
A De Novo Divide-and-Merge Paradigm for Acoustic Model Optimization in
Automatic Speech Recognition

Conghui Tan1∗ , Di Jiang1 , Jinhua Peng1 , Xueyang Wu2 , Qian Xu1 and Qiang Yang1,2

1WeBank Co., Ltd., Shenzhen, China
2The Hong Kong University of Science and Technology, Hong Kong

{martintan, dijiang, kinvapeng, qianxu}@webank.com, {xwuba, qyang}@cse.ust.hk

Abstract

Due to the rising awareness of privacy protection
and the voluminous scale of speech data, it is be-
coming infeasible for Automatic Speech Recogni-
tion (ASR) system developers to train the acoustic
model with complete data as before. In this paper,
we propose a novel Divide-and-Merge paradigm
to solve salient problems plaguing the ASR field.
In the Divide phase, multiple acoustic models are
trained based upon different subsets of the com-
plete speech data, while in the Merge phase two
novel algorithms are utilized to generate a high-
quality acoustic model based upon those trained on
data subsets. We first propose the Genetic Merge
Algorithm (GMA), which is a highly specialized al-
gorithm for optimizing acoustic models but suffers
from low efficiency. We further propose the SGD-
Based Optimizational Merge Algorithm (SOMA),
which effectively alleviates the efficiency bottle-
neck of GMA and maintains superior performance.
Extensive experiments on public data show that the
proposed methods can significantly outperform the
state-of-the-art.

1 Introduction
Automatic Speech Recognition (ASR) has already become
an indispensable part of modern intelligence systems such as
voice assistant and client service robot. An effective ASR
system relies on a robust acoustic model that is trained over
a huge amount of speech data collected from a wide range
of domains. However, in real-life scenarios, training acoustic
model with complete data is increasingly infeasible due to the
following three reasons:

• R1: Speech data from different domains are owned by
distinct curators, who are typically unwilling to share
these data with others due to privacy concerns.

• R2: Speech data of multiple curators may be distributed
across different computing centers. Traditional dis-
tributed computing paradigms such as ParameterServer

∗Contact Author

require frequent information exchange between differ-
ent computing nodes and is hardly feasible if the data
are remotely distributed.

• R3: The speech data from a single curator can be volu-
minous. Traditional optimizing methods like Stochastic
Gradient Descent (SGD) are considered to be slow, even
for their parallel or asynchronous versions. Instead, one
would like to process data in a fully parallel way.

To tackle the aforementioned issues, we propose to opti-
mize the acoustic model in a two-stage fashion: we first train
multiple models on different parts of the data independently,
and then merge them into a single one. Actually, such a tech-
nique has already been applied in some existing applications.
For example, [McMahan et al., 2016] proposed to use this
technique to resolve the privacy and communication prob-
lems (i.e., R1 and R2) in federated learning; and Kaldi [Povey
et al., 2011], one of the most widely-used speech recognition
toolkits, has adopted it as the default training scheme in or-
der to deal with the efficiency challenge (i.e., R3) [Povey et
al., 2014]. However, in the phase of merging models, most
of the existing work still relies on the simplistic technique of
averaging over all the models. Although fairly good perfor-
mance can be achieved, whether there exists better strategies
for model merging is still an open problem.

In this paper, we propose a new Divide-and-Merge
paradigm. Different from existing similar approaches, we
merge the models in a more data-efficient way, where the
model quality is greatly improved with a very limited num-
ber of data. In detail, we first propose a merge method based
on genetic algorithm named GMA, which is capable of yield-
ing models of great performance. However, its practicality is
heavily limited by its poor efficiency. To further tackle this
issue, we convert the model merging problem into a math-
ematical optimization problem via a novel formulation, and
develop a new optimization method based on SGD to solve
it, which leads to a new method called SOMA. Experiments
suggest SOMA can produce models comparable to GMA, but
with much lesser computation cost.

