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Abstract
The goal of medical relation extraction is to detect
relations among entities, such as genes, mutations
and drugs in medical texts. Dependency tree struc-
tures have been proven useful for this task. Exist-
ing approaches to such relation extraction leverage
off-the-shelf dependency parsers to obtain a syn-
tactic tree or forest for the text. However, for the
medical domain, low parsing accuracy may lead to
error propagation downstream the relation extrac-
tion pipeline. In this work, we propose a novel
model which treats the dependency structure as a
latent variable and induces it from the unstructured
text in an end-to-end fashion. Our model can be
understood as composing task-specific dependency
forests that capture non-local interactions for bet-
ter relation extraction. Extensive results on four
datasets show that our model is able to significantly
outperform state-of-the-art systems without relying
on any direct tree supervision or pre-training.

1 Introduction
With a significant growth in the medical literature, re-
searchers in the area are still required to track it mostly man-
ually. This is an opportunity to automate some of this track-
ing process, and indeed Natural Language Processing (NLP)
techniques have been used to automatically extract knowl-
edge from medical articles. Among these techniques, rela-
tion extraction plays a significant role as it facilitates the de-
tection of relations among entities in the medical literature
[Peng et al., 2017; Song et al., 2019]. For example in Figure
1, the sub-clause “human phenylalanine hydroxylase cat-
alytic domain with bound catechol inhibitors” drawn from
the CPR dataset [Krallinger et al., 2017] contains two entities,
namely phenylalanine hydroxylase and catechol. There is a
“down regulator” relation between these two entities, denoted
as “CPR:4”.

Dependency structures are often used for relation extrac-
tion as they are able to capture non-local syntactic relations
that are only implicit in the surface form alone [Zhang et al.,
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Figure 1: (a) 1-best dependency tree; (b) manually labeled gold tree;
(c) a dependency forest generated by the LF-GCN model, where the
number for each arc indicates the weight of the edge in the forest.
We omit some edges for simplicity. Phrase phenylalanine hydrox-
ylase and catecho are gene and drug entity, respectively.

2018]. In the medical domain, early efforts leverage graph
LSTM [Peng et al., 2017] or graph neural networks [Song
et al., 2018; Guo et al., 2019a] to encode the 1-best depen-
dency tree. However, dependency parsing accuracy is rela-
tively low in the medical domain. Figure 1 shows the 1-best
dependency tree obtained by the Stanford CoreNLP [Man-
ning et al., 2014], where the dependency tree contains an er-
ror. In particular, the entity phrase phenylalanine hydrox-
ylase is broken since the word hydroxylase is mistakenly
considered as the main verb. In order to mitigate the er-
ror propagation when incorporating the dependency structure,
Song et al. [2019] construct a dependency forest by adding
additional edges with high confidence scores given by a de-
pendency parser trained on the news domain or merging the
K-bests trees [Eisner, 1996] by combining identical depen-
dency edges. Lifeng et al. [2020] jointly train a pre-trained
dependency parser [Dozat and Manning, 2017] and a rela-
tion extraction model. The dependency forest generated by
the parser is a 3-dimensional tensor, with each position rep-
resenting the conditional probability of one word modifying
another word with a relation, which encodes all possible de-
pendency relations with the confidence scores.

Unlike previous research efforts that rely on dependency
parsers trained on newswire text, our proposed model treats
the dependency parse as a latent variable and induces it
in an end-to-end fashion. We build our model based on
the mechanism of structured attention [Kim et al., 2017;
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Figure 2: Overview of our proposed LF-GCN model. It is composed of M identical blocks and each block has two components—forest
inducer and forest encoder. The forest inducer consists of two sub-modules, where the first sub-module computes N attention matrices based
on the multi-head attention, and the second sub-module takes the N attention matrices as inputs to obtain N dependency forests based on the
Matrix-Tree Theorem. Then, the forest encoder uses graph neural networks to encode the induced forests.

