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Abstract

Neural semantic parsers usually fail to parse
long and complicated utterances into nested SQL
queries, due to the large search space. In this pa-
per, we propose a novel recursive semantic pars-
ing framework called RECPARSER to generate the
nested SQL query layer-by-layer. It decomposes
the complicated nested SQL query generation prob-
lem into several progressive non-nested SQL query
generation problems. Furthermore, we propose
a novel Question Decomposer module to explic-
itly encourage RECPARSER to focus on different
components of an utterance when predicting SQL
queries of different layers. Experiments on the Spi-
der dataset show that our approach is more effec-
tive compared to the previous works at predicting
the nested SQL queries. In addition, we achieve an
overall accuracy that is comparable with state-of-
the-art approaches.

1 Introduction

Text-to-SQL is one of the most important sub-tasks of se-
mantic parsing in natural language processing (NLP). It maps
natural language utterances to corresponding SQL queries.
By helping non-experts to interact with ever increasing
databases, the task has many important potential applica-
tions in real life, and thus receives a great deal of interest
from both industry and academia [Li and Jagadish, 2016;
Zhong et al., 2017; Affolter et al., 2019].

Composing nested SQL queries is a challenging problem in
Text-to-SQL. Several works [Guo et al., 2019; Zhang et al.,
2019b; Bogin et al., 2019; Yu et al., 2018a] have attempted
to deal with this problem on the recently proposed dataset
Spider [Yu et al., 2018b], which contains nested SQL queries
over different databases with multiple tables. However, due
to the large search space, existing neural semantic parsers do
not perform well on composing nested SQL queries [Zhang
et al., 2019a; Affolter et al., 2019].

*Work done during an internship at Microsoft Research.
"Corresponding Author

3644

Utterance: )
average singer age.

SQLQuery: \w\eRe age > (SELECT avalage) FROM singers)
Figure 1: An example of the component mapping relationship be-
tween the nested SQL query and its corresponding utterance.

In this paper, we focus on the problem of composing nested
SQL queries in Text-to-SQL task. Firstly, as we know the
nested SQL query representation is formalized as a kind of
recursive structure, thus a nested SQL query generation prob-
lem can be decomposed into several progressive non-nested
SQL query generation problems by nature. Furthermore, we
found that there is a strong component mapping relation-
ship between the nested SQL query and its corresponding
utterance. Figure 1 shows an example of the component
mapping relationship between the nested SQL query and its
corresponding utterance. We see that, for this nested SQL
query, the outside layer “SELECT song_name FROM singers
WHERE age > and the inside layer “SELECT avg(age)
FROM singers” correspond to different utterance components
“list all song names by singers age above” and “the average
singer age” respectively.

Inspired by these observations, we propose a recursive se-
mantic parsing framework called RECPARSER to generate
the nested SQL query layer-by-layer from outside to inside.
Furthermore, we propose a novel Question Decomposer mod-
ule to explicitly encourage RECPARSER to focus on different
parts of an utterance when predicting SQL queries in differ-
ent layers. RECPARSER consists of four modules: Initial
Encoder, Iterative Encoder, Question Decomposer and SQL
Generator. In the initialization stage, we encode the user
utterance and the database schema with the Initial Encoder.
Then, by recursively calling the Question Decomposer, the
Iterative Encoder and the SQL Generator modules, we gener-
ate the nested SQL query layer-by-layer. Finally, we compose
SQL queries of different layers into the whole SQL query
when encountering a recursive termination condition. Con-
cretely, in each recursion round, the Question Decomposer
updates the utterance representation with a soft-attention-
mask mechanism and a recursive-attention-divergency loss
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proposed by us for the next recursion; the Iterative Encoder
contextualizes the schema representation with the updated ut-
terance representation; the SQL Generator takes the contextu-
alized schema representation as input and generates the non-
nested SQL query of the current layer. Our SQL Generator is
a simple yet effective multi-task classification model.