Without loss of generality, we focus on the scenario of
merging several DNN acoustic models with homogenous
structures into a single one and this practice can be straight-
forwardly applied in both the state-of-the-art ASR systems
based upon DNN-HMM or End-to-End architectures.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3709

2 Related Work
2.1 Automatic Speech Recognition
Automatic speech recognition has been studied for a long
time. ASR systems typically consist of two components:
acoustic model (AM) and language model (LM), where the
former one is in charge of capturing the relationship between
acoustic inputs and phones, while the latter is used for mod-
eling the probability of possible word sequences.

Traditionally, acoustic model is based on Gaussian mixture
model (GMM) and hidden markov model (HMM). However,
since the seminal work [Hinton et al., 2012], the deep learn-
ing based AMs has become the mainstream in both industrial
applications and academic research. Some of the research fo-
cus on the end-to-end DNN acoustic model, such as connec-
tionist temporal classification (CTC, [Graves et al., 2006]).
However, to the best of our knowledge, the AM with the com-
bination of DNN and classical HMM model still retains the
state-of-the-art performance at present.

As for the LM, DNN-based LMs have also drawn a lot
of attention. Related works include [Bengio et al., 2003;
Morin and Bengio, 2005; Mikolov et al., 2010]. Especially,
models with attention mechanism such as BERT [Devlin et
al., 2018] has brought breakthrough in performance over pre-
vious methods. However, in terms the applications in ASR
systems, the traditional back-off n-gram model is still the
most common choice due to its simplicity and robustness.

2.2 Acoustic Model Optimization
As the standard method for training deep neural networks,
SGD and its variants such as Adam [Kingma and Ba, 2014]
are still the first choice for acoustic model optimization. But
some efforts are still made to explore other optimization tech-
nique. For example, [Cui and Picheny, 2019] proposed to use
a combinational optimization strategy with SGD and evolu-
tionary learning. As for the distributed computation setting,
asynchronous SGD under the ParameterServer framework is
widely adopted [Zhang et al., 2013]. However, asynchronous
SGD heavily suffers from the communication bottleneck on
the central server. To resolve this issue, [Povey et al., 2014]
proposed to train acoustic models on subsets of data totally
independently, and merge these models periodically.

On the other hand, we note that there are also some works
concerning acoustic model combination (e.g., [Kumar and
Gong, 2019; Meinedo and Neto, 2000; Xiong et al., 2018]).
We have to clarify its difference with our setting: model com-
bination does not merge the models into a single one in the
training phase. However, when doing prediction, all the mod-
els are respectively evaluated and their outputs are combined
to produce the final results. Hence, it is more related to en-
semble learning [Zhou, 2012]. Though model combination
can deal with heterogeneous models, it heavily increases the
burden of prediction. Moreover, is not suitable for the appli-
cations like distributed training where the merged model still
needs to be improved iteratively.

3 Problem Setup
Assume we have n acoustic models {MS,1,MS2

, . . . ,MS,n}
with homogenous structures but different parameters since

they are trained on different data. We call these n acoustic
models as the source models. Our goal is to merge them into
one target model MT , which posseses the same structure as
as source models but has better performance.

For each acoustic model Mi, we assume it has L DNN
layers, and its parameter of l-th layer is denoted as W l

i (1 ≤
l ≤ L). W l

i includes all types of trainable parameters on
that layer, such as weight and bias. For notational simplicity
, we use the operation on model Mi to denote the operation
on all its parameters W l

i with l = 1, . . . , L. For example,
(Mi + Mj)/2 is the model generated by averaging all the
corresponding parameters of Mi and Mj .

In order to select the best MT , we need some data to
evaluate the quality of MT , and we refer those data as
the validation data. In contrast, the data used for train-
ing {MS,1,MS,2, . . . ,MS,n} are called as the training data.
Though extra validation data is required for our scheme, it
will be shown later that the model quality can be greatly im-
proved with very few validation data, which implies it is pos-
sible to obtain acoustic models of similar performance with
less training data. To measure the performance of acoustic
models, we utilize the widely used metric Word Error Rate
(WER), which is defined as the minimum edit distance be-
tween the ASR hypothesis and the ground truth over the num-
ber of words in ground truth.