Liu and Lapata, 2018]. Using a variant of the Matrix-Tree
Theorem [Tutte, 1984; Koo et al., 2007], our model is able to
generate task-specific non-projective dependency structures
for capturing non-local interactions between entities without
recourse to any pre-trained parsers or tree supervision. We
further construct multiple forests by projecting the represen-
tations of nodes to different representation subspaces, allow-
ing an induction of a more informative latent structure for
better relation prediction. We name our proposed model as
LF-GCN, where LF is the abbreviation of latent forests.

Experiments show that our LF-GCN model is able to
achieve better performance on various relation extraction
tasks. For the sentence-level tasks, our model surpasses the
current stat-of-the-art models on the CPR dataset [Krallinger
et al., 2017] and the PGR dataset [Sousa et al., 2019]) by
3.2% and 2.6% in terms of F1 score, respectively. For the
cross-sentence tasks [Peng et al., 2017], our model is also
consistently better than others, showing its effectiveness on
long medical text. We release our code at https://github.com/
Cartus/Latent-Forests.

2 Model
Here we present the proposed model as shown in Figure 2.

2.1 Forest Inducer
Existing approaches leverage a dependency parser trained
on newswire text [Song et al., 2019] or a fine-tuned parser
for the medical domain [Lifeng et al., 2020] to generate
a dependency forest, which is a fully-connected weighted
graph. Unlike previous efforts, we treat the forest as a la-
tent variable, which can be learned from a targeting dataset
in an end-to-end manner. Inspired by Kim et al. [2017]
and Liu and Lapata [2018], we use a variant of Kirchhoff’s
Matrix-Tree Theorem (MTT) [Tutte, 1984; Koo et al., 2007;
Smith and Smith, 2007] to induce the latent structure of an in-
put sentence. Such latent structure can be viewed as multiple
full dependency forests, which efficiently represent all possi-
ble dependency trees within a compact and dense structure.

Given a sentence s = w1, ..., wn, where wi represents the
i-th word, we define a graph G on n nodes, where each node
refers to the word in the s, and the edge (i, j) refers to the

dependency between the i-th word (head) to the j-th node
(modifier). We denote the contextual output of the sentence
h ∈ Rn×d as h = h1, ...,hn, where hi ∈ Rd represents the
hidden state of the i-th word with a d dimension. We use
the bidirectional LSTM to obtain contextual representations
of the sentence.

For the graph G, MTT takes the edge scores and root scores
as inputs then generates a latent forest by computing the
marginal probabilities for each edge. Given the input h and a
weight vector θθθk ∈ Rm of dependencies, where m ∈ R rep-
resents the number of dependencies for the k-th (k ∈ [1, N ])
latent structure, inducing the k-th latent forest for the input h
amounts to finding the latent variables zkij(h, θθθk) for all edges
that satisfy i6=j and root node whose index equals to 0.

The k-th latent forest induced by MTT contains many non-
projective dependency trees, which are denoted by Tk. Let
P (y|h;θθθk) denote the conditional probability of a tree y over
Tk. Following the formulation by Koo et al. [2007], the
marginal probability of a dependency edge from i-th word
to j-th word for the k-th forest can be expressed as :

P (zkij = 1) =
∑

y∈Tk:(i,j)∈y

P (y|h;θθθk) (1)

We derive two steps to obtain the marginal probabilities
expressed in Equation (1).

Computing Attention Scores
Inspired by Vaswani et al. [2017], we calculate the edge
scores by the multi-head attention mechanism, which allows
the model to jointly attend to information from different rep-
resentation subspaces. N attention matrices will be fed into
the MTT to obtain N latent forests in order to capture differ-
ent dependencies in different representation subspaces. The
attention matrix for the k-th head is calculated by a function
of the query Q with the corresponding key K. Here Q and K
are both equal to the contextual representation h. We project
Q and K to different representation subspaces in order to gen-
erate N attention matrices for calculating N latent forests.
Formally, the k-th forest Sk is given by:

Sk = softmax(
QWQ × (KWK)T√

d
) (2)
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where WQ ∈ Rd×d and WK ∈ Rd×d are parameters for pro-
jections. Sk

ij denotes the normalized attention score between
the i-th token and the j-th token with hi and hj . Then, we
compute the root score rki , which represents the normalized
probability of the i-th node to be selected as the root node of
the k-th forest:

rki = Wk
rhi (3)

where Wk
r ∈ R1×d is the weight for the projection.

