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Abstract

Identifying causal relations of events is a crucial
language understanding task. Despite many efforts
for this task, existing methods lack the ability to
adopt background knowledge, and they typically
generalize poorly to new, previously unseen data.
In this paper, we present a new method for event
causality identification, aiming to address limita-
tions of previous methods. On the one hand, our
model can leverage external knowledge for rea-
soning, which can greatly enrich the representa-
tion of events; On the other hand, our model can
mine event-agnostic, context-specific patterns, via
a mechanism called event mention masking gen-
eralization, which can greatly enhance the ability
of our model to handle new, previously unseen
cases. In experiments, we evaluate our model on
three benchmark datasets and show our model out-
performs previous methods by a significant mar-
gin. Moreover, we perform 1) cross-topic adapta-
tion, 2) exploiting unseen predicates, and 3) cross-
task adaptation to evaluate the generalization abil-
ity of our model. Experimental results show that
our model demonstrates a definite advantage over
previous methods.

1 Introduction
Event causality identification (ECI) aims to identify causal
relation of events in texts. For example, in a sentence S1
(shown in Figure 1): “The earthquake generates a tsunami
that rose up to 135 feet”, an ECI system should identify that a
causal relationship holds between the two mentioned events,
i.e., earthquake cause−−−→ tsunami. ECI supports a wide range
of intelligent applications including why-question answering
[Girju, 2003; Oh et al., 2016], future event/scenario forecast-
ing [Hashimoto et al., 2014], machine reading comprehen-
sion [Berant et al., 2014], and others.

To date, various approaches have been proposed for ECI,
ranging from the early feature based methods [Do et al.,
2011; Hashimoto et al., 2014; Ning et al., 2018; Gao et al.,
2019] to the recent representation based methods [Kadowaki
et al., 2019]. While, existing methods typically train ECI

Figure 1: Illustrations of a) exploiting commonsense knowledge and
b) mention masking generalization for ECI.

models on human annotated examples solely, and they gen-
erally lack the ability to leverage background knowledge for
reasoning. Moreover, owing to the small size of training data
(for example, the largest ECI corpus contains less than 300
documents [Caselli and Vossen, 2017]), existing ECI methods
suffer from over-fitting issue and have difficulty in handling
new, previously unseen cases.

To address the limitations of previous methods, we propose
a new approach for ECI, featured by its ability to: 1) explicitly
leverage external (commonsense) knowledge for reasoning,
which can build more expressive representations for events;
and 2) mine event-agnostic, context-specific patterns for rea-
soning, which results in a decent generalization ability of our
model to tackle new, previously unseen examples.

Specifically, one key component of our model is a
knowledge-aware causal reasoner, which can exploit back-
ground knowledge in external knowledge bases (KBs) to
enhance the reasoning process. We prefer CONCEPTNET
[Speer et al., 2017] as the external KB, which contains
abundant semantic knowledge of concepts (represented as
words or phrases). For example, in CONCEPTNET, the
encoded knowledge associated with “earthquake” includes
“earthquake” IsA−−→ “natural disaster”, “earthquake” Causes−−−→ “a
tsunami” and others (as shown in Figure 1 a)). Such knowl-
edge can be used to enrich the representations of events for
a more accurate event causality inference. For example, the
knowledge-aware causal reasoner may directly predict earth-
quake cause−−−→ tsunami in S1 based on the semantic knowledge
“earthquake” Causes−−−→ “a tsunami” encoded in CONCEPTNET.
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This indicates that explicitly introducing external knowledge
may benefit the ECI task.

Nevertheless, a potential issue of the above method is that
a KB is never complete [Min et al., 2013]; Especially, a KB
may lack definitions of newly emerging events. To mitigate
this problem, we propose a complementary mention mask-
ing reasoner, aiming to exploit the event-agnostic clues for
reasoning. We motivate our approach by noting that causal
statements usually contain event-independent patterns, which
are helpful for identifying causality of unseen events. For ex-
ample, we can distill a causality pattern: “The [SLOT] gen-
erates [SLOT] ... ” from S1, which can be used to identify
traffic congestion cause−−−→ environmental pollution in a new
sentence “The traffic congestion generates environmental
pollution and economic loss”. To learn such context-specific
patterns, we propose a learning mechanism called event men-
tion masking generalization, which explicitly excludes event
information for learning. Methodologically, it replaces event
mentions with a placeholder symbol [MASK], and force our
model to make predictions based on such mask-containing
texts (as shown in Figure 1 b)). This can be seen as adding
a hard attention on context information, and thus enhance the
ability of our model in handling unseen cases.