4 Genetic Merge Algorithm
Since we aim at discovering a better target acoustic model
from a set of source models, a relatively straightforward ap-
proach is to consider the source models as the initial popu-
lation and apply the genetic algorithm [Holland and others,
1992]. Genetic algorithm is a class of heuristic search algo-
rithm inspired by biological evolution. It optimizes a group of
candidates by repeatedly generate new individuals via opera-
tions like mutation and crossover and then offer the ones with
large fitness the right to produce offsprings, just like how bi-
ological evolution works. Genetic algorithm has two impor-
tant factors that determines its performance: the scheme of
generating offsprings and the strategy of selecting the fittest
individuals. In the following, we propose the Genetic Merge
Algorithm (GMA), which is caliberated for the scenario of
acoustic model optimization in ASR systems.

In GMA, the scheme for generating offsprings includes
four different operators. The first three are classical in
GA: reproduction, mutation and crossover. Specifically, we
choose to use single point mutation operator and the one-
point crossover operator respectively. Moreover, inspired by
the phenomenon discovered in [McMahan et al., 2016] that
directly averaging two neural network models with same ini-
tialization but trained on different data can lead to a better
one, we propose a new operator called linear interpolation
operator. In detail, these four operators works as follows:
• Reproduction directly copies the existing models into

next generation.
• Mutation randomly changes one bit in the binary expres-

sion of the parameters for the selected model.
• Crossover takes two parent models as the input. It ran-

domly draws an integer l (1 ≤ l < L), and the first l

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3710

layers of these two models are swapped. For example,
if M1 and M2 are two input parent models, then two
generated offsprings are:

Mnew,1 ={W 1
1 , . . . ,W

l
1,W

l+1
2 , . . . ,WL

2 },
Mnew,2 ={W 1

2 , . . . ,W
l
2,W

l+1
1 , . . . ,WL

1 }.

• Linear interpolation linearly combines all the parame-
ters of two parent models in a weighted way to generate
one new model, i.e.,

Mnew = λM1 + (1− λ)M2,

where λ is an interpolation coefficient randomly sam-
pled from (0, 1). Obviously, this operator is an extension
of simple average.

We utilize WER as the measurement of the fitness and
lower WER implies better fitness. For each generation, we
evaluate the WER of each acoustic model on the validation
set and choose the top-K with the lowest WERs as the par-
ents of the next generation. It is worth noting that larger K
brings more diversity into the population and usually leads to
better searching result, but it also increases computation cost.
Furthermore, inspired by the fact that the simple average of all
the sources models is already a good choice forMT again, we
also include the averaged model

∑n
i=1MS,i/n into the ini-

tial population. Such initialization provides a better start for
GMA and reduces the time needed for converging. Besides,
it ensures that the final acoustic model generated by GMA is
always better than simple average. The workflow of GMA
is presented in Algorithm 1. GMA requires three additional
hyperparameters: p1, p2 and p3, which are the probabilities
that mutation, crossover and linear interpolation operators are
applied to generate offsprings respectively.

Algorithm 1 Genetic Merge Algorithm (GMA)
input : source models MS,1,MS,2, . . . ,MS,n

Initialize P = {MS,1, . . . ,MS,n,
∑n
i=1MS,i/n}

while not converged do
P ′ = P // Reproduction
foreach Mi in P do

With probability p1 let
P ′ = P ′ ∪Mutation(Mi)

end
Randomly shuffle P
foreach adjacent models Mi,Mi+1 in P do

With probability p2 let
P ′ = P ′ ∪ Crossover(Mi,Mi+1)

With probability p3 let
P ′ = P ′ ∪ LinearInterpolation(Mi,Mi+1)

end
Compute the WERs of the models in P ′ on
validation set

Let P be the set of top-K models in P ′

end
output: MT =model in P with lowest WER

5 SGD-Based Optimizational Merge
Algorithm

With its superior performance in generating high-quality
acoustic models, GMA suffers from extremely low efficiency.
Processing a few acoustic models with GMA on a small vali-
dation data (e.g., 5 source on the validation set containing 10
hours of speech data) already requires several days, making it
hardly applicable real-life applications.