We argue that RECPARSER has two advantages. Firstly,
in this divide-and-conquer faction, we simplify the difficulty
of the nested query generation problem. Our SQL Genera-
tor only learns to generate non-nested SQL queries instead of
the whole nested SQL query, thus largely reducing the search
space and alleviating training difficulties. Secondly, through
updating the utterance representation recursively with the
soft-attention-mask mechanism and the recursive-attention-
divergency loss, RECPARSER can focus on different parts of
an utterance when predicting different SQL query layers, thus
minimizing the interference of irrelevant parts.

On the Spider benchmark [Yu er al., 2018b], RECPARSER
achieves a state-of-the-art 39.3% accuracy on the nested SQL
query and a comparable 54.3% accuracy on the overall SQL
query. When augmented with BERT [Devlin et al., 2018],
RECPARSER reaches up to a state-of-the-art 46.8% accu-
racy on the nested SQL query and a state-of-the-art 63.1%
accuracy on the overall SQL query. Our contributions are
summarized as follows.

e We propose a recursive semantic parsing framework
called RECPARSER to decompose a complicated nested
SQL query generation problem into several progressive
non-nested SQL query generation problems.

e We propose a novel Question Decomposer module
with a soft-attention-mask mechanism and a recursive-
attention-divergency loss to explicitly encourage REC-
PARSER to focus on different parts of the utterance
when predicting SQL queries in different layers.

e Our approach is more effective compared to previous
works at predicting nested SQL queries. In addition,
we achieve an overall accuracy that is comparable with
state-of-the-art approaches.

2 Related Works

Composing Nested SQL Query. The problem of compos-
ing nested SQL queries has been studied for decades [An-
droutsopoulos et al., 1995]. Most of the early proposed sys-
tems are rule-based [Popescu er al., 2003; Li and Jagadish,
2014]. Recently, with the development of advanced neural
approaches and the release of the complex and cross-domain
Text-to-SQL dataset Spider [Yu er al., 2018b], several neu-
ral semantic parsers [Guo et al., 2019; Zhang et al., 2019b;
Bogin ef al., 2019; Lee, 2019] have attempted to generate
the nested SQL queries with a complicated grammar-based
decoder. However, applying grammar-based decoders to gen-
eral programming languages such as SQL query is very chal-
lenging [Lin et al., 2019] and difficult to generalize to other
semantic parsing tasks. Also, Finegan-Dollak et al. [2018]
shows that the sequence-to-tree approach is inefficient when
generating complicated SQL queries from an utterance. Our
work differs from them in our use of a divide-and-conquer
generation procedure.
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Recursive Mechanism in Semantic Parsing. Recursive
mechanism has been successfully used in complicated se-
mantic parsing tasks [Andreas et al., 2016; Rabinovich et
al., 2017]. Recently, several works [Yu et al., 2018a;
Lee, 2019] also employ the recursive mechanism to gener-
ate nested SQL queries in Text-to-SQL task. SyntaxSQL-
Net [Yu et al., 2018a] employs a SQL specific syntax tree-
based decoder that calls a collection of recursive modules
for decoding. RCSQL [Lee, 2019] proposes a SQL clause-
wise decoding architecture. It recursively calls different SQL
clause decoders to predict nested SQL queries. Compared
with their approaches, we recursively call both encoder mod-
ule and SQL generator module for each recursion, while they
only call a set of SQL generator modules. In addition, we
propose a novel Question Decomposer module to capture the
mapping relationship between different SQL query layers and
their corresponding components in utterance.

Decomposing Complicated Question. Decomposing
complicated question is widely used in many semantic
parsing works [lyyer et al., 2016; Talmor and Berant, 2018;
Zhang et al., 2019al. They utilize the decompositionality
of complicated questions to help question understanding.
Inspired by them, we use the soft-attention-mask mechanism
and the recursive-attention-divergency loss to model the de-
composing process of the utterance and update the utterance
representation for next recursion round. In this way, we don’t
need to make hard decisions and it could be learned in an
end-to-end fashion without extra labeling work.

