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Abstract
Generating emotional responses is crucial for
building human-like dialogue systems. However,
existing studies have focused only on generat-
ing responses by controlling the agents’ emotions,
while the feelings of the users, which are the ulti-
mate concern of a dialogue system, have been ne-
glected. In this paper, we propose a novel varia-
tional model named EmoElicitor to generate appro-
priate responses that can elicit user’s specific emo-
tion. We incorporate the next-round utterance after
the response into the posterior network to enrich
the context, and we decompose single latent vari-
able into several sequential ones to guide response
generation with the help of a pre-trained language
model. Extensive experiments conducted on real-
world dataset show that EmoElicitor not only per-
forms better than the baselines in term of diversity
and semantic similarity, but also can elicit emotion
with higher accuracy.

1 Introduction
Emotional interaction is a key factor in interpersonal commu-
nication and has become a crucial concern in building human-
like dialogue agents [Picard, 1997]. Ample evidence [Par-
tala and Surakka, 2004; Prendinger and Ishizuka, 2005] has
shown that agents capable of expressing emotions can signif-
icantly improve user satisfaction during human-computer in-
teractions. Emotional response generation (ERG) is an emo-
tional interaction task for generating appropriate conversa-
tional responses conditioned on a given emotion. Early stud-
ies [Skowron, 2009] manually designed rules to select the de-
sired emotional responses from a corpus. More recently, great
achievements have been witnessed along this line of research
due to the availability of large-scale dialogue data [Zhou and
Wang, 2018; Rashkin et al., 2019] and the development of
Seq2Seq models [Sutskever et al., 2014; Zhou et al., 2018;
Song et al., 2019; Zhong et al., 2019].

Although the previous methods have achieved promising
results, these models have attempted only to control the emo-
tion of the agent’s response. Meanwhile, the feelings of the
user during the interaction, which are actually the ultimate
concern when designing a dialogue agent, are neglected. In

My cat passed away last night. She’s 

lovely and has been with me for 12 years!

I love cats,  and they are so cute!
Emotion 

label:

Happiness

User Agent A

My cat passed away last night. She’s 

lovely and has been with me for 12 years!

Sorry to hear that. I'm always here for you.User Agent B

Thank you for your comfort. I feel 

much better now.  

Emotion 

reaction label: 

Happiness

Figure 1: An example of a response (from B) that successfully elicits
the emotion Happiness from the user, compared with a generated
response (from A) that merely exhibits the specified emotion.

Figure 1, suppose that we wish to design an agent that can re-
assure users and that the emotion label Happiness is provided
to two agents. The traditional ERG method (Agent A) can
generate the topic-relevant (cat) response with the right emo-
tion. However, Agent A fails to comfort the user because it
does not take the user’s emotional reaction into account. By
contrast, Agent B can elicit the emotion of Happiness from
the user because it considers the perspective of the user and
generates a more appropriate response based not only on the
backward context but also on the user’s likely next utterance,
with the corresponding emotion.

In this paper, we focus on the task of open domain re-
sponse generation for emotion elicitation (RGEE), in which,
given the backward context and a desired emotional reaction
(considering the next-round utterance and its emotional reac-
tion label), the objective is to elicit a topic-coherent response
that can elicit the specific desired emotion. The RGEE task
is fundamentally different from the ERG task. (i) Different
goals: The goal of ERG is to generate a response that ex-
hibits a specific emotion, whereas RGEE focuses on eliciting
a specific emotion to enhance the interactiveness of chatting.
Thus, RGEE requires responding from a user-oriented per-
spective and is more proactive than traditional ERG. (ii) Dif-
ferent inputs: The emotion labels are conceptually different
for the two tasks. Furthermore, during the training phase,
RGEE considers not only the backward context but also the
next-round utterance of the user, which has rarely been con-
sidered in previous dialogue generation models.

RGEE facilitates the construction of a more believable and
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human-like chat agent that can conduct empathetic interac-
tions [Rashkin et al., 2019] or meet a user’s emotional needs
[Picard and Klein, 2001]. However, RGEE is a highly chal-
lenging task since the generated response is not directly asso-
ciated with the emotional reaction label. Moreover, although
incorporating user’s next-round utterance during training fa-
cilitates the generation of more coherent responses, the next-
round utterance is not available during the inference phase.