To tackle this issue, we propose the SGD-Based Optimiza-
tional Merge Algorithm (SOMA), which enjoys similar per-
formance as GMA but much more efficient. The major chal-
lenge of developing this method is how to convert our acous-
tic model merging problem into a mathematical optimization
problem that SGD can be applied.

The key observation is that any model M generated by
GMA can be layer-wisely presented by the following for-
mula:

W l =
n∑
i=1

θliW
l
S,i + ∆W l

s.t. θli ≥ 0,
n∑
i=1

θli = 1

(1)

for all its layers W l (1 ≤ l ≤ L). Here the summation
term

∑n
i=1 θ

l
iW

l
S,i corresponds to the linear interpolation and

crossover operators, while the extra variable ∆W l catches the
change introduced by mutation. This fact is rigorously justi-
fied by the following proposition:
Proposition 1. M in the form of (1) covers any model gener-
ated by GMA. Besides, term ∆W l is brought by the mutation
operation. In other words, it always holds that ∆W l = 0 if
mutation operator is not applied.

Proof. We prove this proposition by induction.
For any source model MS,i, it is obvious that (1) can re-

cover it by setting ∆W l = 0, θli = 1 and all other θlj = 0

with j 6= i. For the simple average
∑n
i=1MS,i/n, we can

choose θli = 1/n for all i and also ∆W l = 0 for all layers.
Hence, all the models in the initial generation of GMA can be
presented by (1) with ∆W l = 0.

Assume all the models in one generation satisfies equation
(1), then we proceed to show the proposition also holds for
the next generation. For model generated by the mutation op-
erator, it can be formulated into (1) by changing the quantity
∆W l of its parent while inheriting the other terms. Since the
crossover operator just swaps some layers of two models, and
the internal structures of each layer is still preserved, while
the constraints in (1) are imposed layer-wisely, the resulting
models should still also stick to the pattern of (1) once their
parents do, but with the corresponding θli and ∆W l swapped.
As for the linear interpolation operator, assume M1 and M2

are two input parents, then their layers can be written as:

W l
1 =

n∑
i=1

αliW
l
S,i + ∆W l

1,

W l
2 =

n∑
i=1

βliW
l
S,i + ∆W l

2,

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3711

where αli and βli are two groups of realization for θli and sat-
isfy the constraints for θli in (1). Thus, the parameter of the
linearly interpolated model should be:

W l
new

=λW l
1 + (1− λ)W l

2

=λ
(n∑
i=1

αliW
l
S,i + ∆W l

1

)
+ (1− λ)

(n∑
i=1

βliW
l
S,i + ∆W l

2

)
=

n∑
i=1

(
λαli + (1− λ)βli

)︸ ︷︷ ︸
θli

W l
S,i + λ∆W l

1 + (1− λ)∆W l
2︸ ︷︷ ︸

∆W l
new

.

In the next, we need to show θli satisfies the constraints in (1).
The non-negativity of θli is obvious, considering that αli ≥ 0,
βli ≥ 0 and θ ∈ (0, 1). Besides,

n∑
i=1

θli =
n∑
i=1

(
λαli + (1− λ)βli

)
=λ

n∑
i=1

αli + (1− λ)
n∑
i=1

βli

=λ+ (1− λ)

=1.

Therefore, all the offsprings produced by any operator still
follows the pattern in (1). Finally, from the above argument,
it can be seen that ∆W l of the generated model of both
crossover and linear interpolation operators must be 0 once
the corresponding terms of their parents are 0. Along with
the fact that ∆W l = 0 for all the models in the initial genera-
tion, we can conclude that ∆W l is introduced by mutation if
it is non-zero.

