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Abstract
Recent research indicates that pretraining cross-
lingual language models on large-scale unlabeled
texts yields significant performance improvements
over various cross-lingual and low-resource tasks.
Through training on one hundred languages and
terabytes of texts, cross-lingual language mod-
els have proven to be effective in leveraging
high-resource languages to enhance low-resource
language processing and outperform monolingual
models. In this paper, we further investigate
the cross-lingual and cross-domain (CLCD) setting
when a pretrained cross-lingual language model
needs to adapt to new domains. Specifically,
we propose a novel unsupervised feature decom-
position method that can automatically extract
domain-specific features and domain-invariant fea-
tures from the entangled pretrained cross-lingual
representations, given unlabeled raw texts in the
source language. Our proposed model lever-
ages mutual information estimation to decompose
the representations computed by a cross-lingual
model into domain-invariant and domain-specific
parts. Experimental results show that our proposed
method achieves significant performance improve-
ments over the state-of-the-art pretrained cross-
lingual language model in the CLCD setting.

1 Introduction
Recent progress in deep learning benefits a variety of NLP
tasks and leads to significant performance improvements
when large-scale annotated datasets are available. For high-
resource languages, e.g., English, it is feasible for many tasks
to collect sufficient labeled data to build deep neural mod-
els. However, for many languages, there might not exist
enough data in most cases to make full use of the advances of
deep neural models. As such, various cross-lingual transfer
learning methods have been proposed to utilize labeled data
∗This work was supported by Alibaba Group through Alibaba

Innovative Research (AIR) Program.
†This work was done when Juntao Li was an intern at the Na-

tional University of Singapore.

from high-resource languages to construct deep models for
low-resource languages [Kim et al., 2019; Lin et al., 2019;
He et al., 2019; Vulić et al., 2019]. Nonetheless, most cross-
lingual transfer learning research focuses on mitigating the
discrimination of languages, while leaving the domain gap
less explored. In this study, we concentrate on a more chal-
lenging setting, i.e., cross-lingual and cross-domain (CLCD)
transfer, where in-domain labeled data in the source language
is not available.

Conventionally, cross-lingual methods mainly rely on ex-
tracting language-invariant features from data to transfer
knowledge learned from the source language to the target lan-
guage. One straightforward method is weight sharing, which
directly reuses the model parameters trained on the source
language to the target language, by mapping an input text to a
shared embedding space beforehand. However, previous re-
search [Chen et al., 2018] revealed that weight sharing is not
sufficient for extracting language-invariant features that can
generalize well across languages. As a result, a language-
adversarial training strategy was proposed to extract invari-
ant features across languages, using non-parallel unlabeled
texts from each language. Such a strategy performs well for
the bilingual transfer setting but is not suitable for extracting
language-invariant features from multiple languages, since
features shared by all source languages might be too sparse
to retain useful information.

Recently, pretrained cross-lingual language models at
scale, e.g., multilingual BERT [Devlin et al., 2019] and XLM
[Conneau and Lample, 2019; Conneau et al., 2019], show
very competitive performance over various cross-lingual
tasks, and even outperform pretrained monolingual mod-
els on low-resource languages. Through employing paral-
lel texts (unlabeled for any specific task) and shared sub-
word vocabulary over all languages, these pretrained cross-
lingual models can effectively encode input texts from mul-
tiple languages to one single representation space, which is
a feature space shared by multiple languages (more than one
hundred). While generalizing well for extracting language-
invariant features, cross-lingual pretraining methods have
no specific strategy for extracting domain-invariant features.
In our CLCD setting, both language-invariant and domain-
invariant features need to be extracted.

To address the aforementioned limitation of cross-lingual
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pretrained models [Conneau et al., 2019] in CLCD scenarios,
we propose an unsupervised feature decomposition (UFD)
method, which only leverages unlabeled data in the source
language. Specifically, our proposed method is inspired by
the recently proposed unsupervised representation learning
method [Hjelm et al., 2019] and can simultaneously extract
domain-invariant features and domain-specific features by
combining mutual information maximization and minimiza-
tion. Compared to previous cross-lingual transfer learning
methods, our proposed model maintains the merits of cross-
lingual pretrained models, i.e., generalizing well for over
a hundred languages, and only needs unlabeled data in the
source language for domain adaptation, which is suitable for
more cross-lingual transfer scenarios.