Multi-Task Learning in Text-to-SQL Task. In multi-task
learning, the Text-to-SQL task is decomposed into several
sub-tasks, each predicting a part of the final SQL program.
Compared with sequence-to-sequence-style models, multi-
task learning does not require the SQL queries to be serial-
ized and thus avoid the “ordering issue” [Xu et al., 2018].
Existing state-of-the-art multi-task learning methods [Hwang
et al., 2019; He et al., 2019] have already surpassed human
performance on WikiSQL [Zhong er al., 2017] dataset. How-
ever, existing methods are limited to the specific SQL sketch
of WikiSQL, which only supports very simple queries. In this
work, we propose a simple yet effective multi-task classifica-
tion model to generate arbitrary non-nested SQL query as the
SQL Generator module in our framework.

3 Methodology

In this section, we will describe our RECPARSER framework
in detail. As described in Figure 2, RECPARSER consists of
four modules: Initial Encoder, Iterative Encoder, Question
Decomposer and SQL Generator. At first, we get the initial
representation of utterance and database schema with the Ini-
tial Encoder. Then, by recursively calling the Iterative En-
coder, the Question Decomposer, and the SQL Generator, we
generate the nested SQL query layer-by-layer from outside to
inside. Finally, we compose the SQL queries of different lay-
ers into the whole SQL query when encountering a recursive
termination condition.
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Figure 2: RECPARSER Architecture.

3.1 Initial Encoder

Given a user input utterance U and its corresponding database
schema S, the Initial Encoder generates the initial repre-
sentation hi{?* and 3. Let U = (uq,..,ug,..,u;) and
S = {t1,c11,.... ti, cij,... }, where uy, denotes the k-th utter-
ance token, [ is the length of utterance, ¢; denotes the ¢-th ta-
ble name in database schema, and c;; denotes the j-th column
name in the i-th table. Following Hwang et al. [2019], we first
concatenate the utterance U and the database schema S as
a single sequence separated by token [CLS], [TAB], [COL],
and [SEP] as follows.

[CLS], [TAB],tl, [COL], C11.., [C‘OL]7 Cij..[SEP],ul..'LLl, (1)

where we put [CLS] token at the beginning of the sequence
to capture the contextualized representation of the whole se-
quence. Then we employ a Bidirectional LSTM [Hochre-
iter and Schmidhuber, 1997] to get the hi*" and the
havit. where R = (Ryyy .o By -y hay) and RV
(hty ooy Pty Boly» ---). Concretely, for each table and column
in database schema, we use the representation of the separa-
tor [T'/AB] and [COL] before each table and column as their
corresponding representations. Moreover, we use hcrg de-
notes the representation of token [CLS]. By concatenating
the utterance and the database schema together, we capture
the relationship between the utterance and the corresponding
database schema and get the contextualized representations.

3.2 Iterative Encoder

Let n denote the n-th recursion round. Given h(Un), h}}‘ﬁg and
h%* as inputs, the goal of the Iterative Encoder is to generate
the database schema representation hg”) and the [CLS] rep-

resentation h(cngs of the n-th recursion round. Then, h(S") and

h(cnzzs will be used as the inputs of the SQL Generator to gen-
erate the current layer SQL query. Note that if it is the 0-th
recursion round, we use hi7* as hY. Specifically, following

Hwang et al. [2019], we concatenate hL, hi#** and hgjn)
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Figure 3: An overview of the SQL Generator.

in a single representation (™). Then we apply self-attention
mechanism [Vaswani ez al., 2017] to update h(™) as follows.

T
);

Vd 2

o™ = softmax(

b = o™y,

where Q = w,h™, K = wih™, V = w,h(™ and w, €
RI*4 4y, € R*4 4y, € R?*4 are trainable parameters.

3.3 SQL Generator

Given the database schema representation hg”) and the [CLS]

representation hgﬁs the goal of the SQL Generator is to gen-

erate the non-nested SQL query at the current recursion round
n. According to the syntactical grammar of the SQL query,
we transform the non-nested SQL query generation problem
to a slot-filling problem. Concretely, we design a local tem-
plate that indicates the property of each column in each SQL
clause (e.g., SELECT clause) and a global template that indi-
cates the property of the SQL query.