Imposing Structural Constraint
Following Koo et al. [2007] and Smith and Smith [2007], we
calculate the marginal probability of each dependency edge
of the k-th latent forest, by injecting a structural bias on Sk .
We assign non-negative weights Pk ∈ Rn×n to the edges as:

Pk
ij =

{
0 if i = j

exp (Sk
ij) otherwise

(4)

where Pk
ij is the weight of the edge between the i-th and the

j-th node. We define a Laplacian matrix Lk ∈ Rn×n of G in
Equation (5), and its variant L̂k ∈ Rn×n in Equation (6).

Lk
ij =

{∑n
i′=1 P

k
i′j if i = j

−Pk
ij otherwise

(5)

L̂k
ij =

{
exp(rki ) if i = 1

Lk
ij if i > 1

(6)

We use Ak
ij to denote the marginal probability of the de-

pendency edge between the i-th node and the j-th node.
Then, Ak

ij can be derived based on:

Ak(zij = 1) = (1− δ1,j)Pk
ij [(L̂

k)−1]ij

−(1− δi,1)Pk
ij [(L̂

k)−1]ji
(7)

where δ is Kronecker delta and Ak ∈ Rn×n can be inter-
preted as a weighted adjacency matrix for the k-th forest.
Now we can feed A ∈ RN×n×n into the forest encoder to
update the representations of nodes in the latent structure.

Adaptive Pruning Strategy
Prior dependency-based model [Zhang et al., 2018] also pro-
poses rule-based method to prune a dependency tree to fur-
ther improve relation classification performance. However,
the weighted adjacency matrix A is derived based on a con-
tinuous relaxation, and such induced structures are not dis-
crete, so the existing rule-based pruning methods are not ap-
plicable. Instead, we use α-entmax [Blondel et al., 2018;
Correia et al., 2019] to remove irrelevant information by im-
posing the sparsity constraints on the adjacency matrix. α-
entmax is able to assign exactly zero weights. Therefore, an
unnecessary path in the induced latent forests will not be con-
sidered by the latent forest encoder. The expression of our
soft pruning strategy is described as:

Ak = α-entmax(Ak) (8)

where α is a parameter to control the sparsity of each adja-
cency matrix. When α=2, the entmax recovers the sparsemax

mapping [Martins and Astudillo, 2016]. When α=1, it re-
covers the softmax mapping. Correia et al. [2019] propose
an exact algorithm to learn α automatically. Here we apply
k α-entmax to k latent forests, which enables the model to
develop different pruning strategies for different latent forest.

2.2 Forest Encoder
GivenN latent forests generated by the forest inducer, we en-
code them by using densely-connected graph convolutional
networks [Kipf and Welling, 2017; Guo et al., 2019b]. For-
mally, given the k-th latent forest, which is represented by the
adjacency matrix Ak, the convolution computation for the i-
th node at the l-th layer, which takes the representation hl−1

i
from previous layer as input and outputs the updated repre-
sentations hl

i, can be defined as:

hl
ki

= σ(
n∑

j=1

Ak
ijW

l
kh

l−1
i + bl

k) (9)

where Wl
k and bl

k are the weight matrix and bias vector for
the k-th latent forest in the l-th layer, respectively. σ is an
activation function. h0

i ∈ Rd is the initial contextual repre-
sentation of the i-th node. Then a linear combination layer is
used to integrate representations of the N latent forests:

hcomb = Wcombhout + bcomb (10)

where hout is the output by concatenating outputs from N
separated convolutional layers, i.e., hout = [h(1); ...;h(N)] ∈
Rd×N . Wcomb ∈ R(d×N)×d is a weight matrix and bcomb is
a bias vector for the linear transformation.