We evaluate our model on a benchmark cross-lingual sen-
timent classification dataset, i.e., Amazon Review [Pretten-
hofer and Stein, 2010], which involves multiple languages
and domains. Experimental results indicate that, with the
enhancement of the pretrained XLM cross-lingual language
model, our proposed UFD model (trained on some unlabeled
raw texts in the source language) along with a simple lin-
ear classifier (trained on a small labeled dataset in the source
language and the source domain) outperforms state-of-the-art
models that have access to strong cross-lingual supervision
(e.g., commercial MT systems) or labeled datasets in mul-
tiple source languages. Furthermore, incorporating our pro-
posed UFD strategy with an unlabeled set of 150K instances
in the source language leads to continuous gains over the
strong pretrained XLM model that is trained on one hundred
languages and terabytes of texts. Extensive experiments fur-
ther demonstrate that unsupervised feature decomposition on
a pretrained cross-lingual language model outperforms a pre-
trained domain-specific language model trained on over 100
million sentences.

2 Related Work
Cross-lingual transfer learning (CLTL) has long been inves-
tigated [Yarowsky et al., 2001] and is still one of the fron-
tiers of natural language processing [Chen et al., 2019].
Through utilizing rich annotated data in high-resource lan-
guages, CLTL significantly alleviates the challenge of scarce
training data in low-resource languages. Conventionally,
CLTL mainly focuses on resources that are available for
transferring, e.g., collecting parallel texts between two lan-
guages to directly transfer model built in a rich-resource lan-
guage to a low-resource one [Pham et al., 2015] or construct-
ing annotated data in the target language by machine trans-
lation systems [Xu and Yang, 2017]. Subsequently, with
the success of deep learning, cross-lingual word embeddings
are proposed to learn the shared representation space at the
fundamental level and can benefit various downstream tasks
[Artetxe et al., 2018; Conneau et al., 2018a]. Later, a cross-
lingual sentence representation is also proposed [Conneau
et al., 2018b]. Chen et al. [2018] designed a language-
adversarial training strategy to extract language-invariant fea-
tures that can directly transfer to the target language.

Another direction is pretraining cross-lingual [Conneau
and Lample, 2019] or multilingual language models [De-

vlin et al., 2019]. Benefiting from the large-scale training
texts and model size, these pretraining methods have changed
the face of cross-lingual transfer learning. Empirical results
demonstrate that representation space shared by one hundred
languages can significantly outperform the language-specific
pretrained models [Conneau et al., 2019]. As language ad-
versarial training will lead to sparse language-invariant rep-
resentations when multiple languages are involved [Chen et
al., 2019], we follow the line of cross-lingual language model
pretraining. Unlike previous pretraining methods, we focus
on domain adaptation of these pretrained models. To main-
tain the generalization ability of the cross-lingual pretrained
model, we mainly consider the unsupervised domain adap-
tation setting. The work most related to ours is proposed
for unsupervised representation learning [Hjelm et al., 2019],
which is primarily used for visual representation learning.

3 Model
In this section, we first define the problem discussed in this
paper and then describe the proposed method in detail.

3.1 Problem Definition & Model Overview
In this paper, we consider a setting where we only have a la-
beled set Ds,s of a specific language and a specific domain
which we call source language and source domain, and we
want to train a classifier to be tested on a set Dt,t of a dif-
ferent language and a different domain which we call target
language and target domain. We also assume access to some
unlabeled raw data Ds,u of multiple domains including the
target domain from the source language during the training
phase, which is usually feasible in practical applications. We
call this setting unsupervised cross-lingual and cross-domain
(CLCD) adaptation.

As illustrated in Figure 1, the proposed method consists
of three components: a pretrained multilingual embedding
module which embeds the input document into a language-
invariant representation, an unsupervised feature decomposi-
tion (UFD) module which extracts domain-invariant features
and domain-specific features from the entangled language-
invariant representation, and a task-specific module trained
on the extracted domain-invariant and domain-specific fea-
tures. We adopt XLM1 [Conneau and Lample, 2019] as
the multilingual embedding module in our method, which
has been pretrained by large-scale parallel and monolingual
data from various languages and is the current state-of-the-
art cross-lingual language model. We describe the other two
modules and the training process in the following subsec-
tions.