Firstly, we generate N x M local templates where NNV is the
number of columns in the given database schema S and M
is the number of SQL clauses. Each template has three local
slots, i.e., Aggregator, Operator and Nest. Notice that the slot
Nest is used to indicate whether the column in corresponding
clause has nested SQL query or not. Figure 3 presents all can-
didates of the Aggregator, the Operator and the Nest. Notice
that EMPTY means that the column is not in the correspond-
ing SQL clause. As shown in Figure 3, they are predicted
by three classifiers, i.e., AGG-CLS, OP-CLS and NES-CLS
respectively. Taking the OP-CLS as an example, the proba-
bility of the operator op for col;; in clause,, is computed as
following:

(n)  _ 4(n)
hlcolij - hCOlz‘j + Cclausen ; 3)
plectiam) — SOftmaX(WOPhIEZl)U + bop),
where ecjquse,, 1 the m-th clause embedding. W,, €

Rmer*d € R™?, €qquse,, € R are trainable parameters
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and n,), is the number of operator types. The same way can
be also applied to the AGG-CLS and NES-CLS to calculate
Pégzl” ) and P ™) Specially, we have 7 kinds of SQL
clauses (i.e., SELECT, WHERE_AND, WHERE_OR, OR-
DER_ASC, ORDER_DES, GROUP, and HAVING), in which
the original WHERE clause is divided into WHERE_AND
and WHERE_OR to distinguish two different connectors (i.e.,
AND and OR) in the WHERE clause. Similarly, the ORDER
clause is also divided into ORDER_ASC and ORDER_DES
to distinguish two different sort types (i.e., DES and ASC).
Next, we generate one global template which has two
global slots, i.e., Limit and IUE. Limit indicates if the SQL
query contains a keyword LIMIT. IUE indicates whether the
SQL query contains structures such as Intersect, Union, Ex-
cept or not. We use another two classifiers, i.e., LIMIT-CLS
and IUE-CLS to predict them respectively. In IUE-CLS, the
probability of the candidate iue is calculated as follows.

Piye = softmaX(Wihgzg + b;), 4

where W; € R" ¥4 b; € R™ are trainable parameters, n; is
the number of IUE types. Py, is calculated in the same way
by LIMIT-CLS. After filling all the slots of all the templates,
we use a heuristic method to compose these templates to a
SQL query according to the SQL grammar.

At last, after predicting all the other clauses, similar
to [Lee, 2019], we use a heuristics to generate the FROM
clause of the current SQL query layer. We first collect all the
columns that appear in the predicted SQL, and then we JOIN
tables that include these predicted columns.

3.4 Question Decomposer

The goal of the Question Decomposer is to update the utter-
ance representation for the next recursion round. Intuitively,
we hope that RECPARSER could learn to decompose the ut-
terance layer-by-layer and focus on different components of
an utterance when predicting SQL queries of different lay-
ers. We achieve this target by two simple yet effective meth-
ods: (1) Soft Attention Mask. Inspired by Kim et al. [2018]
which leverages a soft attention mask mechanism to do fea-
ture selection, we propose a novel method to soft mask the
parts of utterance that has already been focused by previous
recursion rounds. (2) Recursive Attention Divergence Loss.
Inspired by Wei et al. [2019] which uses JS divergence loss to
minimize the attention divergence in code generation task, we
propose a novel regularization loss to encourage the model to
maximize the attention divergence between the adjacent re-
cursion rounds. In this way, we explicitly encourage REC-
PARSER to focus on different components of an utterance
when predicting different SQL query layers, thus minimizing
the interference of irrelevant components of the utterance.

Soft Attention Mask

Let ai(f,f) denotes the attention weight of token [CLS] on i-
th token of utterance U, which is produced by Equation 2.
Intuitively, to help the model focus on different components
of an utterance in the next recursion, we want to mask the
component that has been focused on the current recursion.
Instead of directly masking the tokens of the utterance, we
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generate the utterance representation of next recursion by a
soft-attention-mask method as follows.
E(n) ki aq(j;)Wmaskv

mas

pn+1) — WUth) + WmE(")

Uq mask;?