Now, we have already defined the pattern how the target
model should follow. Then, we can formulate our optimiza-
tion problem as:

minW l,θli,∆W
l `(M)

s.t. W l =
∑n
i=1 θ

l
iW

l
S,i + ∆W l

θli ≥ 0,
∑n
i=1 θ

l
i = 1,

(2)

where M is the model consisting of parameters
{W 1, . . . ,WL}, and `(M) is the loss function of model M
on the validation data. Any common training criterion for
DNN-based acoustic model can be used as the loss function
here, such as maximum mutual information (MMI, [Bahl et
al., 1986]).

Finally, due to the different nature between SGD and ge-
netic algorithm, it is much easier for SGD to overfit the val-
idation data when solving (2). This is because ∆W l can be
arbitrary in our current formulation, and it is possible that
∆W l becomes large enough to dominate the other terms. To
avoid such problem, we impose an extra restriction on ∆W l

that its magnitude can not exceed the whole parameterW l up

to a constant factor ρ ≥ 0, e.g., ρ = 0.01. As a result, our
formal formulation for model merging turns into:

minW l,θli,∆W
l `(M)

s.t. W l =
∑n
i=1 θ

l
iW

l
S,i + ∆W l

θli ≥ 0,
∑n
i=1 θ

l
i = 1

‖∆W l‖ ≤ ρ‖W l‖.

(3)

5.1 Solving Optimization Problem
Though we have already formulated our problem into an op-
timization problem, it is still unclear how to solve it, because
this problem seems complicated by having many constraints.
In this subsection, we develop a new approach to solve it.

To solve (3), one of our basic strategy is that we will not
directly update variable W l by SGD. Instead, we only update
θli and ∆W l, while the value ofW l is inferred from these two
group of variables according to the constraint

W l =
n∑
i=1

θliW
l
S,i + ∆W l

at the beginning of each iteration. And the latest estimation
of W l will work as the bridge for updating θli and ∆W l.

To do updates for θli and ∆W l, we first need to compute the
gradients of them. According to the chain rule, the gradient
of each θli can be derived as:

∂`

∂θli
=

∂`

∂W l
· ∂W

l

∂θli
=

∂`

∂W l
·W l

S,i,

where · standards for the dot product of matrices. There-
fore, we just need to compute the stochastic gradient of model
M = {W 1, . . . ,WL} by back-propagation as normal, then
the computation of the derivative of θli becomes trivial from
the above equation. As for ∆W l, by chain rule again, we can
show its gradient is exactly the same as the gradient of W l.

After conducting one step of SGD, we further need to do
projection operations to ensures the other two constraints are
still satisfied. The constraint

θli ≥ 0 and
n∑
i=1

θli = 1, (4)

is the so-called simplex constraint, which is well-studied in
optimization literature and efficient methods for dealing with
it are already known [Chen and Ye, 2011; Condat, 2016].
Hence, we will not dive into the detail how this projection
should be done, but simply denote the projection operator of
it as Π(·). While for∥∥∆W l

∥∥ ≤ ρ ∥∥W l
∥∥ , (5)

we actually just need to scale ∆W l to make it smaller, once
we find ∆W l violates this constraint. Besides, it is trivial to
show that the optimal scaling factor should be:

γl =
ρ‖W l‖
‖∆W l‖

.

Now we have completed all building blocks of our algo-
rithm. The full algorithm is summarized in Algorithm 2. Here
η > 0 is the step size hyperparameter for SGD. In the initial-
ization stage, we just set θli = 1/n and ∆W l = 0, which
implies we choose the model obtained by simple average as
the initial model.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3712

Dataset Name Training Validation Test
no. wav duration (h) no. wav duration (h) no. wav duration (h)