3 Experiments
3.1 Data
We evaluate our LF-GCN model with four datasets on two
tasks, namely cross-sentence n-ary relation extraction and
sentence-level relation extraction.

For cross-sentence n-ary relation extraction, we use two
datasets generated by Peng et al. [2017], which has 6,987
ternary relation instances and 6,087 binary relation instances
extracted from PubMed. The relation label contains five cat-
egories, e.g., “sensitivity”, “resistance” and “none”. Follow-
ing Song et al. [2018], we define two sub-tasks for a more
detailed evaluation, i.e., binary-class n-ary relation extraction
and multi-class n-ary relation extraction. For binary-class ex-
traction, we cluster the four relation classes as “Yes” and treat
the label “None” as “No”.

For sentence-level relation extraction, we follow the exper-
imental settings by Lifeng et al. [2020] on BioCreative Vi
CPR (CPR) [Krallinger et al., 2017] and Phenotype-Gene re-
lation (PGR) [Sousa et al., 2019]. The CPR dataset contains
the relations between chemical components and human pro-
teins. It has 16,107 training, 10,030 development and 14,269
testing instances, with five regular relations, such as “CPR:3”,
“CPR:9” and “None” relation. PGR introduces the relations
between human phenotypes with human genes, and it con-
tains 11,780 training instances and 219 test instances, with
binary class “Yes” and “No” on relation labels.
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Syntax Type Model
Binary-class Multi-class

Ternary Binary Ternary Binary
Single Cross Single Cross Cross Cross

Full Tree
DAG LSTM [Peng et al., 2017] 77.9 80.7 74.3 76.5 - -
GRN [Song et al., 2018] 80.3 83.2 83.5 83.6 71.7 71.7
GCN [Zhang et al., 2018] 84.3 84.8 84.2 83.6 77.5 74.3

Pruned Tree GCN [Zhang et al., 2018] 85.8 85.8 83.8 83.7 78.1 73.6
Forest AGGCN [Guo et al., 2019a] 87.1 87.0 85.2 85.6 79.7 77.4

LF-GCN (Ours) 88.0 88.4 86.7 87.1 81.5 79.3

Table 1: Average test accuracies on the [Peng et al., 2017] dataset for binary-class n-ary relation extraction and multi-class n-ary relation
extraction. “Ternary” and “Binary” denote drug-gene-mutation tuple and drug-mutation pair, respectively. Single and Cross indicate that
the entities of relations reside in single sentence or multiple sentences, respectively.

We also use SemEval-2010 Task 8 [Hendrickx et al., 2009]
dataset from the news domain to evaluate the generalization
capability of our model. It has 10,717 instances with 9 types
of relations and a special “Other” relation.

3.2 Settings
We tune the hyper-parameters according to the results on the
development sets. For the cross-sentence n-ary relation ex-
traction task, we use the same data splits as Song et al. [2018],
stochastic gradient descent optimizer with a 0.9 decay rate,
and 300-dimensional GloVe. The hidden size of both BiL-
STM and GCNs are set as 300.

For cross-sentence task, we report the test accuracy aver-
aged over five cross validation folds [Song et al., 2018] for
the cross-sentence n-ary task. For the sentence-level task, we
report the F1 scores [Lifeng et al., 2020].

3.3 Results on Cross-Sentence n-ary Task
To verify the effectiveness of the model in predicting inter-
sentential relations, we compare LF-GCN against state-of-
the-art systems on the cross-sentence n-ary relation extrac-
tion task [Peng et al., 2017], as shown in Table 1. Previous
systems using the same syntax type are grouped together.
Full Tree: models use the 1-best dependency graph con-
structed by connecting roots of dependency trees correspond
to the input sentences. DAG LSTM encodes the graph by us-
ing graph-structure LSTM, while GRN and GCN encode it
using graph recurrent networks and graph convolutional net-
works, respectively.
Pruned Tree: model with pruned trees as inputs, whose de-
pendency nodes and edges are removed based on rules [Zhang
et al., 2018]. GCN is used to encode the resulted structure.
Forest: model constructs multiple fully-connected weighted
graphs based on the multi-head attention [Vaswani et al.,
2017], where the graph can be viewed as a dependency forest.