3.2 Unsupervised Feature Decomposition
Mutual Information Estimation
Before elaborating on the proposed unsupervised feature
decomposition module, we first present some preliminary
knowledge on mutual information estimation, which is em-
ployed in the training objectives of UFD. Mutual informa-
tion (MI) is growing in popularity as an objective function

1The latest version XLM-R is adopted, which is trained on over
one hundred languages and 2.5 terabytes of texts.
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Figure 1: Our unsupervised domain adaptation model, where Min-
MI and Max-MI refer to MI maximization and minimization. The
middle-left part is the feature extractor Fs and the right is Fp.

in unsupervised representation learning. It measures how in-
formative one variable is of another variable. In the context
of unsupervised representation learning, MI maximization is
usually adopted such that the encoded representation maxi-
mally encodes information of the original data. MI is difficult
to compute, particularly in continuous and high-dimensional
settings, and therefore various estimation approaches have
been proposed.

In our method, we adopt a recently proposed neural estima-
tion approach [Belghazi et al., 2018], which estimates MI of
two continuous random variables X and Y by training a net-
work to distinguish between samples coming from their joint
distribution, J, and the product of their marginal distributions,
M. This estimation utilizes a lower-bound of MI based on
the Donsker-Varadhan representation (DV) of KL-divergence
[Donsker and Varadhan, 1983],

I(X;Y ) := DKL(J||M) ≥ ÎDV (X;Y )

:= EJ[Tω(x, y)]− logEM[e
Tω(x,y)]

(1)

where Tω is a discrimination function parameterized by a
neural network with learnable parameters ω. It maps a sample
from space X × Y to a real value in R. Through maximiz-
ing ÎDV , Tω is encouraged to distinguish between samples
drawn from J and M by assigning the former large values
while the latter small ones.

Proposed Method
Let X ∈ Rd denote the language-invariant representation
generated by the pretrained multilingual embedding module.
It is then fed into the proposed UFD module as input. As
shown in Figure 1, we introduce two feature extractors: the
domain-invariant extractorFs (i.e., the two-layer feedforward
network with ReLU activation on the left), and the domain-
specific extractorFp (i.e., the two-layer network on the right).

We denote the extracted features as Fs(X) and Fp(X) re-
spectively. Note that for Fs, we add residual connections to
better maintain domain-invariant attributes from X .

Specifically, Fs aims to extract domain-invariant features
from the language-invariant representation in an unsuper-
vised manner. Since the multilingual embedding module is
pretrained on open domain datasets from over one hundred
languages, presumably the generated language-invariant rep-
resentations should contain certain attributes that can be gen-
eralized across domains. When Fs is trained on multiple do-
mains with jointly maximizing MI between the inputs and
outputs of each domain, it is encouraged to retain the shared
features among those domains from the language-invariant
representations. In this way, Fs is forced to pass domain-
invariant information from X to Fs(X).

We utilize the neural network-based estimator as presented
in Equation (1) for computing MI. In our case, as Fs(X) is
dependent on X , we can simplify the DV-based MI estimator
to a Jensen-Shannon MI estimator as suggested in [Hjelm et
al., 2019]:

ÎJSD(X;Fs(X)) := EP[−sp(−Tω(x,Fs(x)))]

−EP×P̃[sp(Tω(x
′
,Fs(x)))]

(2)

where x is an input embedding with empirical probabil-
ity distribution P. As Fs(x) is directly computed from x,
(x,Fs(x)) can be regarded as a sample drawn from the joint
distribution of X and Fs(X). x

′
corresponds to an input

embedding from P̃ = P, i.e., x
′

is computed from a ran-
dom sample drawn from the same input distribution, such that
(x

′
,Fs(x)) is drawn from the product of marginal distribu-

tions. sp(z) = log(1+ ez) is the softplus activation function.
The training objective of Fs is to maximize the MI on X and
Fs(X) and the loss is formulated as follows:

Ls(ωs, ψs) = −ÎJSD(X,Fs(X)) (3)
where ωs denotes the parameters of the discrimination net-
work in the estimator and ψs denotes the parameters of Fs.
To facilitate learning of domain-invariant features, we also
propose to maximize the MI onFs(X) and the corresponding
intermediate representation (first layer output) F ′s(X), and
the training loss is as follows:

Lr(ωr, ψs) = −ÎJSD(F ′s(X),Fs(X)) (4)
where ωr denotes the parameters of the discriminator network
in the estimator.