Lastly, we build an attentive sentinel to allow a trade-off
between the aforementioned two components. This trade-off
is crucial because in some cases text context should override
the background knowledge for the task, and in other cases the
opposite is true (For example, despite the sentence “Both of
earthquake and tsunami are natural disasters” contains an
event pair of earthquake and tsunami, it does not express a
causal relation according the context).

In experiments, we evaluate our model on three benchmark
datasets. We first concern the standard evaluation and show
that our model attains state-of-the-art performance. We then
estimate the generalization ability of our model by perform-
ing i) cross-topic adaptation, ii) exploring unseen predicates,
and iii) cross-task adaptation. Our model demonstrates defi-
nite advantages over previous methods.

To summarize, we make the following contributions:
• We propose a new approach for ECI, which can leverage

external knowledge to enrich representations of events
for accurate reasoning. To our best knowledge, this is
the first work explicitly introducing external knowledge
for this task.
• Moreover, we propose a mention masking generaliza-

tion mechanism to learn event-agnostic, context-specific
patterns. This grants our model a decent generalization
ability to handle new, previously unseen data.
• We conduct extensive experiments and show that our

model sets up a new state-of-the-art for ECI. Moreover,
our approach shows definite advantages over previous
ECI methods regarding generalization evaluation.

2 Related Work
2.1 Event Causality Identification
The task of ECI aims to identify causal relations of events in
texts, which has attracted a lot of interests among researchers.

Earlier methods for ECI are predominantly feature-based,
which adopt lexical and syntactic features [Hashimoto et al.,
2014; Gao et al., 2019], causality cues (such as “because”,
”for”) [Riaz and Girju, 2014], event co-occurance patterns
[Beamer and Girju, 2009; Hu et al., 2017], temporal pat-
terns [Mirza, 2014a; Ning et al., 2018], and others for the
task. The very recent work [Kadowaki et al., 2019] employs
BERT architecture [Devlin et al., 2019], which can learn
context-dependent representations for the task and achieves
superior performance. Regarding datasets construction, Do
et al. [2011] annotated a corpus consisting of 25 documents
for evaluation; Mirza [2014a] annotated event causal rela-
tions in the TempEval-3 corpus and release a corpus called
CausalTimeBank; Caselli and Vossen [2017] had built a cor-
pus called EventStoryLine, which contains 258 documents in
total. Hashimoto [2019] exploited weakly supervised method
to construct ECI datasets. However, as introduced in In-
troduction, previous methods typically train a model on the
annotated examples only and disregard a lot of background
knowledge. Moreover, they generally have difficulty in han-
dling new, previously unseen data, owing the limited size of
training data.

2.2 Knowledge Enhanced Text Understanding
The importance of background knowledge in text understand-
ing has long been recognized [Minsky, 1974]. With the
development of knowledge bases (KBs) — ranging from
manually annotated networks like WordNet [Miller, 1995]
to semi-automatically/automatically constructed knowledge
graphs like DBPedia [Lehmann et al., 2014] and Concept-
Net [Speer et al., 2017] — large amounts of knowledge be-
come available. Many studies have investigated to leverage
such knowledge to boost text understanding tasks. To name
a few, Rahman and Ng [2011] studies knowledge-enhanced
entity co-reference; Yang and Mitchell [2017] took advan-
tage of external KBs to improve recurrent neural networks
for entity recognition and event detection; Zhou et al. [2018]
studied incorporating commonsense knowledge for conver-
sation generation. But to the best of our knowledge, no work
has studied introducing external knowledge for ECI.