To tackle these challenges, we propose a variational model
EmoElictor, which is built upon a pre-trained language model
[Yang et al., 2019], and can capture the relationship between
emotional reactions and responses. The original single latent
variable is decomposed into sequential ones at each time step
during the generation, which helps to enhance the topic co-
herence and emotional consistency of the response.

Our three main contributions can be summarized as fol-
lows: (i) We formulate the RGEE problem as the problem of
generating a response that can elicit a specific emotion from
a user conditioned on the backward context and next-round
utterance. (ii) We propose a variational model EmoElicitor
which, to best of our knowledge, is the first to leverage se-
quential latent variables to capture context information and
guide response generation with the help of pre-trained lan-
guage model. (iii) We construct a large-scale dataset for the
RGEE task1. Experimental results show that our model con-
sistently outperforms strong baseline methods.

2 Related Work
Emotion-aware dialogue systems have become an emerging
area of research in recent years. Zhou et al. [2018] first in-
corporated emotional factors into a dialogue generation task
using an end-to-end neural learning framework. Zhong et al.
[2019] considered the VAD affect model and the effects of
negators and intensifiers via an attention mechanism in con-
versation modeling. Zhou and Wang [2018] proposed a re-
inforced CVAE-based model called Mojitalk, which could
generate responses based on emojis. Rashkin et al. [2019]
focused on empathethic dialogue generation, in which each
conversation contained only one emotion label.

Most previous studies, however, have considered only the
emotion of the agent’s response while neglecting the user’s
emotional reaction. Lubis et al. [2018; 2019] generated re-
sponses that could elicit positive emotions. Hasegawa et al.
[2013] leveraged a statistical machine translation model to
generate responses that could elicit predicted emotions from
users. In contrast to the above two methods, our model not
only utilizes finer-grained emoji labels but also considers the
user’s next-round utterance to generate more topic-coherent
and emotionally consistent responses.

For a given context, there could be multiple appropriate
responses; hence, response generation is known to be a one-
to-many problem. Variational autoencoders (VAEs) are one
of the most successful types of models for solving such prob-
lems [Serban et al., 2017]. However, traditional VAE-based
models utilize only a single latent variable to encode an entire
response sequence. Our work is inspired by variational recur-
rent neural networks (VRNNs) [Chung et al., 2015], which

1https://github.com/neuChatbotDS/emoElicitorData

perform variational inference at every time step during de-
coding. Variational models suffer from posterior collapse is-
sues; however, these can be alleviated by means of Kullback-
Leibler (KL) annealing and auxiliary loss.

3 Our Approach
3.1 Problem Formulation
Given a dialogue context C and an emotional reaction label
e for the next-turn speaker, we aim to generate a response Y
that not only is coherent with the context C but also can elicit
the desired emotion e from the next-turn speaker.

Y = argmax
Y ′

P (Y ′|C, e) (1)

The dialogue context is C = {U b1 , U b2 , Ua3 , . . . , U bi }, where
U bi denotes the utterance of person b in round i. The response
is Y = {Uai+1}. The emotional reaction e is the emotion
label of the next-round utterance, U bi+2; hence, Ue denotes
the next-round U bi+2.

3.2 CVAE
Our method is built upon conditional VAE (CVAE) [Kingma
and Welling, 2014], for where the generation of response y
is based on the given context C, the next-round utterance Ue,
the emotional reaction label e, and a latent variable z that is
intended to capture the distribution of responses.

L =Eqθ(z|C,Y,Ue) [p(Y |z, C, e)] (2)

−KL (qθ(z|C, Y, Ue)‖pφ(z|C, e))

where KL is the Kullback-Leibler divergence, p(Y |z, C, e) is
a decoder that generates Y from the latent variable z, con-
ditional context C and emotional reaction e; pφ(z|C, e) is
the prior model used to sample z from the prior distribution;
qθ(z|C, Y, Ue) is the posterior network used to approximate
the true posterior distribution of the latent variable z; θ and
φ are the parameters of the model. In the training phase, the
latent variable z sampled from the posterior model is used to
generate a response p(Y |z, C, e) given conditionsC and e. In
the inference phase, only the latent variable z sampled from
the prior model is utilized to generate a response p(Y |z, C, e).