Recall that the objective ofFp is to extract domain-specific
features, which is supposed to be exclusive and independent
of domain-invariant features. We propose to minimize the MI
between features extracted by Fs and Fp, and the training
loss is formulated as follows:

Lp(ωp, ψs, ψp) = ÎJSD(Fs(X),Fp(X)) (5)
where ψp denotes the parameters of Fp. ωp denotes the pa-
rameters of the discrimination network in MI estimator.

The training objective of the proposed UFD component is
thus to minimize the overall loss as follows:

LUFD = αLs + βLr + γLp (6)
where α, β, and γ are hyperparameters to balance the effects
of sub-losses.
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Datasets English
Books DVD Music

#Documents 8,898,041 1,097,592 1,697,533
#Sentences 101,061,948 16,447,191 21,062,292
#Words 1,302,754,313 194,145,510 277,987,802
Avg length 146.4 176.9 163.8

Table 1: Statistics of domain-specific raw texts.

3.3 Task-Specific Module
In the task-specific module, we first employ a linear layer that
maps the concatenation of the domain-invariant and domain-
specific features in R2d into a vector representation in Rd.
A simple feedforward layer with softmax activation is then
employed on this mapped vector representation to output the
task label. We train this module onDs,s and the cross-entropy
loss denoted as Lt is utilized as the training objective.

3.4 Training
Note that the parameters of the multilingual embedding mod-
ule are pretrained and set to be frozen in the entire train-
ing process. We first optimize the parameters of UFD, i.e.,
{ω̂s, ω̂r, ω̂p, ψ̂s, ψ̂p} by minimizing LUFD on the unlabeled
set Ds,u. Once the UFD module is trained, we fix its param-
eters and train the task-specific module by minimizing Lt on
the labeled set Ds,s.

4 Experimental Setting
4.1 Datasets
We conduct experiments on the multi-lingual and multi-
domain Amazon review dataset [Prettenhofer and Stein,
2010], which serves as a benchmark in previous cross-lingual
sentiment analysis research and also supports cross-lingual
and cross-domain evaluation. This dataset includes texts in
four languages, i.e., English, German, French, and Japanese,
and each language contains three domains, i.e., Books, DVD,
and Music. There are a training set and a test set for each
domain in each language and both consist of 1,000 positive
reviews and 1,000 negative reviews.

In our CLCD evaluation, we treat English as the only
source language and attempt to adapt to the other three lan-
guages. As each language contains three domains, we can
construct 3 × 2 CLCD source-target pairs between English
and a specific target language. Therefore, we have 18 CLCD
source-target pairs in total considering all three target lan-
guages. During training, we first utilize some unlabeled raw
data from the source language for optimizing the proposed
UFD. Then, the training set from the source language and
source domain is used for training the task-specific module.
During testing, the model is evaluated on the test set of the
target language and target domain.

We draw samples from 3 larger unannotated datasets
of Books, DVD, and Music domains released in [He and
McAuley, 2016]. The statistics of the three datasets are given
in Table 1. We randomly sample 50K documents from each
domain as the unlabeled domain-specific set in the source lan-
guage (i.e., English) to be utilized during training. To encour-

age Fs to capture domain-shared features, we utilize domain-
specific unlabeled sets from all domains (50K× 3) in training
the UFD module. We also show the change in performance
when varying the number of unlabeled samples in Section 5.

4.2 Baselines
We denote our proposed model as XLM-UFD, and we com-
pare it with the following baselines:

CL-RL [Xiao and Guo, 2013] is a cross-lingual word rep-
resentation learning method, which learns the connection be-
tween two languages by sharing part of the word vectors.

