et al., 2016]. However, we
found the resulting embeddings to be of much lower quality.

Methodology. The datasets are divided into 70% training
and 30% testing splits. To tune the parameters, we used 5-
fold cross-validation on the training split. Since the movies
dataset is substantially larger, in that case we instead used a
fixed 60% training, 20% testing and 20% tuning split. We re-
port the results in terms of F1 score. To obtain the feature
directions, we used logistic regression and only considered

3The datasets and source code are available online at https:
//github.com/rana-alshaikh/Hierarchical Linear Disentanglement.

Feat. Random AHC Primary Sub Ortho

B
an

ds

Genres D1 0.08±0.004 0.09 0.08 0.09 0.09
D3 0.9±0.00 0.10 0.09 0.09 0.09

Country
of origin

D1 0.23±0.01 0.22 0.23 0.24 0.24
D3 0.23±0.01 0.21 0.24 0.24 0.26

Loc. of
formation

D1 0.1±0.003 0.10 0.09 0.11 0.11
D3 0.11±0.002 0.12 0.10 0.11 0.10

O
rg

. Country D1 0.34±0.01 0.28 0.30 0.39 0.37
D3 0.38±0.02 0.28 0.31 0.42 0.42

Headquarter
loc.

D1 0.16±0.02 0.22 0.17 0.22 0.22
D3 0.18±0.02 0.19 0.19 0.23 0.21

B
ui

ld
in

gs Country D1 0.54 ±0.03 0.55 0.56 0.57 0.57
D3 0.55±0.01 0.58 0.51 0.64 0.60

Adm. loc.
D1 0.14±0.01 0.15 0.11 0.17 0.16
D3 0.15±0.02 0.13 0.12 0.16 0.16

Table 3: Performance in terms of F1 score for depth 1 (D1) and 3
(D3) decision trees, with embeddings learned using Doc2Vec.

words for which the corresponding Kappa score is at least 0.3.
To reduce the computation time, for datasets where this led to
more than 5000 features, only the 5000 top-scoring words are
retained. When learning directions for the sub-features, we
use a lower Kappa score of 0.1, as the corresponding classifi-
cation problems are often harder (given that sub-features are
often about subtle nuances of the primary feature) and the set
of candidate words is smaller.

Experimental results. The results are summarized in Ta-
bles 2 and 3. We can see that our Sub method clearly outper-
forms Primary. In fact, there are several cases where the per-
formance of Primary is comparable with that of Random, yet
where our Sub method performs substantially better (e.g. the
depth-1 results for the genres in the movies domain). While
the sub-features never perform clearly worse than the primary
features, there are some cases where both approaches perform
similarly (e.g. the genre attribute in the bands domain). This
can be expected when the considered attribute is sufficiently
dominant, in which case most or all of the attribute values
might correspond to primary features. Interestingly, however,
for the movies domain, many of the considered genres were
only modelled well as sub-features. The Ortho method gen-
erally performs well, but slightly worse than Sub. Interest-
ingly, however, for the place types, the Ortho method per-
forms best overall. This dataset is rather noisy, and taking the
orthogonal complement in this case seems to help with pre-
venting overfitting. AHC fails to consistently outperform the
other baselines, and is clearly worse than our method. This
shows that the improvements obtained by our model are not
due to the fact that we impose a hierarchical structure on the
features as such, but rather due to specific way in which we
learn the directions of the sub-features. Comparing the MDS
and Doc2Vec embeddings, we generally see the same trends,
although the results for Doc2Vec are consistently worse. To
better understand the impact of the number of features, Fig.
2 shows the performance of the different methods in func-
tion of the total number of features. As can be seen, while the
number of features clearly matters, the improvement that we
observed for the sub-features is remarkably robust.