Inspired by variational recurrent neural network, our model
uses a latent variable zt in each time step to generate a re-
sponse as pφ(Y |z, C, e) =

∏
t p (Yt|Y<t, zt, C, e).

3.3 Model Framework
Input Representation
The inputs to our multi-turn dyadic dialogue model are the
conversation context C, the response Y , and the next-round
utterance Ue with emotional reaction label e. All input texts
are tokenized using SentencePiece2. To capture fine-grained
and realistic sentiment labels, we regard emojis as the labels
of utterances, and these emojis are treated as plain text dur-
ing processing. The input embedding for each token includes
a word embedding, a type embedding and a position embed-
ding, as visualized in Figure 3.

2https://github.com/google/sentencepiece
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Figure 2: The overall framework of our EmoElicitor model. In the training phase, the latent variable zt sampled from qt is fed into the
combination layer with Dout

t−1(Y ), as represented by a dashed line, and encodes the context C, the response Y , and the next utterance Ue. In
the inference phase, only generation box is executed, and the prior net is used in place of the posterior net, as shown by a solid line. The right
part of the figure shows the details of the uni-directional attention Transformer, which is also used in the XLNet model.
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Figure 3: Input representation for the bi-directional Transformer.

(i) The input representation is the concatenation of C,
Y andUe with a special beginning token [s] and end token [/s].
For the contextC, we concatenate all the utterances inC with
a special token [SEP]. We add an auxiliary emoji vocabulary
for emojis. (ii) Type embeddings are employed to differenti-
ate the speakers (e.g. A and B) and the emotion label in the
dyadic conversation data. Suppose that speaker A’s utterance
elicits an emotion from speakerB. Thus, type embeddings of
Y andUe areEA andEB , respectively. Ee denotes emotional
reaction label type embedding. (iii) The position embeddings
are consistent with those of the pre-trained model.

Our input representation is compatible with the
Transformer-based pre-trained language models that in-
clude token, segment and position embeddings. Note that
we replace segment embedding with type embedding, which
is consistent with the features of dyadic conversations and
fine-tune the type embeddings on the training dataset.

Framework
Figure 2 shows the overall framework of our proposed model,
which is a combination of a pre-trained language model and
a variational model. The backbone of our infrastructure is
inspired by [Lample and Conneau, 2019], a technology that
flexibly supports bi-directional encoding and uni-directional
decoding through specific self-attention masks. To better cap-
ture the backward and forward context representations, we
use a bi-directional attention Transformer to model the con-
text C and the emotional reaction label e. A uni-directional
attention Transformer is leveraged to model the response Y

to be generated. The encoder and decoder Transformers share
the same set of weights.

Specifically, the input and output are respectively denoted
by Ein and Eout for the encoder, and Din and Dout for the
decoder. All inputs are sequences of tokens, including token
embeddings (TOK), type embeddings (TY P ), and position
embeddings (POS):

Eini (C; e) = {TOKi(C; e), TY Pi(C; e), POSi(C; e)}
where C; e denotes the concatenation of C and e. The en-
coder can attend its own tokens (e.g., Eini (C; e) can attend
arbitrary Einj (C; e)), and each token in the decoder can at-
tend only those ahead of it.

Eout(C; e);Dout(Y ) = Transformer(Ein(C; e);Din(Y ))

Oj = Dout
j (Y )Woo + bo (3)

Pj = softmax(Oj) (4)

where Ein(C; e);Din(Y ) denotes the concatenation of
Ein(C; e) and Din(Y ); Dout

j (Y ) is the final output of the
decoder when taking response Y as input at time step j;
Woo ∈ Rdmodel×dvocab and bo ∈ Rdvocab are parameters of the
pre-trained model, with dvocab being the vocabulary size,
which is the same as the size of the original vocabulary be-
cause our responses do not contain emojis; and Pj is the prob-
ability distribution of the word to be generated at time step j.