Models with pruned trees as inputs tend to achieve higher
results than models with full trees. Intuitively, longer sen-
tences in the cross-sentence task correspond to more complex
dependency structures. Using an out-of-domain parser may
introduce more noise to the model. Removing the irrelevant
nodes and edges of the parse tree enables the model to per-
form better prediction. However, a rule-based pruning strat-
egy [Zhang et al., 2018] may not yield optimal performance.
In contrast, LF-GCN induces the dependency structure au-
tomatically, which can be viewed as a soft pruning strategy

Syntax Type Model F1

None
Random-DDCNN [Lifeng et al., 2020] 45.4∗

Att-GRU [Liu et al., 2017] 49.5∗

Bran [Verga et al., 2018] 50.8∗

Tree
GCN [Zhang et al., 2018] 52.2∗

Tree-DDCNN [Lifeng et al., 2020] 50.3∗

Tree-GRN [Lifeng et al., 2020] 51.4∗

Forest

Edgewise-GRN [Song et al., 2019] 53.4∗

KBest-GRN [Song et al., 2019] 52.4∗

AGGCN [Guo et al., 2019a] 56.7∗

ForestFT-DDCNN [Lifeng et al., 2020] 55.7∗

LF-GCN (Ours) 58.9∗

Table 2: Test results on the CPR dataset. Results on AGGCN and
GCN are reproduced based on their released implementation.

learned from the data. Compared to GCN models, our model
obtains 2.2 and 2.6 points improvement over the best per-
forming model with pruned trees for the ternary relation ex-
traction. For binary relation extraction, our model achieves
accuracy of 86.7 and 87.1 under Single and Cross set-
tings, respectively, which surpasses the state-of-the-art AG-
GCN model. We believe that our LF-GCN is able to distill
relevant information and filter out noises from the represen-
tation for better prediction.

3.4 Results on Sentence-Level Task
To examine LF-GCN on sentence-level task, we compare LF-
GCN with state-of-the-art models on two medical datasets,
i.e., CPR [Krallinger et al., 2017] and PGR [Sousa et al.,
2019]. These systems are grouped in three types based on
the syntactic structure used as shown in Table 2 and Table
3. Results labeled with “∗” are obtained based on the re-
trained models using their released implementations, as we
don’t have published results for the dataset.
None: models do not use any pre-trained parsers. Random-
DDCNN uses a randomly initialized parser [Dozat and Man-
ning, 2017] fine-tuned by the relation prediction loss. Att-
GRU stacks a self-attention layer on top of the gated recur-
rent units and Bran relies on a bi-affine self-attention model
to capture the interactions in the sentence. BioBERT is a pre-
trained language representation model for biomedical text.
Tree: models use the 1-best dependency tree. Full trees
are encoded by GCN, GRN and DDCNN, respectively. BO-
LSTM only encodes words on the shortest dependency path.
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Syntax Type Model F1
None BioBERT [Lee et al., 2019] 67.2∗

Tree
BO-LSTM [Lamurias et al., 2019] 52.3∗

GCN [Zhang et al., 2018] 81.3∗

Tree-GRN [Lifeng et al., 2020] 78.9∗

Forest

Edgewise-GRN [Song et al., 2019] 83.6∗

KBest-GRN [Song et al., 2019] 85.7∗

AGGCN [Guo et al., 2019a] 89.3∗

ForestFT-DDCNN [Lifeng et al., 2020] 89.3∗

LF-GCN (Ours) 91.9∗

Table 3: Test results on the PGR dataset. Results on AGGCN and
GCN are reproduced based on their released implementations.