Bi-PV [Pham et al., 2015] attempts to learn paragraph vec-
tors in a bilingual context setting by sharing the distributed
representations of unannotated parallel data from different
languages.

CLDFA [Xu and Yang, 2017] is a cross-lingual distillation
method which leverages a parallel corpus of documents. An
adversarial feature adaptation strategy is applied for reduc-
ing the mismatch between the labeled data and the unlabeled
parallel document.

MAN-MOE [Chen et al., 2019] addresses the multi-
lingual transfer setting, i.e., there are multiple source lan-
guages with labeled data. Building upon a language-
adversarial training module, this model utilizes a mixture-of-
experts (MOE) module to dynamically combine private fea-
tures of different languages.

The above four baselines were originally proposed for
adaptation in a cross-lingual setting, e.g., adapting from
English-Books to German-Books. We report their official re-
sults released in the original papers, which can be regarded
as upper bounds for their CLCD performances. Note that the
setting of MAN-MOE is different, where N to 1 adaption is
performed, i.e., from N source languages to one target lan-
guage. Thus, its cross-lingual performance cannot be simply
viewed as the upper bound of its CLCD performance. We
retrain the model in the CLCD setting as another baseline de-
scribed later. For the baselines described below, they are all
trained in the CLCD setting.

ADAN [Chen et al., 2018] exploits adversarial training to
reduce the representation discrepancy between the encoded
source and target embeddings.

MAN-MOE-D is the version of MAN-MOE trained in a
CLCD setting. As this specific model performs N to 1 adap-
tation, it can adapt from multiple source domains from the
same source language to a specific target domain and target
language. In our experiments, MAN-MOE-D utilizes two
source domains from the same source language. For exam-
ple, when the target language and domain are German-Books,
MAN-MOE-D takes labeled set from both English-DVD and
English-Music during training.

Multi-BPE combines the pretrained multilingual byte-
pair embeddings in 275 languages [Heinzerling and Strube,
2018]2 with the task-specific classifier used in our proposed
model to perform CLCD adaptation. This model is used to
calibrate the performance of the subword embeddings shared
across multiple languages.

2https://nlp.h-its.org/bpemb/multi/
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Model German French Japanese
Books DVD Music Avg Books DVD Music Avg Books DVD Music Avg

CL-RL 79.9 77.1 77.3 78.1 78.3 74.8 78.7 77.3 71.1 73.1 74.4 72.9
Bi-PV 79.5 78.6 82.5 80.2 84.3 79.6 80.1 81.3 71.8 75.4 75.5 74.2
CLDFA 84.0 83.1 79.0 82.0 83.4 82.6 83.3 83.1 77.4 80.5 76.5 78.1
MAN-MOE 82.4 78.8 77.2 79.5 81.1 84.3 80.9 82.1 62.8 69.1 72.6 68.2
ADAN 82.7 77.1 79.2 79.6 75.9 75.2 73.8 74.9 72.5 72.3 74.3 73.0
MAN-MOE-D 82.8 80.1 81.6 81.5 83.0 85.5 82.0 83.5 70.5 76.0 70.8 72.4
Multi-BPE 51.0 53.4 53.0 52.5 50.5 51.4 51.1 51.0 50.0 49.8 50.0 49.9
DLM 52.1 53.7 53.3 53.0 57.4 51.5 55.2 54.7 52.8 51.5 50.8 51.7
XLM 80.4 84.9 79.3 81.5 86.4 86.3 83.2 85.3 81.7 81.6 84.1 82.5
XLM-UFD 89.2 86.4 88.8 88.1 89.5 89.4 89.1 89.3 83.8 84.5 85.2 84.5
XLM* 86.3 81.2 84.5 84.0 90.6 86.9 87.6 88.4 82.9 85.0 87.0 85.0

Table 2: Overall comparison of classification accuracy between our proposed model and baseline models. The upper part refers to the
accuracy reported in previous studies in a cross-lingual setting while the middle part refers to our implemented models trained in a CLCD
setting. XLM* denotes the XLM model trained on source language target domain labeled data. We report the average values of three runs.

DLM is a pretrained domain-specific language model3 im-
plemented with the code of XLM4 [Conneau and Lample,
2019]. It employs the pretrained multilingual byte-pair em-
beddings as the initialized representations of input texts to
mitigate the gap between the source language and the target
language. This model is used to study the effect of leveraging
large scale domain-specific unlabeled texts.

