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Abstract

Due to the improvement of Language Modeling,
the emerging NLP assistant tools aiming for text
generation can greatly reduce the human work-
load on writing documents. However, the genera-
tion of legal text faces greater challenges than or-
dinary texts because of its high requirement for
keeping logic reasonable, which can not be guar-
anteed by Language Modeling right now. To gener-
ate reasonable legal documents, we propose a novel
method CoLMQA, which (1) combines Language
Modeling and Question Answering, (2) generates
texts with slots by Language Modeling, and (3)
fills the slots by our proposed Question Answer-
ing method named Transformer-based Key-Value
Memory Networks. In CoLMQA, the slots repre-
sent the part of the text that needs to be highly con-
strained by logic, such as the name of the law and
the number of the law article. And the Question
Answering fills the slots in context with the help
of Legal Knowledge Base to keep logic reasonable.
The experiment verifies the quality of legal docu-
ments generated by CoOLMQA, surpassing the doc-
uments generated by pure Language Modeling.

1 Introduction

The improvement of Language Modeling [Mikolov er al.,
2010; Vaswani et al., 2017; Radford et al., 2018; Devlin et
al., 2019] has greatly changed the landscape of NLP, and be-
gin to shed lights on automatic text generation, which can
reduce the human workload on writing documents. The suc-
cessful examples are the smart reply [Kannan er al., 2016]
and the smart compose in Gmail, helping people to type the
fixed daily utterances in e-mail editor.

The similar efforts have being made in the legal do-
main [Alschner and Skougarevskiy, 2017] to automati-
cally generate the official legal documents, even since
1990s [Branting, 1998]. However, the generating of legal text
faces greater challenges than ordinary texts due to its own

*Contribution during internship at Ping An Technology.

characteristics. There are at least two requirements for the
generation of legal documents: (1) the syntax should be cor-
rect, and (2) the logic should be reasonable. The syntax cor-
rectness problem has been mainly relieved by the current pre-
trained-then-fine-tuned language models such as GPT [Rad-
ford et al., 2018]. But the current language models still
lack the ability to keep logical rationality [Mao er al., 2019;
Guan er al., 2020]. For example, the text may be gener-
ated by a language model such as "Someone misappropriated
100,000 yuan of public funds. In accordance with Article 100
of the Criminal Law of the People’s Republic of China', the
judgment is as follows ...”, which is syntax-correct. But the
language model here does not know what Article 100 is, even
it has been trained on a lot of judicial documents. In fact,
Article 100 in the Criminal Law of the People’s Republic of
China is about the crime reporting system, which logically
conflicts with the fact of the misappropriation of public funds.

In another hand, the template-based generation seems a
possible solution, but it needs large manual efforts for cre-
ating templates [Branting, 1998], and cannot be generalized
to a more complex scenario. Meanwhile, a method for gen-
erating variational templates is proposed [Ye et al., 2020]
for further generating text from tables, but can not be easily
extended to the legal domain. However, the template-based
method meets another challenge that requires the knowledge
of implementing the templates to avoid logic conflicts.

To solve this problem, we introduce the Knowledge Base
enhanced Question Answering technique to the existing lan-
guage modeling in order to generate the logical part. In our
pilot study, when generating the Article 100”, the language
model was very uncertain whether it was correct. In general,
where the language model is uncertain, you can ask the sys-
tem: what applicable law article should be applied to a certain
person who misappropriates 100,000 yuan of public funds?
The Question Answering component can look up the knowl-
edge base and historical precedents, knowing that it is Article
185 and Article 272 in the Criminal Law of the People’s Re-
public of China, which is further discussed in Subsection 4.3
and Figure 3. We use the slots to represent the logical part

'The English version of the Criminal Law of the People’s Re-
public of China can be found on an official webpage https://www.
fmprc.gov.cn/ce/cgvienna/eng/dbtyw/jdwt/crimelaw/t209043.htm.
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need to be addressed in a QA system. And the slots can be
generated as special tokens in a text sequence by a trained
language model.