Syntax Type Model F1

Tree Tree-GRN [Song et al., 2019] 84.6
GCN [Zhang et al., 2018] 84.8

Forest

ForestFT-DDCNN [Lifeng et al., 2020] 85.5
AGGCN [Guo et al., 2019a] 85.7
KBest-GRN [Song et al., 2019] 85.8
Edgewise-GRN [Song et al., 2019] 86.3
LF-GCN (Ours) 85.7

Table 4: Test results on the SemEval dataset.

Forest: models leverage the dependency forest. Edgewise-
GRN constructs a dependency forest by keeping all the edges
with scores greater than a pre-defined threshold. KBest-
GRN generates a forest by merging K-bests trees. ForestFT-
DDCNN builds a forest by a learnable dependency parser.
AGGCN computes attention matrices and treats them as the
adjacency matrices of forests.

As shown in Table 3, models with full dependency trees or
forests as inputs are able to significantly outperform all mod-
els that only consider the text sequence including BioBERT,
which is trained on a very large-scale medical corpus. These
results demonstrate that modeling structure in the input sen-
tence is beneficial to the relation extraction task. Models with
dependency forests as inputs yield better performance than
those use 1-best dependency trees, which confirms our hy-
pothesis that the error propagation, which is caused by the
low parsing accuracy of an out-of-domain parser, can be al-
leviated by constructing weighted graphs (forests). Com-
pared with models which encode fixed dependency forests
that are generated at the data preprocessing stage (Edgewise-
GRN and KBest-GRN), models with dynamic forests includ-
ing AGGCN, ForestFT-DDCNN and LF-GCN achieve higher
performance. On the other hand, LF-GCN also makes predic-
tions without recourse to any pre-trained parsers, while it out-
performs Random-DDCNN by a large margin, i.e., 14.5. Fur-
thermore, our LF-GCN model achieves 58.9 and 91.9 scores
on CPR and PGR datasets, which are consistently better than
all forest generation approaches. These results suggest that
the induced latent structure is able to capture task-specific in-
formation for better relation extraction.

3.5 Results on News Domain
LF-GCN can also be used in other domain. Table 4 gives
the results on SemEval [Hendrickx et al., 2009] dataset from

Figure 3: F1 scores against sentence length. The results on Tree-
GRN and ForestFT-DDCNN come from [Lifeng et al., 2020].

Figure 4: F1 scores against the number of forests on the dataset
[Peng et al., 2017] under the 〈 Binary-class, Ternary, Cross 〉 set-
ting shown in Table 1. The results on AGGCN are reproduced based
on its released implementation.

the news domain. Using limited training data, LF-GCN out-
performs the models with a dependency tree including Tree-
GRN and GCN by almost 1 point and is comparable with
the models with dependency forests including AGGCN and
ForestFT-DDCNN. This demonstrates that LF-GCN is able
to learn a comparable expressive structure compared with the
structure generated by an in-domain parser. LF-GCN is 0.6
point worse than Edgewise-GRN. The reason is that the pars-
ing performance for newswire is much more accurate than
the biomedical domain. We believe that our model is able to
achieve higher performance if more training data is available.

3.6 Analysis and Discussion
Performance against Sentence Length
To investigate our LF-GCN performance under different sen-
tence lengths, we split the test set of CPR into three categories
((0, 25], (25, 50], >50) based on the lengths. As shown in
Figure 3, we compare our LF-GCN with Tree-GRN [Song
et al., 2019] and ForestFT-DDCNN [Lifeng et al., 2020].
In general, LF-GCN outperforms Tree-GRN and ForestFT-
DDCNN for each group of instances, showing the effective-
ness of our model based on a latent structure induction. The
performance gap is enlarged when the instance length in-
creases. Intuitively, longer instances are more challenging
since the dependency structure is a more sophisticated tree.
These results illustrate that the induced structure is able to
capture complex non-local interactions for better prediction.

Performance against Number of Forests
Figure 4 shows the performance of LF-GCN and AGGCN
with different number of forests, since AGGCN also lever-
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ages the multi-head attention mechanism [Vaswani et al.,
2017] to generate multiple weighted graphs. Even though
AGGCN is initialized with the 1-best dependency tree gen-
erated by a pre-trained parser, LF-GCN consistently outper-
forms it under the same number of forest without relying on
any parsers, where the numbers range from 1 to 4. These
results demonstrate that our model is able to construct infor-
mative structures only based on the input text.