3 Approach
Figure 2 schematically visualizes our approach. Specifically,
we formulate ECI as a binary classification problem, fol-
lowing previous works [Mirza, 2014a; Ning et al., 2018;
Gao et al., 2019] — for every pair of events in a sentence, we
predict whether a causal relation holds. Our approach con-
tains three major components:
• Knowledge-aware reasoner, which retrieves background

knowledge from CONCEPTNET, and then integrate the
knowledge with texts for reasoning (§ 3.1).
• Event masking reasoner, which masks event mentions

in texts, aiming to learn event-agnostic, context-specific
patterns for reasoning (§ 3.2).
• The attentive sentinel, which adopts an attention mecha-

nism to balance the above two components for the final
prediction (§ 3.3).

We illustrate each component in details in the followings.
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Figure 2: The overview of our approach, which consists of three major components: 1) M KG, the knowledge aware reasoner; 2) M MMR,
the mention masking reasoner; and 3) the attentive sentinel trading off between the two modules.

3.1 Knowledge-Aware Reasoner
Given a pair of events (denoted as e1 and e2), the knowledge
aware reasoner first retrieves the related knowledge in CON-
CEPTNET, and then encodes the knowledge into contexts for
reasoning.
Knowledge Retrieving. CONCEPTNET structures knowl-
edge as graph, where each node corresponds a concept, and
each edge corresponds to a semantic relation. For e1 and e2,
we search their definitions in CONCEPTNET but we only con-
sider 18 semantic relations that are potentially useful for ECI:
CapableOf, IsA, HasProperty, Causes, MannerOf, Causes-
Desire, UsedFor, HasSubevent, HasPrerequisite, NotDesires,
PartOf, HasA, Entails, ReceivesAction, UsedFor, CreatedBy,
MadeOf, and Desires. Part of the knowledge related to earth-
quake and tsunami in S1 is shown in Figure 2.
Knowledge Encoding. To encode the knowledge and en-
rich representations of e1 and e2, we first conduct knowledge
linearization, to transfer the discrete knowledge into a struc-
tured sequence, motivated by [Fan et al., 2019]. As shown
in Figure 2, for each semantic relation, one special marker
(such as 〈IsA〉) is designed and following the marker is the
related knowledge separated by a delimiter 〈s〉. Then, we
adopt a BERT based encoder to encode the knowledge with
the context texts jointly. Specifically, we first incorporate the
linearized knowledge into the sentence; then we add addi-
tional event markers 〈E1〉, 〈/E1〉 and 〈E2〉 〈/E2〉 to indicate
boundaries of events (Two special tokens [CLS] and [SEP]
are added at the beginning/ending of the sentence following
BERT). Finally, after using BERT encoder to compute rep-
resentations of the entire sequence, we concatenate represen-
tations of [CLS], 〈E1〉, and 〈E2〉 as the final representation
regarding to (e1, e2), namely

F
(e1,e2)
KG = h[CLS] ⊕ h〈E1〉 ⊕ h〈E2〉 (1)

where ⊕ indicates the concatenation operator; h[CLS], h〈E1〉,
and h〈E2〉 are representations of [CLS], 〈E1〉, and 〈E2〉 re-
spectively. F

(e1,e2)
KG is the knowledge-aware representation

that would be used for further computation.

3.2 Mention Masking Reasoner
The mention masking reasoner aims to explore event-
agnostic, context-specific patterns for reasoning. Specifically,
e1 and e2 are firstly replaced with a special token ‘[MASK]’
to exclude event information. Then, another BERT encoder is
adopted to encode the mask-containing sentence ([CLS] and
[SEP] are also added). Similar as in the knowledge aware
reasoner, we regard F (e1,e2)

MASK as the masked representation of
(e1, e2):

F
(e1,e2)
MASK = h[cls] ⊕ he1[MASK] ⊕ h

e2
[MASK] (2)

where he1[MASK] and he2[MASK] are BERT representations of
e1 and e2, which have been replaced by [MASK]. We train
the mention masking reasoner with two different objectives:
Discrimination Learning. Our model is forced to predict
whether e1 and e2 forms a causal relation based on the
masked representation F (e1,e2)