To implement this idea, we propose a novel method
CoLMQA, which (1) combines Language Modeling and
Question Answering, (2) generates texts with slots by Lan-
guage Modeling, and (3) fills the slots by our proposed Ques-
tion Answering method named Transformer-based Key-Value
Memory Networks.

To sum up, our contribution is mainly in four aspects. (1)
We convert the problem of keeping logic in the legal text
generation into two sub-tasks of generating texts with slots
and filling slots with the logical coherent values. (2) With
the guiding of this divide-and-conquer idea, we propose a
method CoLMQA, which benefits from the Language Model-
ing and Question Answering simultaneously. (3) We propose
a Transformer-based Key-Value Memory Networks, which
can encode a long query. (4) The experiment verifies that
CoLMQA can generate fluent sentences with slots, and can
fill in the correct values to keep the overall logical coherent.

2 Related Works

On methodology, there are two orthogonal lines of research
related to our work: language modeling and question answer-
ing. And the related works also include the NLP techniques
applied to legal documents.

Language modeling. The language models are used to pre-
dict the words when given context, describing the statistical
pattern in a sequence, such as the n-gram in traditional statis-
tical linguistics [Bellegarda, 2004]. With the development of
deep learning, neural language models like LSTM [Hochre-
iter and Schmidhuber, 1997] and RNNLM [Mikolov et
al., 2010] enhance the prediction power. Furthermore, the
Transformer-based neural language models [Vaswani et al.,
2017; Radford et al., 2018; Devlin er al., 2019] have greatly
changed the landscape of NLP.

Both traditional statistical language models and neural lan-
guage models are trained on text corpora to memorize pat-
terns. Although Petroni [2019] and Bouraoui [2020] point out
that the masked language model BERT [Devlin et al., 2019]
can learn certain types of factual knowledge from large text
corpora, BERT cannot be used on the text generation task di-
rectly. On the other hand, the autoregressive language model
GPT [Radford et al., 20181, GPT-2 [Radford et al., 2019] can
generate syntax-fluent text, and see successful applications.

But GPT(-2) faces the problem of unabeling to generate
factual aware text [Logan et al., 2019; Mao et al., 2019; Guan
et al., 2020]. To generate reasonable stories, Mao [2019] and
Guan [2020] both independently conducts the GPT-2’s multi-
task fine-tuning on external common sense datasets (e.g.,
ConceptNet) to promote GPT-2’s awareness of facts. Unlike
generating reasonable stories, our task places additional em-
phasis on the preciseness of law article numbers to keep logic
in the legal texts. Just like cardinal numbers in natural lan-
guage need to be processed additionaly [Andor et al., 2019],
so are ordinal numbers in legal documents.

Question answering. Question Answering is a big family
of NLP tasks, including QA on Knowledge Base [Berant et
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al., 2013], machine reading comprehension [Rajpurkar et al.,
2016], cloze-style QA [Das et al., 2017], etc. In a nutshell, it
provides answers to natural language questions. Our task of
filling correct values in generated legal text slots is equivalent
to the cloze-style question answering.

Adopting an external memory module, the memory net-
works [Weston et al., 2015; Sukhbaatar et al., 2015; Bor-
des et al., 2015] perform well on QA for mainly two rea-
sons: (1) the addressing and reading on external memo-
ries help the multi-hop reasoning; (2) the memory mod-
ule can visit an external knowledge base and scale up to
complex reasoning. Key-value memory networks [Miller
et al., 2016] extends MemNNs by separating keys and val-
ues in memory module, making it suitable for reading the
(key, value) style external knowledge [Das et al., 2017;
Xu et al., 2019]. The aforementioned memory networks ex-
ploit bag of words or RNN to encode queries, keys, and val-
ues but cannot encode very long texts well in our slots filling
scenario. The closest work to ours is Generative Transformer
Memory Network [Dinan et al., 2019], which employs Trans-
former as encoder and decoder in multi-turn dialogue. In our
work, the answer should be selected rather than generated to
ensure preciseness.