3.4 EmoElicitor
Traditional CVAE-based methods employ only one latent
variable z, which make it difficult to model the distribution
of the response p(y|z, c). To more effectively use latent vari-
ables to capture the relationship between emotional reactions
and responses, we decompose z into sequential variables zt
at each time step t during the generation process. Moreover,
we add an auxiliary loss to avoid posterior collapse.
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EmoElicitor Model Details
On the basis of a CVAE and a pre-trained language model,
we build EmoElicitor which leverages the context C, the re-
sponse Y and the next utterance Ue to guide response genera-
tion at every time step t. The posterior net encodes C, Y and
Ue. Since we assume that zt follows an isotropic Gaussian
distribution N

(
µ, σ2I

)
, we have

Eout(C;Y ;Ue) = Transformer(Ein(C;Y ;Ue)) (5)

Eout(Y ) = {Eout2 (Y ), . . . , Eoutn (Y )} (6)[
µt
σ2
t

]
= Eoutt (Y )Wq + bq (7)

zt ∼ N
(
µt, σ

2
t I
)

(8)

where Ein(C;Y ;Ue) is the input representation for the bi-
directional attention Transformer, which concatenates the
context C, the response Y and the next utterance Ue as de-
scribed in Section 3.3. Note that the position embeddings are
also sequential. Eout(Y ) is the bi-directional attention out-
put representation of the response, which is a sequential rep-
resentation Eoutt (Y ) of length n − 1 because the beginning-
of-sentence token [s] is not needed in the output representa-
tion of response Y for the computation of the posterior la-
tent variables. zt denotes the posterior latent variable at time
step t. Wq ∈ Rdmodel×dz and bq ∈ Rdz are weight parame-
ters, where dz is the dimensionality of the latent variable and
dmodel is the dimensionality of the pre-trained model output
at each time step t. The prior net encodes the context C and
the reaction emotion e. Similarly, we have

Eout(C; e);Dout(Y ) = Transformer(Ein(C; e);Din(Y ))

Dout(Y ) = {Dout
1 (Y ), Dout

2 (Y ), . . . , Dout
n−1(Y )} (9)[

µ′t−1
σ′2t−1

]
= MLPp(Dout

t−1(Y )) (10)

z′t−1 ∼ N
(
µ′t−1, σ

′2
t−1I

)
(11)

where Ein(C; e) is the input representation for the bi-
directional attention Transformer, which concatenates the
context C and the next-utterance emotion e. Din(Y ) is the
input representation for the uni-directional attention Trans-
former, which attends those tokens ahead of it. Dout(Y )
is the uni-directional attention output representation of the
response, which is a sequential representation Eoutt (Y ) of
length n − 1, because the response Y includes an end-of-
sentence token [/s] that is not needed during the generation
process. MLPp is a multi-layer perceptron.

We incorporate time step latent zt into the pre-trained
model’s output by a combination layer to predict Yt by com-
puting p (Yt|Y<t, zt, C, e).

Gt−1 = tanh
([
Dout
t−1(Y ), zt

]
Wg

)
(12)

Ot−1 =
[
Dout
t−1(Y ), Gt−1

]
Wo + bo (13)

p (Yt|Y<t, zt, C, e) = softmax (Ot−1) (14)

where Wg ∈ R(dmodel+dz)×dz is the weight parameter
used to combine zt+1 and Dout

t (Y ) into Gt. Wo ∈
R(dmodel+dz)×dvocab includes Wo1 ∈ Rdmodel×dvocab and

Wo2 ∈ Rdz×dvocab : the first part loads the parameters of orig-
inal pre-trained model Woo, and the second part is randomly
initialized by Xavier method [Glorot and Bengio, 2010].

Learning
A VAE-based model will often ignore the latent variables,
causing the posterior to collapse. For a text generation task,
Zhao et al. [2017] utilized the bag-of-word (BOW) loss to
alleviate this problem and thus achieved improved perfor-
mance. In this paper, we introduce a new auxiliary loss that
uses the posterior latent variable zt to predict the correspond-
ing word in every generation step to preserve information.

P auxt (Yt|zt) = softmax (ztWz + bo) (15)
Lauxt = Eqθ(zt|C,Y,Ue) [logP

aux
t (Yt|zt)] (16)

Our final loss function is a weighted sum of Lauxt and Lelbot
at each time step t:

L =
∑
t

[
Lelbot + αLauxt

]
=
∑
t

[(
LLMt − LKLt

)
+ αLauxt

]
where α is the weight controlling auxiliary loss, LLMt is the
log-likelihood loss when predicting Yt, and LKLt is KL diver-
gence of the approximate posterior distribution qt and prior
distribution pt−1. The two losses are calculated as follows:

LLMt = Eqθ(zt|C,Y,Ue) [log p (Yt|Y<t, zt, C, e)] (17)

LKLt = KL
(
qθ(zt|C, Y, Ue)‖pφ

(
z′t−1|Y<t, C, e

))
(18)

In the generation phase, we predict the token Yt by comput-
ing p

(
Yt|Y<t, z′t−1, C, e

)
, in which the posterior latent vari-

able zt is replaced with the prior latent variable z′t−1.