(&)

where E(™) k€ R? is the soft mask embedding, W,,qsrx €

mas

R, Wy € R4 W, € R4¥4 are trainable parameters.

Recursive Attention Divergence Loss

To encourage the model to focus on different components of
an utterance in each recursion round, we design the Recur-
sive Attention Divergence Loss Lg;, to regularize the atten-
tion divergence between the attention weights of the adjacent
recursion rounds.

Let agjn) and agl =Y denote the attention weights of the
adjacent recursion rounds for a same utterance. We apply the
negative Jensen—Shannon divergence [Fuglede and Topsoe,
2004], a symmetric measurement of similarity between two
probability distributions, to maximize the distance between

these two attention weights. Let P denotes the agl) and @

denotes the a7 :
1 P+ P+
Law =~ DuPITED) 4 D@59, ©

where Dy is the Kullback—Leibler divergence, defined as

Dgr(pllg) = >, p(x) log(%) which measures how one
probability distribution ¢ diverges from another probability

distribution p.

3.5 Composing the Final SQL Query

The final SQL query is obtained through backtracking. The
SQL Generator will return a SQL query segment after the
end of the recursive calling. The recursive termination condi-
tion is that the IUE slot and all NEST slots are NO. Specifi-
cally, if the slot NEST is YES, we return a SQL query with a
placeholder token [SUBQUERY] after its corresponding col-
umn that is in its clause (e.g., SELECT name FROM singers
WHERE age > [SUBQUERY] and sex = ‘male’). Similarly,
if the IUE slot is not NO, we put corresponding placeholder
token after the returned SQL query result (e.g., SELECT
name FROM singers [EXCEPT]). Finally, we construct the fi-
nal SQL by replacing the placeholder token with the returned
SQL query segment.

3.6 Loss Function
The loss function of RECPARSER is defined as follows.

L= XaccLacc +MorLop + ANESLNES o

+AUELIUE + ALimiTLLivmiT + AdivLaiv,
where [:Agg, EOP’ LNESV ACIUE, ELI]MIT are the loss
functions of AGG-CLS, OP-CLS, NES-CLS, IUE-CLS and
LIMIT-CLS in the SQL Generator respectively. All loss func-
tions of the classifiers are cross-entropy loss. L4, is the Re-
cursive Attention Divergence Loss described in Equation 6.
AAGGs AoPs ANES> AIUE> ALIMIT> Adiv are loss weights
and all of them are hyper parameters.
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Approach Accuracy  Accuracy (BERT)
SyntaxSQLNet 0 -
Global-GNN 33.0% -
EditSQL - 40.4%
IRNET 34.2% 41.8%
RECPARSER(no DB)  38.0% 46.8%
RECPARSER 39.3% 46.8 %

Table 1: Nested SQL Exact Matching accuracy on Spider develop-
ment set. “no DB” means the database content is not used; “BERT”
means the results are obtained with BERT enhanced approaches and
“-” means the methods are not proposed in corresponding settings,
e.g., with or without BERT.

4 [Experiments

In this section, we evaluate the effectiveness of RECPARSER
on both nested SQL queries and all SQL queries by com-
paring it to state-of-the-art approaches and ablating several
design choices in RECPARSER to understand their contribu-
tions.

4.1 Experiment Setup

Dataset. 'We conduct our experiments on Spider [Yu
et al., 2018b], a large-scale, human-annotated and cross-
domain Text-to-SQL benchmark, which contains 7,000/1,034
question-SQL query pairs in train and development set'. We
using SQL Exact Matching and Component Matching accu-
racy metrics proposed by Yu et al. [2018b] to evaluate REC-
PARSER and other approaches.