SLR18 THCHS-30 7984 20.4 2657 6.7 2747 7.0
SLR33 Aishell 120418 151.2 14331 18.1 7176 10.0
SLR38 Free ST Chinese Mandarin Corpus 61698 65.9 20395 21.8 20507 22.0
SLR47 Primewords Chinese Corpus Set 1 30366 59.6 10092 19.8 10212 20.1
SLR62 aidatatang 200zh 164905 139.9 24216 20.2 48144 40.2
Sum 385371 437.1 71691 86.7 88786 99.3

Table 1: Statistics of the datasets

Algorithm 2 SGD-Based Optimizational Merging
Algorithm (SOMA)

input : source models MS,1,MS,2, . . . ,MS,n

Initialize θli = 1/n and ∆W l = 0 for all i and l
while not converged do
// The following operations are done
for all i and l

Let W l =
∑n
i=1 θ

l
iW

l
S,i + ∆W l

Draw a batch of samples from validation data, and
compute ∂`

∂W l by back-propagation
Update by SGD:

θli = θli − η
∂`

∂W l
·WS,i

∆W l = ∆W l − η ∂`

∂W l

Let θli = Π(θli) // Π(·) is the projection
operator for (4)

if (5) not hold then
Let ∆W l = ∆W l · ρ‖W

l‖
‖∆W l‖

end
end
output: MT with parameters

W l
T =

∑n
i=1 θ

l
iW

l
S,i + ∆W l

6 Experiments
6.1 Experimental Setup
In order to ensure the reproducibility of the experiments, we
conduct all experiments on public datasets. Specifically, we
collected five speech dataset from the OpenSLR1 website,
which are SLR18, SLR33, SLR38, SLR48 and SLR62. All
of them contain Chinese speech records in wav format with a
sampling rate of 16kHz. Each dataset includes training, vali-
dation and test sets 2. The detailed statistics of all the datasets
are presented in Table 1.

As a testbed, we develop a full-fledged ASR system
through the open-source toolkit Kaldi [Povey et al., 2011].
Its built-in “Chain” model is used as the acoustic model of

1http://www.openslr.org/resources.php
2For dataset which does not have splits in advance, we randomly

split it into training, validation and test sets with proportions 60%:
20%: 20%

Figure 1: WERs of the sources models and target models generated
by different methods.

the ASR system. The DNN component of the “Chain” model
is implemented by Time Delay Neural Network (TDNN)
[Waibel et al., 1989] and the other components of the model
such as HMM are pre-trained. The backoff n-gram model
with n = 3 is used as the language model, which is trained
with the SRILM toolkit [Stolcke, 2002]. The whole system is
deployed on a machine with CentOS, Intel Xeon CPU of 72
cores, NVIDIA Tesla K80 GPU and 314GB memory.

Five TDNNs (i.e., the DNN components of the correspond-
ing “Chain” models) with the same initialization are trained
on the training sets of the five datasets respectively. The five
TDNNs play the roles of the source models. Considering the
slow speed of GMA, we sample a subset from the collection
of the validation data of the five datasets with a proportion
10% as the validation set. Both model merging methods will
work on this set to optimize the target model by default. All
the reported WERs in our experiments are computed on the
test set unless otherwise specified.

6.2 Effectiveness Evaluation
We first compare the performance of models generated by
different methods: direct average, GMA and SOMA. Both
GMA and SOMA have been run for enough time until they
converge. In detail, SOMA has been run for 10 iterations,
where we define one iteration as one passes through the sam-
pled validation data. While for GMA, it has been run for 100
generations with a population size K = 15, which results in

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3713

http://www.openslr.org/resources.php

Figure 2: Convergence curves of GMA and SOMA.

Figure 3: WERs of the target models optimized on different size of
validation set. Log-scale is adopted for x-axis.

more than 1000 iterations since each generated model needs
to be evaluated on the validation set once.

The WERs of all the models, including the sources models,
are reported in Figure 1. Due to the different sizes and qual-
ities of the training data, the performances the source mod-
els vary a lot, which brings challenges into model merging.
Though direct average achieves a WER lower than most the
source models, it is still slightly worse than the best one. As
a comparison, GMA and SOMA obviously outperform all of
them. Between them, GMA works better than SOMA, but
their difference (0.2%) is quite limited.