Legal documents. It’s a big human workload to process
massive legal texts. So employing NLP methods in le-
gal domain has attracted a lot of attention recently, for in-
stance, charge prediction [Luo et al., 2017; Hu et al., 2018;
Chen et al., 2019], question answering [Zhong e al., 2020],
and applicable law articles prediction [Zhong et al., 2018].
And the generation of legal texts also draws interests in the
NLP community. Alschner [2017] proposed a modified RNN
and applied on bilateral investment treaties. Ye [2018] pro-
vided a seq2seq method to generate court views (written ex-
planation from judges) from criminal facts.

The legal documents can be roughly categorized as fol-
lows: legislative, executive, judicial documents, and con-
tracts [Gostoji¢ and Markovié, 2019]. The aforementioned
methods mainly focus on only one type of documents. How-
ever, the contents of the law articles are in the legislative doc-
uments, while the numbers of the law articles are mentioned
in the judicial documents. Therefore, combining them helps
to generate reasonable legal documents.

3 Problem Definition

We consider the problem of generating a reasonable legal
document d when given a prompt 7 and a legal knowledge
base K. More specifically, we narrow down the type of le-
gal document d to judicial document, so the prompt 7 is a
text sequence for describing the meta information of the judi-
cial document, such as the criminal fact. A legal knowledge
base is formalized as K = {(k;, vl)}L’i‘l, where k; is the -
th law article and v; is the corresponding content. Then the
task of generating reasonable legal text is to find out the best
document d under the constraint between 7 and /C, shown as
Equation (1).

d= argn}i&}xp(d’hr,lC). (1)
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It’s infeasible to get the global optimal solution in Equation
(1) because of the huge search space O(|V|V), where [V is
the vocabulary size and NV is the upper bound of document
length. To get approximation solutions, we decompose the
original problem with the chain rule as follows: p(d'|m, K) =
H?zlp(sihr,lC,sl:i_l), where d’ = s1., and s; is the i-th
sentence in document d’. We conduct the greedy search on
the decomposed parts to get the final document, which means
searching a feasible solution for sentence s; when given the
previous ones Sp.;—1 at each step ¢. With the approximation,
the original problem is converted to the following one.

si = argmaxp(si|m, K, s15-1) @)

Although the original optimization problem is relaxed, the
new one is still challenging because the sentence s; relates to
the prompt 7, previous sentences si.;—; and a legal knowl-
edge base K simultaneously. We will show how to tackle the
problem proposed in Equation (2) through the combination of
Language Modeling and Question Answering in Section 4.

4 Method

In this section we discuss the main components of our pro-
posed method CoLMQA.

4.1 The Overall Architecture of CoOLMQA

Before diving into the details of CoOLMQA, recall the "Keep
Calm and Carry On” meme, which’s a typical phrase often
being imitated, by keeping the slots but replacing values with
others, such as "Keep Calm and Never Give Up”. Our method
CoLMQA follows a similar style: generate texts with slots
and fill them on. In this example, ”Carry On” and “Never
Give Up” are two different values of the slots in the meme.

More specifically, we divide the challenging task defined
in Section 3 into two sub-tasks: (a) text generation with slots
and (b) automatic filling slots based on the text context and
knowledge base. Therefore, the optimization target in Equa-
tion (2) can be further decomposed as Equation (3), where
sg_)
UE—H are the values of slots in sentence sg_) need to be filled
in. Then the optimization of Equation (2) is divided into two
sub-tasks of optimization.

is the sentence by keeping slots with placeholder, and

p(si|m, K, s1:5-1) :P(SE_)|7T,’C,81:i—1)

@, K, s101, 807)

Mlustrated in Figure 1, CoLMQA contains three parts: the
controller, the language modeling, and the question answer-
ing. The controller runs the text generation with the follow-
ing rules, and get the two sub-tasks in Equation (3) optimized
separately.