4 Experiment
Since there is no off-the-shelf multi-turn emoji-rich dialogue
dataset available, we collect a large corpus of Twitter con-
versations with emojis. We use 58 common emojis as the
labels, consistent with the selection used in Mojitalk [Zhou
and Wang, 2018] except that the six emojis with the lowest
frequencies are removed. Each conversation in our corpus
consists of at least three rounds, where the first round be-
longs to the context and the last round is Ue containing an
emoji. If there is more than one emoji in Ue, we select the
most frequently used emoji as the emotional reaction label.
When the frequencies are equal, we select the emoji with the
lowest frequency in the corpus because it is most distinctive.

4.1 Data Preprocessing
During preprocessing, all mentions and hashtag tokens were
removed, and repeated letters and symbols were shortened.
To better capture the emotions of the conversations, we have
added an external emoji vocabulary of size 1k, which is
shared with the label space of the emotional reactions e.

The distribution of our emotional reaction labels e is close
to that of Mojitalk (e.g., accounts for 34%). We have re-
moved dialogues with fewer than 6 words and more than 34
words in the response Y and the emotional reaction utterance
Ue. Dialogues with fewer than 6 words and more than 100
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Models Y -avg% Ue-avg% Ue-gre% Dist1% Dist2% BLUE% B1% B2% Avg-len Acc5%
Human - 70.62 42.15 10.6 47.50 - - - 15.22 65.1
S2S* 71.11 68.68 39.11 0.52 1.422 15.75 23.15 20.35 14.50 50.1

ECM* 70.98 68.56 39.59 0.30 1.085 13.57 21.05 17.83 10.80 48.0
Mojitalk* 71.03 68.70 39.72 4.16 13.18 15.04 22.61 19.35 12.90 50.1

XLNet 71.77 69.03 40.32 4.13 13.82 14.55 22.84 19.16 11.52 49.1
T-CVAE 71.99 69.25 40.26 4.96 21.62 15.99 24.31 20.58 12.92 50.2
w/o Ue 71.51 68.99 39.95 5.10 21.73 15.12 23.20 19.56 12.20 49.6
Ours 73.18 70.34 41.92 4.08 21.97 18.54 28.08 23.53 15.73 51.7

w/o Ue 72.77 70.04 41.36 4.56 22.00 17.71 27.02 22.73 14.45 51.1
w/o pre-train 72.54 70.11 40.80 2.46 21.50 17.29 25.52 21.87 15.20 50.8

Table 1: The automatic evaluation results for the generated response. The symbol * means the method is without pre-trained model.

words in the context C have also been eliminated. We ran-
domly split the corpus into 137,421/4,661/4,739 conversation
pairs for train/validation/test set. For building validation and
test dataset, we choose the response Y with emoji as label so
as to test the emotional accuracy of the generated response.
Note that the emotion labels of the response Y is not consid-
ered in train dataset, and all emojis in Y are all removed.

4.2 Implementation Details
We chose XLNet-base [Yang et al., 2019] as our pre-trained
model; thus, dmodel is 768, and the input and output vocabu-
lary sizes are 33k and 32k, respectively.

The Adam optimizer with an initial learning rate of 1e−5
was applied to all models. The batch size was set to 15,
and greedy search was used for all methods. For the vari-
ational model, dz was set to 64, and the temperature used
in the KL annealing strategy was varied from 0 to 1 in 10k
steps. All experiments were conducted on a single 11 GB
NVIDIA GeForce RTX 2080 Ti GPU card and took approxi-
mately seven hours at most to reach convergence.

4.3 Baselines
For all of the baseline methods, we use the same input vocab-
ulary for comparison.

S2S: A simple seq2seq model based on GRU.
ECM: The emotional chatting machine which uses internal

emotion memory and external emotion memory for emotion
expression [Zhou et al., 2018].