6.3 Efficiency Evaluation
Though GMA and SOMA have close performance in terms
of the generated model quality, they differ substantially in
their efficiency. To demonstrate this, we draw the conver-
gence curves of both methods in Figure 2, where the WERs of
the best-so-far generated models over different iterations are
reported. It can be observed that SOMA converges quickly,
so that the WER is greatly reduced after just one iteration,
and it converges in less than 10 iterations. However, GMA
fails to generate a better model than the direct average within
the first 30 iterations. It improves the models in a very slow

way. Even after 1000 iterations, it still falls behind SOMA.
Therefore, we can conclude that GMA is impractical on large
datasets due to its poor efficiency.

6.4 Variation of Validation Data Size
Considering both GMA and SOMA requires an extra set of
validation data for model merging compared to direct aver-
age, in this part we will vary the size of the validation set,
and see what will happen to them. We randomly sample sub-
sets of different sizes from the complete validation set with
proportions {1%, 2%, 5%, 10%, 20%, 50%, 100%}, and run
GMA and SOMA on them, and finally evaluate the WERs
on the test set. Due to the slow speed of GMA, it is not tested
on the validation subsets larger than 10%.

Overall, we can observe that larger validation set yields
better target models for both GMA and SOMA. However, if
the data size is already large enough, say 10% of the whole
validation set, further increasing data volume does not bring
too much help for SOMA. Moreover, we can see that both
GMA and SOMA can beat direct average with a very limited
number of validation data such as proportion 1%. Note that
1% of the validation data only corresponds to approximately
0.2% of the training data, but can already help reduce test
WER for more than one percent comparing to simple average.
This fact provides a strong reason for why to use our methods.

7 Conclusion
In this paper, we propose a novel Divide-and-Merge paradigm
for optimizing the acoustic model in ASR. In the Divide
phase, we train multiple acoustic models independently on
distinct parts of data. In the Merge phase, instead of applying
the simplistic averaging scheme for merging acoustic mod-
els, we propose two novel algorithms with significantly bet-
ter performance: GMA and SOMA, where the former one
is based on genetic algorithm and the latter one adopts SGD
with a novel mathematical formulation. Experiments show
that both of them can greatly improve acoustic model quality
with very limited amount of validation data. Besides, SOMA
demonstrates superior efficiency and can be easily applied to
large-scale speech data.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3714

References
[Bahl et al., 1986] Lalit R Bahl, Peter F Brown, Peter V

De Souza, and Robert L Mercer. Maximum mutual in-
formation estimation of hidden markov model parameters
for speech recognition. In proc. icassp, volume 86, pages
49–52, 1986.

[Bengio et al., 2003] Yoshua Bengio, Réjean Ducharme,
Pascal Vincent, and Christian Jauvin. A neural probabilis-
tic language model. Journal of machine learning research,
3(Feb):1137–1155, 2003.

[Chen and Ye, 2011] Yunmei Chen and Xiaojing Ye. Pro-
jection onto a simplex. arXiv preprint arXiv:1101.6081,
2011.

[Condat, 2016] Laurent Condat. Fast projection onto the
simplex and the simplex and the `1 ball. Mathematical
Programming, 158(1-2):575–585, 2016.

[Cui and Picheny, 2019] Xiaodong Cui and Michael
Picheny. Acoustic model optimization based on evolution-
ary stochastic gradient descent with anchors for automatic
speech recognition. arXiv preprint arXiv:1907.04882,
2019.

[Devlin et al., 2018] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805, 2018.

[Graves et al., 2006] Alex Graves, Santiago Fernández,
Faustino Gomez, and Jürgen Schmidhuber. Connectionist
temporal classification: labelling unsegmented sequence
data with recurrent neural networks. In Proceedings of the
23rd international conference on Machine learning, pages
369–376. ACM, 2006.