MASK . As F (e1,e2)
MASK does not con-

tain any event-specific information, our model has to explore
context-specific clues for reasoning, which would gain the
ability to tackle unseen events.
Distributional Similarity Learning. In distributional sim-
ilarity learning, we assume causal statements may share sim-
ilar representations in some ways, by taking in pair of mask-
containing statements as inputs and encouraging their repre-
sentations to be similar if both of them express causal rela-
tions. Assume A and B are two pairs of events; FA

MASK and
FB
MASK are their masked representation. We optimize the

following loss to achieve distributional similarity:

L =− δA,B ∗ log(p(l = 1|A,B)) (3)
+ (1− δA,B) ∗ log(1− p(l = 1|A,B))

where δA,B is the Kronecker function that take the values
of 1 when both of A and B express a causal relation and
0 otherwise. p(l = 1|A,B) = 1

1+exp(FA
MASK

TFB
MASK)

de-
fines the distributional similarity score. In practice, we alter-
nately adopt discrimination learning and distributional simi-
larity learning to train the mention masking reasoner.
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3.3 The Attentive Sentinel
The attentive sentinel aims to learn a trade-off between the
knowledge aware reasoner and the mention masking reasoner,
by learning an attentive gate as their combination weights,
namely:

ge1,e2 = σ(W (F
(e1,e2)
KG ⊕ F (e1,e2)

MASK) + b) (4)

where W and b are model parameters; ⊕ denotes the con-
catenation operator. Then it adopts an weighted summation
to integrate F (e1,e2)

KG and F (e1,e2)
MASK as the final feature for (e1,

e2), namely:

Fe1,e2 = ge1,e2 ∗ F
(e1,e2)
KG + (1− ge1,e2) ∗ F (e1,e2)

MASK (5)

The attentive sentinel allows to balance the knowledge aware
reasoner and the mention masking reasoner to make the final
prediction.

3.4 Model Prediction and Training
To make the final prediction, we perform a binary classifica-
tion by taking Fe1,e2 as input:

oe1,e2 = σ(WoFe1,e2 + bo) (6)

where oe1,e2 denotes the probability of e1 cause−−−→ e2; Wo

and bo are model parameters. For training, we adopt cross-
entropy as the loss function:

J(Θ) = −
∑
s

∑
ei,ej∈Es

ei 6=ej

yei,ej log(oei,ej )+ (7)

(1− yei,ej ) log(1− oei,ej ) (8)

where Θ denotes the parameter set of our model; s ranges
over each sentence in the training set; ei, and ej ranges over
each events in s. We adopt the Adam [Kingma and Ba, 2015]
algorithm to optimize model parameters.

4 Experiments
4.1 Experimental Setups
Datasets and Evaluations. Our experiments are conducted
on three benchmark datasets, including: a) EventStroryLine
[Caselli and Vossen, 2017], which contains 258 documents
in 22 topics, 5,334 events in total, and 1,770 of 7,805 event
pairs are causally related; b) Causal-TimeBank [Mirza et al.,
2014], which contains 184 documents, 6,813 events, and 318
of 7,608 event pairs are causally related. c) EventCausality
[Do et al., 2011; Ning et al., 2018], which contains 25 docu-
ments, 1,134 events, and 414 of 887 event pairs are causally
related. For evaluation, we adopt Precision (P), Recall (R)
and F1-score (F1) as evaluation metrics, same as previous
methods to ensure comparability. Significant test is con-
ducted using paired t-test at a significance level of 0.05.
Implementations. In our implementations1, both the
knowledge aware reasoner and the mention masking reasoner
are implemented as BERT-Large architecture, which has 24-
layer, 1024-hidden, and 16-heads. We use CONCEPTNET 5.0

1https://github.com/jianliu-ml/EventCausalityIdentification

as the KB. Regarding hyper-parameters, the batch size is set
as 10, and the learning rate is initialized as 5 × 10−5 with a
linear decay. We also adopt a negative sampling rate of 0.5
for training, owing to the sparseness of positive examples.