Rule 1 (LM). If there’s no slot in existing text, call LM to
generate next sentence.

Rule 2 (QA). If there are slots in existing text, call QA to fill
slots.

Rule 3 (End). Ifthere’s an END symbol in existing text, finish
the generation.

3
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Figure 1: Overall Architecture of COLMQA.

4.2 Generating Texts with Slots by Language
Modeling

As shown in Figure 2, there are two phases in using a lan-
guage model to generate texts with slots. The first phase is
fine-tuning. In this phase, after replacing the corresponding
values in the original text with slots, we put the legal docu-
ments into a pre-trained model for fine-tuning, where differ-
ent slots occupy different positions in the vocabulary.

Fine-tuning on Legal Document Generation

next sentence

, , , el

Language Model i Language Model ’

(Pre—trained GPT) (Fine—tuned GPT)

8; € Vwora U Vszots previous sentences

Figure 2: Generation of texts with slots.

The second phase is to use the fine-tuned language model
to generate texts with slots. We choose GPT as the language
model in our work. So V45 is the original vocabulary used
by the pre-trained GPT, and Vj;,:s includes the additional
placeholders in the fine-tuned GPT.

4.3 Filling Slots by Transformer-based Key-value
Memory Networks

Briefly, our proposed method is in a family of Key-Value
Memory Networks [Miller et al., 2016; Das et al., 2017,
Xu et al., 2019], but enhanced by Transformer encoder. As
Xu [2019] pointed out, the standard Key-Value Memory Net-
works contain the following components: key hashing, key
addressing, value reading, query updating, and answer pre-
diction, which also applies in our proposed method. And in
the above components, the standard KV-MemNNs exploit the
bag of words to encode queries, keys, values, and candidate
answers. This straightforward approach is not appropriate to
encode very long queries key-value pairs stored in the Legal
Knowledge Base, as shown in a running example in Figure 4.

Encoders. Transformer has shown its ability to capture the
long-range dependencies in natural language in GPT [Rad-
ford et al., 2018] and BERT [Devlin et al., 2019]. So rather
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Figure 3: The illustration of the Transformer-based key-value mem-
ory networks, a KB enhanced QA method for filling slots.

than encoding the input as a bag of words, we use Trans-
former. We append a special token, i.e., [CLS], at the tail
of a sentence s, then input it into an encoder with n layer of
Transformer encoder blocks. And then we use [CLS]’s corre-
sponding output embedding enccyg) to represent the sentence
s, and denote T'rans former(s) = encicLs)in s-

Since the Transformer encoder are pre-trained on all
queries, keys, values, and candidate answers with an au-
toregressive task of predicting next words, the encoding of
[CLS] can not be directly used in the Question Answering
task. So we apply a linear projection Wigs € RH*H on
Transformer(s), where H is the hidden size of Trans-
former encoder.

Equation (4) defines the Question Encoder in Figure 3,
given the original query ¢ as the input, to get the represen-
tation ¢(©) as the output. And all encoders in Figure 3 use a
same Transformer.

¢ = Wygs - Transformer(q) S

Key hashing. This component searches on the whole Le-
gal Knowledge Base and gets query-related key-value pairs
by conventional IR methods, e.g., TF-IDF or SQL selec-
tion on specific fields. Because the IR method doesn’t go
deeper into the sentence-level semantics of the query, and
key-value pairs, we need to store them in memory and do
re-organization by the remaining components.

Key addressing and value reading. Key addressing re-
flects the relatedness between keys and query, as shown in
Equation (5) and Equation (6). Similar to the scaled dot-
product attention in Transformer, we rescaled the relatedness
score p() with a factor of 1/v/H when doing normalization.
The superscript ¢ indicates the ¢-th hop (iteration) in multi-
hop reasoning, and no more than the number 7" of total hops.