XLM refers to the model where we simply add a feedfor-
ward layer with softmax activation as the output layer on top
of pretrained XLM [Conneau et al., 2019].

4.3 Training Details

The hidden dimension of XLM is 1024. The input and out-
put dimensions of the feedforward layers in both Fs and Fp

are 1024. The discriminator of Tωs , Tωr , and Tωp share the
same model structure as suggested in previous work [Hjelm
et al., 2019], i.e., the discriminator consists of two feedfor-
ward layers with ReLU activation. The input and output di-
mensions of the first feedforward layer in the discriminator
are 2048 and 1024. The input and output dimensions of the
second feedforward layer are 1024 and 1. The input dimen-
sion of the single-layer task-specific classifiers is 1024. All
trainable parameters are initialized from a uniform distribu-
tion [−0.1, 0.1].

We utilize 100 labeled data in the target language and target
domain as the validation set, which is used for hyperparame-
ter tuning and model selection during training. The hyperpa-
rameters are tuned on the validation set of a specific source-
target pair, and are then fixed in all experiments of XLM-
UFD. Specifically, both UFD and the task-specific module
are optimized by Adam [Kingma and Ba, 2014] with a learn-
ing rate of 1× 10−4. The batch size of training UFD and the
task-specific module are set to 16 and 8, respectively. The
weights α, β, γ in Equation (6) are set to 1, 0.3, and 1, re-
spectively. During training, the model that achieves the best
performance (lowest loss) on the validation set is saved for
evaluation purpose.

3Trained with the datasets presented in Table 1.
4https://github.com/facebookresearch/XLM

5 Results

Table 2 presents the model comparison results and Table 3
shows the results of different ablation tests on XLM-UFD.
Classification accuracy is used as the evaluation metric.

5.1 Model Comparison

In Table 2, the top 4 models are trained in a cross-lingual
setting, and the middle 6 models are trained in a CLCD set-
ting. We repeat the experiment on each source-target pair for
3 times with different random seeds and record the average
result on each pair. Each reported result for models trained
in the CLCD setting is the average result of the adaptation
performance from two source domains in English. For exam-
ple, a result under German-Books is the average of adaptation
accuracies from English-DVD and English-Music.

We make the following observations from Table 2. (1)
XLM-UFD achieves significantly better results over all base-
lines across all settings. It even substantially outperforms
baselines trained in a cross-lingual setting with parallel texts
from source and target languages such as CLDFA, which is
a much less challenging setting. (2) One interesting find-
ing is that MAN-MOE-D performs better than MAN-MOE.
One possible reason is that MAN-MOE involves multiple
source languages while invariant features shared by multi-
ple languages might be too sparse to maintain enough infor-
mation for extracting task-specific features. (3) Among the
pretrained models, multilingual byte pair embeddings (Multi-
BPE) only achieves low performance. With the enhancement
of large-scale domain-specific unlabeled text, the domain-
specific language model (DLM) taking the multilingual byte
pair embeddings as input obtains observable performance
gains but still has much room for improvement. Benefiting
from the large-scale training data and network size, XLM is
able to perform better than the state-of-the-art task-specific
models such as CLDFA and MAN-MOE-D on French and
Japanese. When combined with the proposed UFD, signif-
icant performance gains are observed on XLM. This points
out that domain adaptation is necessary for pretrained multi-
lingual language models when applied to a specific task.
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Settings German French Japanese
Books DVD Music Avg Books DVD Music Avg Books DVD Music Avg

Basic Model XLM-MI 80.4 84.9 79.3 81.5 86.4 86.3 83.2 85.3 81.7 81.6 84.1 82.5

Model Ablation
Max-MI 84.5 82.0 81.9 82.8 81.1 83.2 81.8 82.0 81.8 80.6 81.5 81.3
Max-Min-MI 88.4 85.9 87.3 87.2 88.0 88.4 88.3 88.2 84.4 83.3 85.0 84.2
2Max-Min-MI 89.2 86.4 88.8 88.1 89.5 89.4 89.1 89.3 83.8 84.5 85.2 84.5