Baseline Systems. We prefer different baseline systems to
compare for different datasets. For EventStoryLine, we pre-
fer OP [Caselli and Vossen, 2017], a dummy model assigns
causal relation to every event pair; 2) LSTM [Cheng and
Miyao, 2017], a dependency path based sequential model that
models the context between events to identify causality; 3)
Seq [Choubey and Huang, 2017], a sequence model explore
complex human designed features for the task. 4) LR+, and 5)
LIP [Gao et al., 2019], state-of-the art ECI system that adopts
document structure for the task. For Causal-TimeBank, we
prefer 1) RB, a rule-based system; 2) ML, a machine learn-
ing based model, and 3) HB, a hybrid method combine rules
with features for comparison. These models are designed by
[Mirza, 2014a; Mirza and Tonelli, 2016] for ECI. For Event-
Causality, we prefer PMI, ECD, and CEA [Do et al., 2011],
which adopt different co-occurrence patterns for the task as
baselines systems. For each dataset, we add a BERT based
model as baseline.

In our approach, we use MKG to denote the knowledge-
aware reasoner, which adopts F (e1,e2)

KG for prediction; we de-
note MMMR as the mention masking reasoner, which adopts
F

(e1,e2)
MASK for prediction. MFULL indicates our full model.

4.2 Experimental Results
Experimental results on the three benchmark datasets follow.

EventStoryLine. Table 1 shows the results on EventStory-
Line, where we use the last two topics as development set,
and conduct a 5-fold cross-validation on the rest 20 topics,
as suggested by [Gao et al., 2019]. From the results, our full
model MFULL outperforms all baseline methods and achieves
the best performance (50.1% on F1 score), outperforming the
state-of-the-art model LIP by a margin of 5.5%, which justi-
fies its effectiveness. Comparing with MKG with BERT, we
note adding external knowledge improves the performance by
3.6% in F1 score. Moreover, the mention masking reasoner
(MMMR) is more effective than the knowledge aware reasoner
(MKG) (43.9% v.s. 41.8%). This may imply that, for small
dataset, generalization knowledge is more important than dis-
crimination knowledge.

Causal-TimeBank. Table 2 shows results on Causal-
TimeBank, where we adopt two settings: 1) 10-fold cross-
validation (CV) as in [Mirza, 2014a], and 2) evaluating on an
additional TemporalEval-3 datasets as in [Mirza and Tonelli,
2016]. Our models show a consistence performance as in
EventStoryLine, which achieves the best performance (44.1%
for CV, and 66.7% for TE). Moreover, MFULL and MMASK

demonstrate high recall value, which is benefited from their
generalization ability.

EventCausality. Table 3 shows results on EventCausality.
Note this is an extremely tiny datasets, and [Do et al., 2011]
adopts a weakly-supervised methods to retrieve additional ex-
amples for training. Nevertheless, in our approach, we use
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METHODS PRE. REC. F1

OP [Caselli and Vossen, 2017] 22.5 98.6 36.6
LSTM [Cheng and Miyao, 2017] 34.0 41.5 37.4
Seq [Choubey and Huang, 2017] 32.7 44.9 37.8
LR+ [Gao et al., 2019] 37.0 45.2 40.7
LIP [Gao et al., 2019] 38.8 52.4 44.6
BERT 37.9 38.5 38.2

MKG (Ours) 44.5 39.3 41.8
MMMR (Ours) 37.6 52.6 43.9
MFULL (Ours) 41.9 62.5 50.1*

Table 1: Results on EventStoryLine. Pre., Rec. and F1 indicate pre-
cision (%), recall (%) and F1-score (%) respectively; Bold denotes
best results; * denotes a significant test at the level of 0.05.

METHOD PRE. REC. F1

CV

Rule-based [Mirza, 2014b] 36.8 12.3 18.4
Data-driven [Mirza, 2014a] 67.3 22.6 33.9
BERT 30.3 41.1 34.9

MKG (Ours) 38.7 44.4 41.3
MMMR (Ours) 31.1 51.9 38.8
MFULL (Ours) 36.6 55.6 44.1*

TE

RB [Mirza and Tonelli, 2016] 91.7 42.3 57.9
ML [Mirza and Tonelli, 2016] 42.9 11.5 18.2
HB [Mirza and Tonelli, 2016] 73.7 53.8 62.2
BERT 56.6 42.3 48.4

MKG (Ours) 50.0 57.7 53.5
MMMR (Ours) 52.8 73.1 61.2
MFULL (Ours) 61.3 73.1 66.7*

Table 2: Results on Causal-TimeBank. CV denotes 10-fold cross-
validation. TE denotes evaluating on a manually Temporal Eval-3
datasets. Pre., Rec. and F1 indicate precision (%), recall (%) and
F1-score (%) respectively. Bold denotes best results; * denotes a
significant test at the level of 0.05.

only 10 documents ([Do et al., 2011] use them as seed doc-
uments) for training. From the results, the superior perfor-
mance of MFULL (45.4% on F1) demonstrates the applicabil-
ity of our approach for small datasets.