Y = (¢)T (Wiys - Transformer(k;)) o

7
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Query: ... In a company, someone misappropriated 100,000 yuan of
public funds, according to Article [ARTICLE_NUMBER] of the [LAW] ...
Answer: [ARTICLE_NUMBER] = 272,

[LAW] = Criminal Law of the People’s Republic of China

Related Keys & Values in Legal Knowledge Base

Key(1): Criminal Value(1): Personnel of banks or other monetary
YO institutions who take advantage of their office to

Law of the . . - o

R . misappropriate funds of their respective institutions
People’s Republic . .
of China or customers are to be sentenced and punished in

. accordance with the stipulations of Article
Article 185 272 of this law...

Value(3): When personnel of companies,

Key(3): Criminal  enterprises, and other units, who take advantage

Law of the of their offices to misappropriate their units’
People’s Republic  funds for their own use or for lending to others,
of China, and the amounts involved are relatively large
Article 272 and have not been returned for a period of over

three months; ...

Candidate Answers:

Criminal Law of the People’s Republic of China, Article 185;
Criminal Law of the People’s Republic of China, Article 272;
etc.

Figure 4: A running example of filling slots with KB enhanced QA.
The slots of [ARTICLE_ZNUMBER], [LAW], and their context are
treated as the query. The values of slots are the answer. In this
example, the fact of misappropriating in a company leads to Article
272 as the answer instead of Article 185, because the latter is about
the misappropriating in banks or other monetary institutions.

(o _ e /VH)
b exp (0 /VH)

Value reading is given by Equation (7), summing the
weighted encodings of values.

, for all ¢ (6)

ot = Zﬁﬁt) - Wyns - Transformer(v;) @)

Essentially, key addressing and value reading implements
an attention layer to select which values are used to answer
the query ¢*).

Query updating. In the case of multi-hop reasoning, the
query needs to be updated after each hop of reading on KB,
because the newly read-in values should also be treated as a
part of the query. In the running example in Figure 4, the
query is to ask which law and article number applies to the
fact of misappropriating in a company. After one hop, the
fourth value in Figure 4 could answer the question. But in
a more complex situation, such as the misappropriating in a
bank, one hop is not enough because Article 185 also refers
to Article 272.

We concatenate the query representation ¢(*) and the repre-
sentation of related values o(!), then map to the H dimension
space by the matrix M ®) € R”*2H (o be a new query ¢(*+1).

¢ = LayerNorm(M® - (¢ @ o)) (8)
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Answer prediction. Rather than picking up all keys in Le-
gal Knowledge Base K as candidate answers like TextK-
BQA [Das er al., 2017], we only conduct the similarity com-
putation between ¢(7) and the retrieved candidates by Equa-
tions (9) and (10).

az(-T) = (q(T))T - Wrus - Transformer(c;), for i-th candidate
©))
(1)

Y (10)
Considering the article number and law in K plays three
roles in the network, such as the keys, the values, and the
answers, we use a different matrix Wrys to do the necessary
decoupling in Equation (9). Finally, the loss of cross-entropy
between the prediction score () and the ground truth y is
taken for training the Transformer-based key-value memory
networks.

= softmax(a(™)

an

without with with with
slots Type A slots | Type B slots | all slots
RNN 0.131 0.198 0.186 0.292
GPT 0.238 0.441 0.425 0.573
GPT
(pre-trained) 0.421 0.642 0.573 0.682

Table 1: The F score of predicting law article slots (Type B slots) of

different language models, on test dataset.

without with with with
slots type A slots | type B slots | all slots
RNN 67.9 59.6 62.8 53.1
GPT 12.8 10.3 11.9 8.2
GPT
(pre-trained) 11.3 8.8 10.5 7.8

Table 2: The perplexity on test dataset.