Qualitative analysis. Table 4 shows some illustrative ex-
amples of features that were found for the movies domain.
As can be seen, sub-features can play a number of dif-
ferent roles. For the primary feature [delightful,cute], the
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Primary Sub-features

[delightful, cute]

[romantic, chemistry, romance], [fantasy, charisma],
[disneys],[childish, adventures, fare], [musicals, dance, sings],
[magical, magic, enchanting], [heartwarming, sentimental, warm]

[gore, gory] [bloody, zombie, massacre], [killings, serial, maniac],
[hardcore, carnage, gratuitous], [supernatural]

[sci, science]

[creatures, humans, eaten], [franchise, sequel, sequels],
[cgi, technology, computer, graphics],
[mythology, kingdom, ancient], [doctor, blast, mindless, brain],
[scifi, futuristic, outer, aliens], [animation, animators, pixar],

[athletes], [musicians, concert, concerts, albums], [biography],
[documentary, [individuals, perspective, focuses, individual], [educational],
interviews] [inspiring, awe, captured, appreciation], [artists, artist],

[facts, research, account, thousands], [recording, recordings]

Table 4: Examples of primary and sub features for movies domain.
Clusters of words that define a feature are grouped using [...].

Figure 2: Effect of using more features for the depth-3 decision trees
on the Foursquare classification task from the place type domain
(top) and the country of origin task from the bands domain (bottom).

sub-features correspond to different kinds of movies that
are often described as delightful or cute. These comprise a
rather diverse set of movies, encompassing romantic, musi-
cals and children’s movies, among others. Without consid-
ering sub-features, movies from these various genres would
have a very similar representation, which is clearly undesir-
able. By identifying sub-features, we are able to differenti-
ate between these genres. The primary feature [gore,gory],
on the other hand, corresponds to a more coherent movie
genre. The sub-features in this case essentially correspond
to sub-genres, such as zombie and serial killers movies.
For [sci,science] as primary feature, we see the sub-feature
[cgi,technology,computer,graphics] as an example of a qual-
ity dimension that mostly makes sense within the scope of sci-
fi movies. A similar example is [educational] which is found
as a sub-feature of [documentary,interviews]. The examples
in Tab. 4 also illustrate the hybrid nature of the found fea-

Figure 3: Example of depth-3 decision trees for the family and music
genres in the movies domain, using features from the Sub method.

tures, where some of them intuitively correspond to more or
less well-defined domains while others intuitively correspond
to quality dimensions. As far as the primary features are con-
cerned, we would expect to see mostly features of the for-
mer kind, but as the example [delightful,cute] illustrates, that
is not always the case. One immediate advantage of learn-
ing quality dimensions is that we can use them to learn in-
terpretable classifiers. This is illustrated in Fig. 3 that shows
depth-3 decision trees for the movie genres family and mu-
sic. For most features, we show a subset of the words from
the corresponding cluster. It is clear what kind of properties
about the considered genres the learned models have uncov-
ered. Such examples show that data-driven conceptual spaces,
while clearly being messier than the idealised representations
considered by [Gärdenfors, 2000], can indeed bridge between
vector space and symbolic representations in a useful way.
While these learned representations are not a substitute for
the carefully constructed spaces that are often used in per-
ceptual domains, it would be interesting to study in future
work to what extent they can be used, for instance, to imple-
ment methods for computational creativity based on concep-
tual spaces [Agres et al., 2015].

5 Conclusions
Learning feature-based entity representations is complicated
by the fact that many features only make sense for particular
subsets of entities. We showed that this issue can be miti-
gated by learning feature representations, characterized as di-
rections in the embedding, in a hierarchical way. Essentially,
some of the identified features serve to split up the given en-
tity embedding into different sub-domains, while other fea-
tures are more similar in spirit to quality dimensions. Com-
pared to strategies that aim to explicitly decompose the em-
bedding into separate domains, our method has the advantage
that no hard decisions have to be made about which directions
define sub-domains and which directions correspond to qual-
ity dimensions. equivalently be seen as semantic features).
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