[Hinton et al., 2012] Geoffrey Hinton, Li Deng, Dong Yu,
George Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen,
Brian Kingsbury, et al. Deep neural networks for acoustic
modeling in speech recognition. IEEE Signal processing
magazine, 29, 2012.

[Holland and others, 1992] John Henry Holland et al. Adap-
tation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artifi-
cial intelligence. MIT press, 1992.

[Jiang et al., 2019] Di Jiang, Yuanfeng Song, Yongxin Tong,
Xueyang Wu, Weiwei Zhao, Qian Xu, and Qiang Yang.
Federated topic modeling. In Proceedings of the 28th ACM
International Conference on Information and Knowledge
Management, pages 1071–1080, 2019.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[Kumar and Gong, 2019] Kshitiz Kumar and Yifan Gong.
Static and dynamic state predictions for acoustic model
combination. In ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 2782–2786. IEEE, 2019.

[McMahan et al., 2016] H Brendan McMahan, Eider Moore,
Daniel Ramage, Seth Hampson, et al. Communication-
efficient learning of deep networks from decentralized
data. arXiv preprint arXiv:1602.05629, 2016.

[Meinedo and Neto, 2000] Hugo Meinedo and Joao P Neto.
Combination of acoustic models in continuous speech
recognition hybrid systems. In Sixth International Con-
ference on Spoken Language Processing, 2000.

[Mikolov et al., 2010] Tomáš Mikolov, Martin Karafiát,
Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Re-
current neural network based language model. In Eleventh
annual conference of the international speech communi-
cation association, 2010.

[Morin and Bengio, 2005] Frederic Morin and Yoshua Ben-
gio. Hierarchical probabilistic neural network language
model. In Aistats, volume 5, pages 246–252. Citeseer,
2005.

[Povey et al., 2011] Daniel Povey, Arnab Ghoshal, Gilles
Boulianne, Lukas Burget, Ondrej Glembek, Nagendra
Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian,
Petr Schwarz, et al. The kaldi speech recognition toolkit.
In IEEE 2011 workshop on automatic speech recognition
and understanding, number CONF. IEEE Signal Process-
ing Society, 2011.

[Povey et al., 2014] Daniel Povey, Xiaohui Zhang, and San-
jeev Khudanpur. Parallel training of deep neural networks
with natural gradient and parameter averaging. arXiv
preprint arXiv:1410.7455, 2014.

[Stolcke, 2002] Andreas Stolcke. Srilm-an extensible lan-
guage modeling toolkit. In Seventh international confer-
ence on spoken language processing, 2002.

[Waibel et al., 1989] Alex Waibel, Toshiyuki Hanazawa, Ge-
offrey Hinton, Kiyohiro Shikano, and Kevin J Lang.
Phoneme recognition using time-delay neural networks.
IEEE transactions on acoustics, speech, and signal pro-
cessing, 37(3):328–339, 1989.

[Xiong et al., 2018] Wayne Xiong, Lingfeng Wu, Fil All-
eva, Jasha Droppo, Xuedong Huang, and Andreas Stol-
cke. The microsoft 2017 conversational speech recogni-
tion system. In 2018 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pages
5934–5938. IEEE, 2018.

[Zhang et al., 2013] Shanshan Zhang, Ce Zhang, Zhao You,
Rong Zheng, and Bo Xu. Asynchronous stochastic gradi-
ent descent for dnn training. In 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing,
pages 6660–6663. IEEE, 2013.

[Zhou, 2012] Zhi-Hua Zhou. Ensemble methods: founda-
tions and algorithms. Chapman and Hall/CRC, 2012.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3715

	Introduction
	Related Work
	Automatic Speech Recognition
	Acoustic Model Optimization

	Problem Setup
	Genetic Merge Algorithm
	SGD-Based Optimizational Merge Algorithm
	Solving Optimization Problem

	Experiments
	Experimental Setup
	Effectiveness Evaluation
	Efficiency Evaluation
	Variation of Validation Data Size

	Conclusion