Baselines. We use the following methods for comparison
evaluation: SyntaxSQLNet [Yu er al., 2018al, RCSQL [Lee,
20191, Global GNN [Bogin et al., 2019], EditSQL [Zhang et
al., 2019b], and IRNET [Guo et al., 2019]. All of them em-
ploy an encoder-decoder architecture, but with different de-
sign choices: SyntaxSQLNet is a sequence-to-set model with
a SQL specific syntax tree-based decoder; RCSQL employs
a SQL clause-wise decoding network with recursive mecha-
nism; Global GNN reasons over the DB structure and ques-
tions to make global decision; EditSQL proposes an editing
mechanism-based network; and IRNET uses schema linking
information and predicts an intermediate representation in-
stead of the SQL query. Note that SyntaxSQLNet, RCSQL,
EditSQL and IRNet do not use the database content, while
Global GNN and RECPARSER use the database content.
Implementations. We implement RECPARSER with Py-
Torch. The dropout rate is 0.2. We use Adam with le-3
learning rate for optimization. Batch size is 64. Word em-
beddings are initialized with Glove. The dimensions of word
embedding, type embedding and hidden vectors are set to
300. Aaga, Aop, ANES, ATUE> ALIMIT» Adiv in Equation
7aresetas 1, 1, 1, 0.1, 0.1, and 0.2 respectively. We use the
database content to find the column whose value is exactly
mentioned in the utterance and put a special token [VALUE]
in front of that column.

'We don’t use the test set of Spider, since the test set is blind to us
and we can’t obtain the nested SQL query of the test set to evaluate
the effectiveness of our approach.
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Approach Accuracy
SyntaxSQLNet 24.8%
RCSQL 28.5%
Global-GNN 52.7%
IRNET 53.2%
RECPARSER 54.3%
Edit-SQL(BERT) 57.6%
RECPARSER(BERT, no DB) 60.5%
IRNET(BERT) 61.9%
RECPARSER(BERT) 63.1%

Table 2: SQL Exact Matching accuracy on Spider development set

90 mSyntaxSQLNet W IRNET RECPARSE(no DB) @ RECPARSE

70
60
50
40
30 t

SELECT WHERE GROUPBY ORDERBY ~ KEYWORDS

Figure 4: F1 scores of Component Matching accuracy of Syn-
taxSQLNet, IRNET, RECPARSER(no DB) and RECPARSER on
Spider development set. All methods are augmented with BERT.

BERT. Language model pre-training has shown to be ef-
fective for learning universal language representations. To
further study the effectiveness of our approach, we leverage
BERT [Devlin et al., 2018] to encode question and database
schema to replace the bi-directional LSTM in the Initial En-
coder. Our approach with BERT-base is denoted as REC-
PARSER(BERT).

4.2 Model Comparison

Table 1 presents the nested SQL Exact Matching accuracy of
RECPARSER and various baselines on the development set.
The result shows that RECPARSER clearly outperforms all
the baselines with or without DB content used on the nested
SQL query accuracy. Comparing to the methods that use var-
ious techniques to predict nested SQL query, such as com-
plicated intermediate representation (e.g., IRNet) and other
grammar-based decoders (e.g., EditSQL and Global-GNN),
RECPARSER achieves a prominent improvement by employ-
ing a novel recursive generation framework. For example, it
obtains 5.0% absolute improvement than the state-of-the-art
method IRNET when both of them incorporate with BERT.
Next, we evaluate the overall SQL Exact Matching ac-
curacy of RECPARSER and various baselines on the de-
velopment set of Spider. As shown in Table 2, REC-
PARSER(BERT, no DB) achieves a 60.5% Exact Match-
ing accuracy without using any rule-based schema link-
ing techniques or intermediate representation that are used
in IRNet(BERT). It demonstrates that RECPARSER(BERT,
no DB) obtains a comparable overall accuracy than the
state-of-the-art approaches at the same setting with min-
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Result: SELECT name FROM museum WHERE num_of staff > (SELECT min(num_of staff) FROM museum WHERE open_year > 2010)
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Result: SELECT name FROM museum WHERE num_of _staff > (SELECT name, min(num_of_staff) FROM museum WHERE open_year > 2010)

Figure 5: Two examples where Question Decomposer (QD) for RECPARSER leads to correct prediction. In the first example, RECPARSER
without QD selects the wrong column in the outside SQL layer which belongs to the inner SQL layer. In the second example, RECPARSER
without QD selects the wrong column in the inner SQL layer which belongs to the outside SQL layer. Color intensity in red reflects the
attention weight, and the tokens in black have negligibly small weights.