Mojitalk: An encoder-decoder based CVAE model incor-
porated with emotion embedding [Zhou and Wang, 2018].

XLNet: A seq2seq model with an emotional reaction label
e, and initialized with XLNet. Uni-directional attention is
utilized for generation, as shown in Figure 2.

T-CVAE: A Transformer-based CVAE model. In con-
trast to the original T-CVAE implementation [Wang and Wan,
2019], our implementation is based on XLNet; therefore, the
combination layer of T-CVAE is the same as that of EmoElic-
itor. We also add the BOW loss to alleviate model collapse.

4.4 Automatic Evaluation
Results for Response Generation
Embedding-based metrics: Y -avg [Liu et al., 2016] calcu-
late the semantic similarity between the generated response
and the ground truth response by averaging word embeddings

Models Acc10% Pro Pro@5%
XLNet 21.5 1.03 35.8

T-CVAE 22.0 1.05 36.2
T-CVAE w/o Ue 21.8 1.04 35.9

Ours 23.0 1.13 36.5
w/o Ue 22.5 1.06 36.4

w/o pre-train 24.3 1.06 36.3

Table 2: Automatic evaluation results for emotion elicitation

Model Gram% TC% EC%
XLNet 79.1 61.1 38.2

T-CVAE 85.8 66.2 43.2
Ours 87.8 71.6 55.7

Table 3: Manual evaluation

based on Twitter word embeddings [Godin, 2019]. Ue-avg
and Ue-Gre calculate the semantic similarity between the
generated response and the ground truth reaction utterance
Ue based on average and greedy matching, respectively.

Dist1 and Dist2: The proportions of distinct unigrams and
bigrams [Li et al., 2016] in the generated responses.

BLEU and B1/2: Word-overlap scores against gold-
standard responses. BLEU [Papineni et al., 2002] refers to
BLEU-4, and B1 and B2 refer to other n-gram scores.

Acc5: We adopt the top-5 emoji accuracy [Zhou and Wang,
2018] to evaluate the agreement between the expected emoji
category of the real response and the emotion category of
the generated response predicted by a well-trained classifier.
Note that the responses in the validation and test datasets have
emoji labels that are conceptually different from the emo-
tional reaction labels of Ue.

Avg-len: The average response length.
As shown in Table 1, our model performs best in terms

of Y -avg, Ue-avg, Ue-Gre, Dist2, BLEU, Avg-len and Acc5.
The models based on Transformer perform better than that
base on RNN. In this table, ‘w/o Ue’ denotes the case in
which Ue is eliminated and only the emotional reaction la-
bel e is used in the posterior net. The models that incorporate
latent variables (i.e., T-CVAE and EmoElicitor) can generate
more diverse responses. We observe that T-CVAE performs
better than our model in terms of Dist1; this is because the
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Context Ub
1 : Aaah how sweet!! They all ok? Xx

Emoji
Ours They’re not .. they need to have

the flu shot on their asses
I’m good. They’re just having a heart
attack

They all are !! I’m still in shock about
what they did to the poor boys

T-CVAE They are ok, just fed up with the
cold weather xx

They’re all good thanks! I’ll be in a bit
of pain for a while, but I’ll be fine x

They are, just fed up with the cold weather.
They are now going home to bed. Xx

XLNet I’m good thanks. I’m just tired of
the cold. I’m just tired of the cold.
Xx

I’m good thanks. I’m just tired of the
cold. I’m just tired of the cold. Xx

I’m good thanks. I’m just tired of the cold.
I’m just tired of the cold. Xx

Table 4: Some examples of generated responses. The emojis represent the emotions that are to be elicited from user b based on the responses.

longer responses of our model result in a larger denominator
in the formula Dist1 = Ndist1/N total.

The models without Ue perform more poorly in terms of
Y -avg, Ue-avg, Ue-Gre, BLEU, Acc5 and Avg-len, indicat-
ing that considering Ue can help to generate more coherent
responses in conversation. However, the Dist metrics do not
decrease as the others do. We conjecture that the posterior
latent variables can benefit from Ue but that Ue has limited
effects on the prior net, which contributes more to the diver-
sity. On the other hand, the Dist metrics of our model without
the pre-trained model do decrease. This finding confirms the
effectiveness of the pre-trained model in learning the depen-
dency on context.