Loss(3™.,y) = = yilog "

S Empirical Study

In this section, we demonstrate the effectiveness of our pro-

documents, the regular expression and a finite-state machine
are used to extract the (key, value) pairs, where the key rep-
resents law article and value represents the detailed content.
In the end, the Legal Knowledge Base is built upon the 149
laws, civil codes, and interpretations, which appeared in the

posed method CoLMQA in the following aspects. (1) We
evaluate the quality of the generated texts with slots to show
the language model is capable of predicting the number of
slots and the composition of slots and words, which is critical
to our divide-and-conquer strategy. (2) Comparing to other
QA methods, we test the accuracy of filling slots by our pro-
posed Transformer-based key-value memory networks.

aforementioned Legal Document Dataset.

5.2 LM with Slots

Slots

Based on the level of uncertainty, we modeled 7 slots:

[NAME], [DATE], [MONEY], [ADDRESS], [NUMBER],
[LAW], [ARTICLE_NUMBER]. We use the regular expres-

Legal Document Dataset.
ducted on the judicial documents from China Judgements

main [Luo et al, 2017; Ye et al., 2018].

Legal Knowledge Base.
documents according to the law articles mentioned in the le-

5.1 Legal Document Dataset and Legal Knowledge
Base

All the experiments are con-

Online?, which are widely used in NLP works in legal do-
We crawled
11,327,945 judicial documents from China Judgements On-

line in 2015. The legal documents cover diverse branches of
law. For instance, we tokenized the document titles with a

Chinese Tokenizer jieba3, and do the quick overview of the

wordcount, then find out that the word “dispute” appearing
in 4,774,968 (42.1%) document titles, the word ”limited com-
pany” 30.5%, the word ”criminal” 17.2%, and the word "di-
vorce” 8.5%, etc.

We randomly select 20,000 documents from the dataset,

splitting to the training data, validation data, and testing data,
with the portion 80%, 10%, and 10%. By regular expres-
sions, the fact descriptions, and court views are extracted.
We mainly consider the generation of court views, which is
the explanation for the charge. And court views contain the
applicable law article to make the charge interpretable.

We collect the required legislative

sion to replace the values in court views part in legal docu-
ments with the above slot placeholders. The first five slots re-
duce the uncertainty of language modeling. The last two slots
correspond to two parts of a law article, which are the law’s
name and the number pointing to the law article. They have
specific values in our built Legal Knowledge Base. These val-
ues can be obtained by reasoning based on the text content.
Therefore, they are within the consideration of slot filling in
our question-answering model. And we denote the first five
slots as the Type A slots and the last two slots as the Type
B slots. The Type A slots used here is to demonstrate that
language models can benefit from reducing the uncertainties
when generating text, especially when they don’t have to pre-
dict the exact number of [MONEY] or the value of [DATE].

Language models with(out) slots. Language Models are
categorized into different groups depending on whether
trained with slots or without slots as shown in Table 1. We use
two versions of GPT?, pre-trained, and without pre-trained.
The former is pre-trained on a news dataset® which contains
2.5 million news articles for one epoch on a 4x NVIDIA
Tesla V100 machine, and with the stride being 768. The se-
quence length of the Transformer block used in both GPT ver-
sions is 1024. The text generation sub-task is given a prompt
(the facts part in a judicial document), then to generate a sen-

gal document dataset, e.g., the Criminal Law of the People’s
Republic of China. On the basis of the collected legislative

tence by using the Beam search.

2http://wenshu.court.gov.cn/
3https://github.com/fxsjy/jieba
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chinese_corpus.
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Result. In the first sub-task, after removing some highly un-
certain content and replacing it with slots, the language model
can generate more deterministic text and make the sentence
more fluent as shown in Table 1 and Table 2.