5 Model Generalization Evaluation
Generalization refers to a model’s ability to adapt to new, pre-
viously unseen data. We conduct 1) cross-topic adaptation,
2) unseen predicates, and 3) cross-task adaptation to estimate
the generalization ability of our model.

5.1 Cross-Topic Adaptation
Different topics usually involve different events. In our cross-
topic adaptation, we train our model on a source topic, but test
our model on other topics. We use EventStoryLine to con-
duct our experiments. Specifically, we first randomly select a
topic as the source topic (for model training and tuning), and
then we rank the remaining topics based on their similarities
with the source topic (The similarity of two topics t1 and t2
is defined as Et1∩Et2

Et1∪Et2
, where Et denotes the event set of t).

Finally, we test how our model performs on topics with the
lowest, medium, and highest similarity value with the source

METHODS PRE. REC. F1

PMI [Do et al., 2011] 26.6 20.8 23.3
ECD PMI [Do et al., 2011] 40.9 23.5 29.9
CEA [Do et al., 2011] 62.2 28.0 38.6
BERT 16.8 30.7 21.7

MBERT (Ours) 17.2 68.2 27.5
MMMR (Ours) 20.7 77.3 32.6
MFULL (Ours) 34.1 68.2 45.4*

Table 3: Results on EventCausality datasets. Pre., Rec. and F1 in-
dicate precision (%), recall (%) and F1-score (%) respectively. Bold
denotes best results; * denotes a significant test at the level of 0.05.

SET. ST→ TT (δ) LIP MKG MMMR MF

T8→ T35 (0.0%) 2.8 17.6 29.7 44.7
Low T13→ T12 (0.0%) - 6.0 20.4 25.1

T18→ T30 (0.0%) - - 10.3 19.5

T8→ T3 (1.7%) 6.7 22.1 24.9 30.9
Med. T13→ T41 (0.1%) 4.5 12.1 20.7 28.6

T18→ T35 (2.8%) 17.1 40.4 38.4 44.5

T8→ T19 (12.4%) 19.4 42.7 42.8 45.1
High T13→ T14 (17.1%) 27.4 44.4 42.7 46.0

T18→ T33 (27.2%) 32.2 45.3 44.1 49.0

Table 4: Results (F1 score (%)) of cross-topic adaptation. ST→ TT
(δ) denotes that the source topic is ST, and the target topic is TT, and
their similarity is δ. MF denotes our full model.

topic. We re-implement previous state-of-the-art system LIP
to compare with our models.

From the results in Table 4, the performance of LIP is
highly depended on the similarity of source and target top-
ics. It achieves relative good performance when the target and
source topics are of high-similarity, but behaves extremely
poorly when the target and source topics are of low-similarity.
While our approach, especially MMMR and MFULL, are ro-
bust in cross-topic adaptation, which achieve superior perfor-
mance even in low-similarity cases.

5.2 Unseen Predicates
To further test the generalization ability of our model, we
conduct experiments to explore unseen predicates. For the
EventStoryLine corpus, we first randomly select 1/3 of doc-
uments as the training set. Then, we divide the remaining
corpus as 1) ’Both Seen’ set, where both of events exist in
the training data (with a size of 3,464); 2) ’One Unseen’ set,
where only one of the events exists in the training data (with
a size of 4,381); 3) ’Both Unseen’ set, where both events are
unobserved during training (with a size of 1,891). From the
results in Figure 3, 1) LIP behaves relatively good on ’Both
Seen’, but poorly on ’One Unseen’ and ’Both Unseen’ (only
11.3% in F1). 2) Our full model achieves the best perfor-
mance on all of the three sets. 3) MMMR achieves better per-
formance than MKG on ’One Unseen’ and ’Both Unseen’.