3.7 Case Study
In this section, we use the Chu-Liu-Edmonds [Chu and Liu,
1965] algorithm to extractN non-projective dependency trees
from N latent forests, where each forest is expressed by a
weighted adjacency matrix in Equation 8. HereN equals to 2.
We select an instance from the CPR development set, whose
relations can be correctly predicted by our LF-GCN.

Case I: As shown in Figure 5, these two dependency trees
are able to capture rich interactions between the entities
Schisandrin B (index 0 and 1) and DT-diaphorase (index
10, 11 and 12), which have a “up regulator” relation, denoted
as “CPR:3”. For example, the token “enhancing” (index 9),
which shares the similar semantic as the gold relation “up
regulator”, is selected in the path between these two entities.
Furthermore, these two trees show different dependencies be-
tween tokens, which confirms our hypothesis that inducing
multiple forests can include more useful information.

Case II: However, as shown in Figure 6, many dependency
trees induced by structure attention are shallow and do not
resemble to a linguistic syntax structure. Figure 6 shows two
shallow trees extracted from the latent forests before impos-
ing sparsity constraints. We observe that the constructed de-
pendency trees tend to pick the first token of the sentence as
the root, and all other tokens as the children. Interestingly,
even though such trees have little to no structure, the model is
still able to predict the correct relation label. We also notice
that adding the α-entmax helps to induce deeper and more
informative structures. We leave the investigation of this phe-
nomenon as future work.

4 Related Work
Latent Structure Induction: Latent structure models are
powerful tools for modeling compositional data and building
NLP pipelines [Yogatama et al., 2016; Niculae et al., 2018].
A challenge with structured latent models is that they involve
computing an “argmax” (i.e., finding a best scoring discrete
structure such as a parse tree) in the middle of a computation
graph. Since this operation has null gradients, back prop-
agation cannot be used. There are three main strategies to
solve this issue including reinforcement learning, surrogate
gradients and continuous relaxation. In this paper, we mainly
focus on continuous relaxations, for which the exact gradi-
ent can be computed and back propagated [Kim et al., 2017;
Liu and Lapata, 2018; Nan et al., 2020].

Medical Relation Extraction: Early efforts focus on pre-
dicting relations between entities by modeling interactions in
the 1-best dependency tree [Peng et al., 2017; Song et al.,
2018]. Recently, dependency forests were used to alleviate

1 2 3 4 5 6 7 8 9 10 11 12 13 140
(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 140
(b)

Figure 5: (a) the first and (b) the second non-projective dependency
tree, which are extracted from two latent forests induced by LF-
GCN. The sentence is “VT recurred with the addition of amino-
phylline, a competitive adenosine A1-receptor antagonist.”
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Figure 6: (a) the first and (b) the second non-projective dependency
tree, which are extracted from two latent forests induced by LF-
GCN. The sentence is “VT recurred with the addition of amino-
phylline, a competitive adenosine A1-receptor antagonist.”

the error cascading caused by an out-of-domain parser. Song
et al. [2019] build a forest by adding edges and labels that
a pre-trained parser is confident about. Lifeng et al. [2020]
construct full forests represented by a 3-dimensional tensor
generated by a pre-trained parser fine-tuned by the relation
prediction loss. Instead of using an out-of-domain parser,
our model dynamically induces multiple dependency forests
solely based on the medical dataset in an end-to end manner.

5 Conclusion
In this paper, we propose a novel model that is able to auto-
matically induce a latent structure for better relation extrac-
tion, without recourse to any tree supervisions or pre-training.
Extensive results on four medical datasets show that our ap-
proach is able to better alleviate the error propagation caused
by an out-of-domain dependency parser, giving significantly
better results than previous state-of-the-art systems.
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[Correia et al., 2019] Gonçalo M Correia, Vlad Niculae, and
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