Given a prompt, we use a language model to generate the
court view that contains slots and then count the generated
Type B slots in it. The F score in Table 1 is computed be-
tween two Type B slot sequences by matching one by one. As
a toy example, a ground truth in a court view containing slots
like ”in accordance with Article b and Article b of a”, where
a=[LAW], b=[ARTICLE_NUMBER], and the slot sequences
in a generated text is like ”in accordance with Article b of a,
Article b of a, and Article b of a”. Then the precision of pre-
dicting Type B slots ([LAW] and [ARTICLE_NUMBERY]) is
1/6 because the first one slots are matched one by one, while
the recall of predicting Type B slots is 2/3 when considering
the total length of subsequences “b*a” in the ground truth
is matched by the generated sequence. The F score in this
toy example is 0.27. In this way, the F score is used to mea-
sure how good the text sequence with slots is matched to the
ground truth. When computing the F score of the slots pre-
diction by using the model without slots, we do a manual
conversion to replace the values with slots in the result.

In Table 1, we compare different language models and dif-
ferent settings and find out that the pre-trained GPT can effec-
tively generate a sentence with correct slots. In Table 2, the
perplexity on the test dataset demonstrates that the generated
sentence of the court view is fluent when considering slots.

5.3 Filling Slots by Transformer-based Key-Value
Memory Networks

Construction of query-answer pairs. To derive the query-
answer training pairs from the Legal Document Dataset in
Subsection 5.1, we consider different situations as follows.

The first one is that a court view part in the legal judi-
cial document only contains one applicable law article in the
form of ”According to Article 263 of the Criminal Law of
...”. In this case, the query in a query-answer pair is the text
span from the beginning to the position of current law ar-
ticle, while the value is the ground truth, e.g., Article 263
of the Criminal Law. The second one is that a court view
contains more than one applicable law article with the same
law, such as ”According to Article 263 and Article 269 of the
Criminal Law”. In this one, we make multi tiny-modified
copies, Queryl: “According to [ARTICLE_ZNUMBER] of
the [LAW]”, Query2: ”According to Article 263 and [ARTI-
CLE_NUMBER] of the Criminal Law”. The third one is the
mixing case, that different laws and different law articles are
cited in a court view, which can be processed like the second
one. On average, there are 4.1 query-answer pairs produced
per court view. And the average length of a query is 2783. For
the query which is longer than the sequence length of Trans-
former Encoder in TKVMemNN, we keep the tail part of the
query sequence, which is reasonable as the fact description
appears more often in the tail part.

Training of our method. We use the first four layers of
Transformers in our pre-trained GPT as the encoder for
queries, keys, values, and answers in the experiment, then
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carry out the two-phases fine-tuning. The first-phase fine-
tuning is conducted on the task of predicting the next words in
the sequences of queries, keys, and values. The second-phase
fine-tuning is training the proposed model TKVMemNN on
our constructed query-answer pairs and the Legal Knowledge
Base. To conduct the multi-hop reasoning, we set the number
of hops T as 3.

Baselines. We use Whoosh (a Python IR open-source
toolkit), Memory Networks, and their variants with or with-
out the document title as baselines. As the title are important
for providing additional information, such as the type of doc-
uments, they are useful for filling slots.

Because the computation of the dot product between the
query and the encodings of all the candidates in the Legal
Knowledge Base is very expensive, we limit the number of
candidates in IR scope to improve the efficiency.

MemNN | Whoosh | " 200 | pgypemnn | TKVMemNN
+title +title
0.23 0.13 0.17 0.39 0.41
Table 3: The accuracy of filling slots.
Result. In the second sub-task, the multi-hop reasoning on

the knowledge base makes the generated text more logical as
illustrated in Table 3.

6 Conclusion and Future Works

In order to solve the problem of conflicting logics appeared in
the text generated by a language model, we propose a novel
method CoLMQA which benefits from Language Modeling
and Question Answering simultaneously. In the Language
Modeling component, the sentences with slots are generated
and provided a well-written skeleton of sentences. And in
the Question Answering component, the slots are filled with
accurate values with the help of Knowledge Base. In our ex-
periment, we verified that our method can fill slots with logi-
cal coherent values. In the future, we’ll expand CoLMQA to
other scenarios of text generation which also require keeping
logic, but using different kinds of slots.
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