5.3 Cross-Task Adaptation
Finally, we investigate cross-task adaptation, where we train
our model on ECI datasets but test the performance of our
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Figure 3: Results (F1 score (%)) of unseen predicates. ’Both Seen’
indicates that both of events exist in the training data; ‘One Unseen’
indicates that only one of the events exists in the training data; ‘Both
Unseen’ indicates that both events are unobserved during training.

DATASETS METHODS PRE. REC. F1

SemEval

LIP [Gao et al., 2019] 24.6 21.1 22.8
MKG (Ours) 63.5 55.2 59.1
MMMR (Ours) 37.7 89.3 52.9
MFULL (Ours) 59.4 75.0 66.0

FrameNet

LIP [Gao et al., 2019] 10.5 11.8 11.1
MKG (Ours) 64.6 13.5 22.0
MMMR (Ours) 85.9 57.0 68.5
MFULL (Ours) 84.4 60.3 70.3

Table 5: Results of cross-task adaptation. The model is trained/tuned
on EventStoryLine. Pre., Rec. and F1 indicate precision (%), recall
(%) and F1-score (%) respectively.

model in generalizing to other tasks. Specifically, we train our
model on EventStoryLine, but we test our model on identify-
ing causal relations in SemEval-8 (which focuses on causal
relations between entities) and FrameNet (which focuses on
causal relations between frame elements). From the results
in Table 5, LIP performs relatively poor in cross-task adap-
tation. The reason might be that features adopted by LIP are
not applied to entities and frame elements. MKG behaves bet-
ter than MMMR in SemEval, but much worse than MMMR in
FrameNet. The reason is that, SemEval focus on relations be-
tween entities, which are more likely to have definitions on a
KG. But FrameNet focuses on frame elements, which can be
any span of the sentence, and do likely to have definitions on
a KG. Our full model achieves the best performance among
all models regarding cross-task adaptation.

6 Further Discussion
Inductive Bias. To further explore the effectiveness of our
model, we investigate the prediction bias of MKG and MMMR

by inspecting their outputs. Accordingly, there are 685
cause relations only predicted by MKG, 655 relations only by
MMMR and 382 relations by both of them in the experiments
shown in Table 1 (for a specific fold). The values change to
102, 132 and 58 in the experiment of cross-topic adaptation
(T18→T33). The relatively less of their common predictions
indicate that MKG and MMMR focus on different aspects of
features to identify the cause relations and they share com-
plementary effects. This provides explanation for the good
performance of our full model.

EXAMPLES MKG MMMR MF

a) ... has confessed to killing a
pregnant mom, who died on ...

X × X

b) his half-brother, ..., is also on
trial for murder.

X X X

c) A gang member was con-
victed Tuesday for claiming the
life of a mother of ...

× X X

d) Horton was struck by a stray
bullet as lopez targeted gang
members ...

× X X

e) ... Carrasquillo allegedly or-
dered Lopez to shoot ...

× × X

Table 6: Results of case study where bold denotes the two event pair.
Xand × denote a correct and incorrect prediction respectively.

Case Study. We conduct case study to further investigate
the effectiveness of our model. To simplify the discussion,
we limit the experiments to a specific cross-topic adaptation,
i.e., T18→T33 adaptation. Table 6 shows several cases show-
ing the outputs of MKG and MMMR. Basically, MKG is good
at finding commonsense causality that is usually context-
independent, such as killing cause−−−→ die in a), and murder
cause−−−→ on trial in b), but cannot handle context depended cases

as in c), d), and e). While MMMR is completely opposite. The
full model can take advantage of MKG and MMMR to make a
more accurate prediction.

7 Conclusion and Future Work
In this paper, we propose a new approach for event causality
identification. Our approach on the one hand can leverage
background knowledge to enhance the reasoning, on the other
hand cam mine event-agnostic context-specific patterns for
reasoning, which greatly enhances its generalization ability.
The effectiveness of our model is verified on three datasets
with diverse settings. In the future, we would like to apply
our model to other NLP tasks such as relation classification,
event temporal relation extraction and others.
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