Unlabeled Data Size

1K×3 87.2 85.4 86.4 86.4 88.6 88.3 87.0 88.0 78.9 80.0 81.0 80.0
2K×3 86.7 84.4 85.6 85.6 87.9 88.1 83.8 86.6 84.2 83.4 84.4 84.0
5K×3 89.0 86.0 86.9 87.4 87.8 89.1 86.9 87.9 83.0 83.8 82.2 82.9
10K×3 88.5 86.3 88.1 87.6 88.8 88.8 88.3 88.6 83.7 84.4 85.5 84.5
50K×3 89.2 86.4 88.8 88.1 89.5 89.4 89.1 89.3 83.8 84.5 85.2 84.5

Table 3: Classification accuracy of an ablation study and using different sizes of unlabeled data in the source language (i.e., English).

5.2 Ablation Study
To determine the effect of each module of XLM-UFD, we
conduct a thorough model ablation. As presented in Ta-
ble 3, we first examine the domain-invariant feature ex-
tractor along with MI maximization between the language-
invariant features from the multilingual embedding module
and the extracted domain-invariant features, namely Max-
MI. Classification accuracy shows that Max-MI with only
domain-invariant features enhances the performance of XLM
on German but leads to decreased performance on French
and Japanese. Through supplementing the domain-specific
feature extractor and the Min-MI objective (i.e., Lp), Max-
Min-MI has a noticeable performance increase over Max-
MI and outperforms XLM, which confirms that unsupervised
feature decomposition can support dynamic domain-specific
and domain-invariant feature combination and improve the
task performance. With the enhancement of the intermediate
Max-MI objective (i.e., Lr) between the intermediate features
and the output of domain-invariant feature extractor, 2Max-
Min-MI achieves significant performance improvement over
Max-MI, and it is used as the full model for conducting
other comparison and ablation. In addition, we investigate
the effect of unlabeled data size of the source language used
during training. It can be seen from Table 3 that the set-
ting with 5K×3 unlabeled raw texts already yields a very
promising performance. Further increasing the number of
unlabeled examples continuously improves the model perfor-
mance on French and German. When the unlabeled data size
is larger than 10K×3, the performance improvement becomes
marginal on Japanese but continues on German and French.

5.3 Visualization
To intuitively understand the process of domain-invariant fea-
ture and domain-specific feature extraction, we also give the
t-SNE plots [Maaten and Hinton, 2008] of the UFD mod-
ule at the tenth epoch. Specifically, we sample five thousand
raw texts from the source domain and target language. Each
raw text is processed by XLM, and the following domain-
invariant feature extractor and domain-specific feature extrac-
tor, respectively. As presented in Figure 2, each data point
in the plots represents an input text. We can observe from
the left plot that the domain-invariant features and domain-
specific features of input texts have a clear border that can be
distinguished, which suggests that mutual information min-
imization can force the two extractors to exclusively extract
two sets of features. The right plot in Figure 2 demonstrates

Figure 2: t-SNE plots, where the left figure refers to domain-
invariant features and domain-specific features of input texts, and
the right figure corresponds to domain-invariant features of input
texts and language-invariant representations from XLM.

that the domain-invariant features and the language-invariant
representations from XLM are partly entangled, which can
be explained by the fact that maximizing mutual information
between them can force the domain-invariant extractor to re-
tain useful features from the language-invariant representa-
tions that are shared among different domains.

6 Conclusions and Future Work
In this paper, we propose a simple but effective unsuper-
vised feature decomposition module that extends the pre-
trained cross-lingual model to a more useful CLCD sce-
nario. Through introducing the mutual information maxi-
mization and minimization objectives in representation learn-
ing, our proposed method can automatically extract domain-
invariant and domain-specific features from the language-
invariant cross-lingual space, by using only a small unla-
beled dataset from the source language during training. Ex-
perimental results indicate that, with the enhancement of the
proposed module, the cross-lingual language model XLM
achieves continuous improvements, which leads to new state-
of-the-art results on the Amazon review benchmark dataset in
a CLCD setting. In the future, we will explore the effect of
our proposed unsupervised feature decomposition model on
other pretrained models and downstream tasks.
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