Results for Emotion Elicitation
To evaluate model’s emotion elicitation ability, for each se-
lected 58 emojis we generate one response Ye in reply to each
context C in test set.

Acc10 is the prediction accuracy for the emotion e that is
elicited based on the generated response Ye and context C.
Note that we employ Acc10 (top-10 emoji accuracy) because
elicited emotion prediction is much more difficult than re-
sponse emotion classification.

Pro =
∑
e
p(e|C, Ye) is the sum of probabilities p(e|C, Ye).

Pro@5 is the sum of the probabilities of the top 5 emo-
tion labels for every context C. We built another classifier to
predict the emotional reaction e based on a given context C.

In Table 2, the Acc10 score of our method increases with-
out the pre-trained model. This is because our classifier
can more easily judge emotional words (e.g., love you ),
whereas the words generated by the pre-trained model are
more diverse. Pro directly calculates the probability of elicit-
ing emotions, which is fair across all categories, while Acc10
often ignores some difficult-to-judge categories (e.g., ). Our
model scores highest in terms of Pro and Pro@5, indicating
that it is the model that is most effective in eliciting all desired
emotions.

4.5 Manual Evaluation
To better evaluate the quality of the generated responses, we
performed manual evaluation. Given a post and an emotional
reaction label, responses generated from all the Transformer-
based models were randomized and presented to five graduate
students majoring in sentiment analysis. We randomly sam-
pled 200 posts from the test set and selected a specific emoji
as the target emotional reaction label to generate a response
in accordance with the emoji distribution.

Each annotator was asked to score each response in terms
of each of the following metrics with a rating of 0 or 1: (i)
Grammar (Gram): whether the generated response is natu-
ral and fluent. (ii) Topic coherency (TC): whether the re-
sponse is topically coherent to the context and reasonable
in logic. (iii) Emotional consistency (TC): whether the re-
sponse can elicit the given emotion.

Results: We calculated the Fleiss’ kappa [1971] to mea-
sure interrater consistency. Fleiss’ kappa for Gram, TC and
EC are 0.84, 0.60 and 0.58, indicating substantial, moderate
and moderate agreement respectively. As shown in Table 3,
the performance of our model is consistently in line with the
human perspective. Notably, XLNet can elicit emotions with
only 38.2% success because of the imbalance of the emotion
categories (e.g., accounts for 34%).

4.6 Case Study
We sample some generated responses from all three models
in Table 4. The XLNet model simply generates the same re-
sponses for different emoji reaction labels because it is diffi-
cult for a single emoji to represent the user’s reaction, which
causes XLNet to ignore the emojis. T-CVAE always gener-
ates the same words at the beginning of each sentence (e.g.,
They are). We speculate that the single latent variable z has
difficulty affecting the decoder output at the beginning. By
contrast, our model generates diverse responses for differ-
ent emoji (e.g., shot on their asses , heart attack ), thus
demonstrating that latent variable zt at time step t is able to
capture dependency between words and emotional reactions.

5 Conclusion
In this paper, we investigate emotional reactions, including
next-round utterances and the corresponding elicited emotion
labels, in dyadic dialogue generation and propose a novel
model called EmoElicitor to generate responses with emo-
tional reaction awareness. By incorporating a latent variable
zt in every time step, we can capture the dependency between
words and emotional reactions, thus allowing our model to
generate coherent, diverse responses with the intent of elicit-
ing different emotional reactions.

Acknowledgments
The work was supported by the National Key R&D Program
of China under grant 2018YFB1004700, National Natural
Science Foundation of China (61872074, 61772122).

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3642



References
[Chung et al., 2015] Junyoung Chung, Kyle Kastner, Lau-

rent Dinh, Kratarth Goel, Aaron C. Courville, and Yoshua
Bengio. A recurrent latent variable model for sequential
data. In ACL, pages 2980–2988, 2015.

[Fleiss, 1971] Joseph L Fleiss. Measuring nominal scale
agreement among many raters. Psychological bulletin,
76(5):378, 1971.

[Glorot and Bengio, 2010] Xavier Glorot and Yoshua Ben-
gio. Understanding the difficulty of training deep feedfor-
ward neural networks. In AISTATS, pages 249–256, 2010.
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