Base-framework 57.4%
+ QD (-RAD loss) 58.5%
+ QD 60.8%
+ QD + DB 63.1%

Table 3: Ablation study results. Base-framework doesn’t use the
Question Decomposer (QD) and the database content (DB). ‘QD (-
RAD loss)’ means that the QD does not use the recursive-attention-
divergency loss.

imum efforts. When incorporating the database content,
RECPARSER(BERT) gets a 63.1% Exact Matching accu-
racy and obtains a 1.2% absolute improvement over state-of-
the-art method. It demonstrates the effectiveness of REC-
PARSER(BERT).

To further study the performance of RECPARSER in de-
tail, following Yu et al. [2018a], we measure the average
F1 score on different SQL query components on the devel-
opment set. Here, we take BERT enhanced methods as an
example. As shown in Figure 4, RECPARSER outperforms
SyntaxSQLNet and IRNET on all components except KEY-
WORDS. Importantly, because of the good performance of
RECPARSER on nested SQL query which belongs to the
WHERE clause, there is a 3.4% absolute improvement com-
pared to IRNET in WHERE clause. When incorporating with
database content, the improvement is boosted to 5.4%.

4.3 Ablation Study

We conduct ablation study on RECPARSER(BERT) to an-
alyze the contribution of each design choice. In detail, we
first evaluate a base framework that does not use the Ques-
tion Decomposer (QD) and the database content (DB). Then,
we gradually apply each component to the base model. The
ablation study is conducted on the development set. Table 3
shows the results of ablation study.

Firstly, it is clear that our base model significantly outper-
forms the well designed complicated architecture methods
(e.g., Global-GNN and SyntaxSQLNet) by using the recur-
sive framework with the simple yet effective multi-task SQL
Generator module.

Secondly, using the Question Decomposer without the
recursive-attention-divergency loss improves the perfor-
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mance of RECPARSER about 1.1%. It demonstrates the ef-
fectiveness of using the soft-mask-attention to update the ut-
terance representation.

Thirdly, adding the recursive-attention-divergency loss fur-
ther brings a 2.3% improvement. It demonstrates the effec-
tiveness of our loss function. We observe that for those nested
SQL queries, the base framework has the problem that tends
to put the columns of the outside layer to the inside layer. The
number of examples suffering from this problem decreases by
53% when using the Question Decomposer. It means that the
Question Decomposer helps to minimize the interference be-
tween different SQL layers. At last, using the database con-
tent helps to recognize the value mentioned in the utterance,
which brings a 2.3% improvement of performance.

4.4 Qualitative Analysis

Here we conduct a qualitative analysis on the effectiveness of
the Question Decomposer (QD). Firstly, Figure 5 visualizes
the attention weights ayy from Equation 2 in different rounds
of the two examples, in which color intensity reflects the at-
tention weight. As we can see, when incorporating the QD
module, RECPARSER is much easier to focus on different
components of the utterance between different rounds than
removing the QD module. Secondly, according to the pre-
diction results of the two examples, when removing the QD
module, RECPARSER tends to be confused about the correct
layer position of the selected column. When incorporating
with the QD module, both of the two examples get the cor-
rect SQL queries. It demonstrates that the QD module help
RECPARSER to minimize the interference between different
utterance components that correspond to different SQL query
layers.

5 Conclusion

In this paper, we propose a novel recursive semantic parsing
framework called RECPARSER to decompose the compli-
cated nested SQL generation problem into several progres-
sive non-nested SQL query generation problems. Experi-
ments on Spider dataset show that our approach is more ef-
fective compared to previous work at predicting the nested
SQL queries. In addition, we achieve a comparable overall
accuracy to state-of-the-art approaches.
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